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This handbook is dedicated to Erik Duval, in memoriam.

Erik’s passion and strong convictions were some of the fundamen-
tal pillars on which the learning analytics community was built. His 

participation in this community and his scientific contribution to 
the field made him one of our leading experts. His personality and 

openness made him one of our favorite colleagues. His integrity and 
never-ending curiosity made him an example to follow.

All the editors and authors of this handbook were inspired by his 
openly shared ideas and research. By similarly sharing ours, we want 
to honor his memory, keeping the fire he helped start burning strong. 





At the Learning Analytics and Knowledge Conference in 2014, The Handbook of Learning Analytics was con-
ceived to support a scientific view of the rapidly growing ecosystem surrounding educational data. A need 
was identified for a Handbook that could codify ideas and practices within the burgeoning fields of learning 
analytics and educational data mining, as well as a reference that could serve to increase the coherence of 
the work being done and broaden its impact by making key ideas easily accessible. Through discussions over 
2014-2015 these dual purposes were augmented by the desire to produce a general resource that could be 
used in teaching the content at a Masters level. It is these core demands that have shaped the publication of 
the Handbook: rigorous summary of the current state of these fields, broad audience appeal, and formatted 
with educational contexts in mind.

To balance rigor, quality, open access and breadth of appeal the Handbook was devised to be an introduction 
to the current state of research in the field. Due to the pace of work being done it is unlikely that any document 
could capture the dynamic nature of the domains involved. Therefore, instead of attempting to be a terminal 
publication, the Handbook is a snapshot of the field in 2016, with the full intention of future editions revising 
these topics as research continues to evolve. We are committed to publishing all future editions of the Hand-
book as an open resource to provide access to as broad an audience as possible. 

The Handbook features a range of prominent authors across the fields of learning analytics and educational 
data mining who have contributed pieces that reflect the sum of work within their area of expertise at this 
point in time. These chapters have been peer reviewed by committed members of these fields and are being 
published with the endorsement of both the Society for Learning Analytics Research and the International 
Society for Educational Data Mining.

The Handbook is composed of four sections, each dealing with a different perspective on learning analytics: 
Foundational Concepts, Techniques and Approaches, Applications and Institutional Strategies. The initial sec-
tion, Foundational Concepts, takes a broad look at high-level concepts and serves as an entry point for people 
unfamiliar with the domain. The first chapter, by Simon Knight and Simon Buckingham Shum, discusses the 
importance of theory generation in learning analytics, Ulrich Hoppe examines the history and application of 
computational methods to learning analytics, and Yoav Bergner provides a primer on educational measurement 
and psychometrics for learning analytics. The final chapter in the section is Paul Prinsloo and Sharon Slade’s 
consideration of how the ethical implications of learning analytics research and practice is evolving.

The second section of the Handbook, Techniques and Approaches, discusses pertinent methodologies and their 
development within the field. This section begins with a review of predictive modeling by Chris Brooks and 
Craig Thompson. This introduction to prediction is expanded upon by Ran Liu and Kenneth Koedinger in their 
discussion of the difference between predictive and explanatory models. The next chapters deal with differing 
data sources, the emerging sub-field of content analytics is covered by Vitomir Kovanović, Srećko Joksimović, 
Dragan Gašević, Marek Hatala and George Siemens. The theme of unstructured data is continued with an 
introduction and review of Natural Language Processing in learning analytics by Danielle McNamara, Laura 
Allen, Scott Crossley, Mihai Dascalu and Cecile A. Perret and further augmented by an expansive discussion 
of related methods in discourse analytics by Carolyn Rosé. Sydney D’Mello then delves into the strides that 
emotional learning analytics have made both within the learning and computational sciences. From this ex-
ploration of the depths of the inner world of students Xavier Ochoa’s chapter on multimodal learning analytics 
covers the expansive range of ways that student data may be tracked and combined in the physical world. In the 
final chapter in the Techniques and Approaches section, Alyssa Wise and Jovita Vytasek discuss the processes 
involved in taking up and using analytic tools.

The third section of the Handbook, Applications, discusses the many and varied ways that methodologies can 
be applied within learning analytics. This is followed by a consideration of the student perspective through 
an introduction to how data-driven student feedback can positively impact student performance by Abelardo 
Pardo, Oleksandra Poquet, Roberto Martínez-Maldonado and Shane Dawson. This is followed by a thorough 
introduction to the uses, audiences and goals of analytic dashboards by Joris Klerkx, Katrien Verbert, and Erik 
Duval. The application of a theory-based approach to learning analytics is presented by David Shaffer and An-
drew Ruis through a worked example of epistemic network analysis. Networks are further explored through 
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Daniel Suthers’ description of the TRACES system for hierarchical models of sociotechnical network data. Ap-
plications within the realm of Big Data are tackled by three chapters, Peter Foltz and Mark Rosenstein consider 
large scale writing assessment, René Kizilcec and Christopher Brooks look at randomized experiments within 
the MOOC context and Steven Tang, Joshua Peterson and Zachary Pardos consider predictive modelling using 
highly granular action data. Automated prediction is further developed in a tutorial on recommender systems 
by Soude Fazeli, Hendrik Drachsler and Peter Sloep. This is followed by a thorough introduction to self-reg-
ulated learning utilizing learning analytics by Phil Winne. After which Negin Mirriahi and Lorenzo Vigentini 
consider the complexities of analyzing user video use. The final chapter in the Applications section considers 
adult learners through Allison Littlejohn’s analysis of professional learning analytics.

The final section of the Handbook, Institutional Strategies & Systems Perspectives, is designed to help readers 
understand the practical challenges of implementing learning analytics at an institutional or system level. 
Three chapters discuss aspects pertinent to realizing a mature learning analytics ecosystem. Ruth Crick tackles 
the varied processes involved in developing a virtual learning infrastructure, Linda Baer and Donald Norris 
speak to challenges of utilizing learning analytics within institutional settings and Rita Kop, Helene Fournier 
and Guillaume Durand take a critical stance on the validity of educational data mining and learning analytics 
for measuring and claiming results in educational and learning settings. Elana Zeide provides an in-depth 
analysis of the state of student privacy in a data rich world. The final chapters in the Handbook discuss linked 
data, Davide Taibi and Stefan Dietze cover the utilization of the LAK dataset and Amal Zouaq, Jelena Jovanović, 
Srecko Joksimović and Dragan Gašević consider the potential of linked data generally to improve education.

Ultimately, our aim for the Handbook is to increase access to the field of learning analytics and enliven the 
discussion of its many areas and sub-domains and so, in some small way, we can contribute to the improvement 
of education systems and aid student learning.

Charles Lang

George Siemens



As a field of academic study, Learning Analytics has grown at a remarkably rapid pace. The first Learning An-
alytics and Knowledge (LAK) conference, was held in Banff in 2011. The call for this conference generated 38 
submissions and 130 people attended the meeting. By the next year, the conference had more than doubled the 
number of paper submissions, and registration closed early when the conference sold out at 230 participants. 
Both paper submissions and attendance numbers at LAK have increased every year since. Now in 2017, the 
7th LAK conference returns to Vancouver with a program representing work from 32 countries, featuring 64 
papers, 67 posters and demos, and 16 workshops. At the writing of this preface, the conference is expected to 
reach or exceed the 426 participants who attended LAK 2016.

The growth of learning analytics is not only demonstrated by a bigger and broader conference; the field has 
matured as well. In 2013 the Society for Research on Learning Analytics (SoLAR) was officially incorporated as a 
professional society, and the first issue of the Journal of Learning Analytics appeared in May, 2014. Publications 
of learning analytics research are not limited to the society’s conference proceedings and journal. Special issues 
focused on learning analytics have appeared in journals concerned with education, psychology, computing 
and the social sciences. A Google Scholar search of the term “learning analytics” produces over 14,000 hits, 
coming from a broad range of journals such as Educational Technology & Society, American Behavioral Scien-
tist, Computers in Human Behavior, Computers & Education, Teaching in Higher Education, and many others.

All of this shows that the body of research representing work in the learning analytics field has also grown 
rapidly. So much so that it is an opportune time to produce a learning analytics handbook that can serve as a 
recognized resource for students, instructors, administrators, practitioners and industry leaders. This volume 
provides an introduction to the breadth of learning analytics research, as well as a framework for organizing 
ideas in terms of foundational concepts, techniques and approaches, applications, and institutional strategies 
and systems perspectives. Given the pace of the research, it is likely that a static handbook would be out of date 
quickly. Therefore, SoLAR offers this volume as an open resource with plans to update the content and release 
new editions regularly. Meanwhile, this volume provides an extensive view into what we know now from the 
perspective of leading experts in the field. Many of these authors have been involved in learning analytics since 
that first meeting in Banff, while others have helped broaden and enrich the field by bringing in new theory, 
concepts, and methodologies. Further, readers will find chapters not only on technical and conceptual topics, 
but ones that thoughtfully address a number of important but sensitive issues arising from research utilizing 
educational data, including ethics of data use, student privacy, and institutional challenges resulting from local 
and national learning analytics initiatives.

As the newly elected president of the Society for Learning Analytics Research it is my great pleasure to wel-
come you to this handbook. My own history with the society dates back to the first Vancouver meeting where 
I found a fascinating group of researchers who shared my excitement about the questions we could now ask 
about learning by leveraging the increasing volumes of data produced by new educational technologies. These 
were data geeks for sure, but I also found people with a sense of purpose and strong commitment to diversity 
and inclusion. These values are reflected in the research we do and in the community we have built to advance 
that work. This volume reflects those values by its nature: the chapters come from authors around the world 
representing very different disciplinary training, whose work has an orientation to action and supporting 
educational advances for all learners. 

With the publication of this volume we welcome old friends and introduce the field to newcomers. I am confi-
dent that you will find here research that will simultaneously excite you with ideas about how we can change 
the world of education and frustrate you with the evidence of the challenges ahead for doing so. We invite 
you to join us in this adventure. If you would like to become directly involved in learning analytics, SoLAR has 
several ways for you to do so:

• Join our professional society (SoLAR):

• https://solaresearch.org/membership/

From the President of the Society for Learning 
Analytics Research



• Submit your work and/or attend our annual conference (LAK):

• https://solaresearch.org/events/lak/

• Participate in a Learning Analytics Summer Institute (LASI):

• https://solaresearch.org/events/lasi/

• Read and submit to our journal (JLA): 

• https://solaresearch.org/stay-informed/journal/

I hope you will enjoy and be stimulated by this volume and the others to come.

March, 2017

Stephanie D. Teasley, PhD

President, Society for Learning Analytics Research

Research Professor, University of Michigan



Data science impacts many aspects of our life. It has been transforming industries, healthcare, as well as other 
sciences. Education is not an exception. On the contrary, an explosion of available data has revolutionized how 
much education research is done. An emerging area of educational data science is bringing together researchers 
and practitioners from many fields with an aim to better understand and improve learning processes through 
data-driven insights. Learning analytics is one of the new young disciplines in the area. It studies how to employ 
data mining, machine learning, natural language processing, visualization, and human-computer interaction 
approaches among others to provide educators and learners with insights that might improve learning pro-
cesses and teaching practice.

A typical learning analytics question in the recent past would be how to predict accurately and early enough in 
the learning process whether a student in a course or in a study program is unlikely to complete it successfully. 
Since then, the landscape of learning analytics has been getting wider and wider as it becomes possible to track 
the behavior of learners and teachers in learning management systems, MOOCs, and other digital platforms 
that support educational processes. Of course, being able to collect larger volumes and varieties of educational 
data is only one of the necessary ingredients. It is essential to adopt, adapt and develop new computational 
techniques for analyzing it and for capitalizing on it.

The variety of questions that are being asked of the data are getting richer and richer. Many questions can 
be answered with well-established data mining techniques and other computational approaches, including 
but not limited to classification, clustering and pattern mining. More specialized educational data mining 
and learning analytics approaches, for instance Bayesian Knowledge Tracing, modeling student engagement, 
natural language analysis of learning discourse, student writing analytics, social network analysis of student 
interactions and performance monitoring with interactive dashboards are being used to get deeper insights 
into different learning processes. 

I had the privilege of being among the first readers of the Handbook of Learning Analytics, before it was published. 
In my view the Handbook is a good first step for anyone wishing to get an introduction to learning analytics 
and to develop her conceptual understanding. The chapters are written in an accessible form and cover many 
of the essential topics in the field. The handbook would also benefit young and experienced learning analytics 
researchers, as well as ambassadors and enthusiasts of learning analytics.

The handbook goes beyond presenting learning analytics concepts, state-of-the-art techniques for analyzing 
different kinds of educational data, and selected applications and success stories from the field. The editors 
invited prominent researchers and practitioners of learning analytics and educational data mining to discuss 
important questions that are often not well understood by non-experts. Thus, some of the chapters invite 
readers to think about the inherently multidisciplinary research of learning analytics and about the value of at 
least considering, if not building on, established theories of learning sciences, educational psychology, and edu-
cation research rather than going down the purely data-driven path. Other chapters emphasize the importance 
of understanding the difference between explanatory and predictive modeling or predictive and prescriptive 
analytics. This is especially useful for those who are responsible for, or simply thinking of, deploying learning 
analytics in an institution, or linking it with policy making processes or developing personalized learning ideas.

The future of learning analytics is bright. Educational institutions already see the many promising opportuni-
ties that it provides for advancing our understanding of different learning processes and enhancing them in a 
variety of educational settings. These include analytics-driven interventions in remedial education, advising 
students, better curriculum modeling and degree planning, and understanding student long-term success 
factors. We can witness how the potential of learning analytics is recognized not only by institutions, but 
also by companies developing educational software such as intelligent tutors, educational games, learning 
management systems or MOOC platforms. We can see that more and more of these tools include at least some 
elements of learning analytics.

From the President of the International 
Educational Data Mining Society



Nevertheless, I would encourage the readers to think about the broad spectrum of ethical issues and account-
ability of learning analytics. We can collect valuable educational data and already have powerful tools for gaining 
insights into learning and the effectiveness of educational processes. We expand the set of questions asked to 
the data. Educational researcher and data scientists often have a false belief that computational approaches 
and off-the-shelf tools have no bad intent and if the tools are used correctly, then employing learning analyt-
ics is bound to produce success. It is critically important to educate early adopters of learning analytics not 
only about techniques and the kinds of findings from the data they facilitate, but also about their limits. The 
classical examples would remain the difference between correlation, predictive correlation and causation, and 
the interpretation of the statistical significance of the results. The Handbook provides a valuable educational 
support in this context too. Furthermore, authors of selected chapters share their thoughts and stimulate the 
discussion of several topics that have not been exhaustively studied in the field yet. I hope the Handbook will 
also help newcomers to realize the extent to which learning analytics can and should support educators and 
learners. Even more so, it is important to study in what ways learning analytics may mislead and potentially 
harm students, teachers and the ecosystems they are in and how to prevent this. 

I would like to conclude with a forecast that learning analytics and educational data science will gain a deeper 
and more holistic understanding of what it means for learning analytics to be ethics-aware, accountable and 
transparent and how to achieve that. This will be instrumental for unlocking the full potential of learning an-
alytics and driving the further healthy development of the field. 

March 2017

Professor Mykola Pechenizkiy, 

President of IEDMS – International Educational Data Mining Society

Chair Data Mining, Eindhoven University of Technology, the Netherlands
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In what has become a well-cited, popular article in 
Wired magazine, in the new era of petabyte-scale 
data and analytics, Anderson (2008) envisaged the 
death of theory, models, and the scientific method. No 
longer do we need to create theories about how the 
world works, because the data will tell us directly as 
we discern, in almost real time, the impacts of probes 
and changes we make.

This high profile article and somewhat extreme conclu-
sion, along with others (see, for example, Mayer-Schön-
berger & Cukier, 2013), has, not surprisingly, attracted 
criticism (boyd & Crawford, 2011; Pietsch, 2014).

Educational researchers are one community interested 
in the application of “big data” approaches in the form 
of learning analytics. A critical question turns on ex-
actly how theory could, or should shape research in 
this new paradigm. Equally, a critical view is needed 
on how the new tools of the trade enhance/constrain 
theorizing by virtue of what they draw attention to, 
and what they ignore or downplay. Returning to our 
opening provocation from Anderson, the opposite 
conclusion is drawn by Wise and Shaffer (2015, p. 6):

What counts as a meaningful finding when the 
number of data points is so large that something 

will always be significant? […] In sum, when 
working with big data, theory is actually more 
important, not less, in interpreting results and 
identifying meaningful, actionable results. 
For this reason we have offered Data Geology 
(Shaffer, 2011; Arastoopour et al., 2014) and Data 
Archeology (Wise, 2014) as more appropriate 
metaphors than Data Mining for thinking 
about how we sift through the new masses of 
data while attending to underlying conceptual 
relationships and the situational context.

Data-intensive methods are having, and will continue 
to have, a transformative impact on scientific inquiry 
(Hey, Tansley, & Tolle, 2009), with familiar “big science” 
examples including genetics, astronomy, and high 
energy physics. The BRCA2 gene, Red Dwarf stars, 
and the Higgs bosun do not hold strong views on being 
computationally modelled, or who does what with the 
results. However, when people become aware that 
their behaviour is under surveillance, with potentially 
important consequences, they may choose to adapt 
or distort their behaviour to camouflage activity, or 
to game the system. Learning analytics researchers 
aiming to study learning using such tools must do so 
aware that they have adopted a particular set of lenses 

Chapter 1: Theory and Learning Analytics

Simon Knight, Simon Buckingham Shum

The challenge of understanding how theory and analytics relate is to move “from clicks to 
constructs” in a principled way. Learning analytics are a specific incarnation of the bigger 
shift to an algorithmically pervaded society, and their wider impact on education needs 
careful consideration. In this chapter, we argue that by design — or else by accident — the 
use of a learning analytics tool is always aligned with assessment regimes, which are in 
turn grounded in epistemological assumptions and pedagogical practices. Fundamentally 
then, we argue that deploying a given learning analytics tool expresses a commitment to 
a particular educational worldview, designed to nurture particular kinds of learners. We 
outline some key provocations in the development of learning analytic techniques, key 
questions to draw out the purpose and assumptions built into learning analytics. We suggest 
that using “claims analysis” — analysis of the implicit or explicit stances taken in the design 
and deploying of technologies — is a productive human-centred method to address these 
key questions, and we offer some examples of the method applied to those provocations. 

Keywords: Theory, assessment regime, claims analysis

ABSTRACT
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on “learning” that amplify and distort in particular 
ways, and that may unintentionally change the system 
being tracked. Researchers should stay alert to the 
emerging critical discourse around big data in soci-
ety, data-intensive science broadly, as well as within 
education where the debate is at a nascent stage.

Let us turn now to educators and learners. The potential 
of learning analytics is arguably far more significant 
than as an enabler of data-intensive educational 
research, exciting as this is. The new possibility is 
that educators and learners — the stakeholders who 
constitute the learning system studied for so long by 
researchers — are for the first time able to see their 
own processes and progress rendered in ways that 
until now were the preserve of researchers outside the 
system. Data gathering, analysis, interpretation, and 
even intervention (in the case of adaptive software) is 
no longer the preserve of the researcher, but shifts to 
embedded sociotechnical educational infrastructure. 
So, for educators and learners, the interest turns on 
the ability to gain insight in a timely manner that could 
improve outcomes.

Thus, with people in the analytic loop, the system 
becomes reflexive (people change in response to the 
act of observation, and explicit feedback loops), and 
we confront new ethical dilemmas (Pardo & Siemens, 
2014; Prinsloo & Slade, 2015). The design challenge 
moves from that of modelling closed, deterministic 
systems, into the space of “wicked problems” (Rittel, 
1984) and complex adaptive systems (Deakin Crick, 
2016; Macfadyen, Dawson, Pardo, & Gašević, 2014). As 
we hope to clarify, for someone trying to get a robust 
measure of “learning” from data traces, such reflexivity 
will be either a curse or a blessing, depending on how 
important learner agency and creativity are deemed 
to be, how fixed the intended learning outcomes are, 
whether analytical feedback loops are designed as 
interventions to shape learner cognition/interaction, 
and so forth.

Our view is that it is indeed likely that education, as 
both a research field and as a professional practice, 
is on the threshold of a data-intensive revolution 
analogous to that experienced by other fields. As the 
site of political and commercial interests, education 
is driven by policy imperatives for “impact evidence,” 
and software products shipping with analytics dash-
boards. While such drivers are typically viewed with 
suspicion by educational practitioners and researchers, 
the opportunity is to be welcomed if we can learn how 
to harness and drive the new horsepower offered by 
analytics engines, in order to accelerate innovation and 
improve evidence-based decision-making. Systemic 
educational shifts are of course tough to effect, but 
could it be that analytics tools offer new ways to evi-

dence, at scale, the kinds of process-intensive learning 
that educators have long argued for, but have to date 
proven impractical? Exactly what one seeks to do with 
analytics is at the heart of this chapter.

To design analytics-based lenses — with our eyes wide 
open to the risks of distorting our definition of “learning” 
in our desire to track it computationally — we must 
unpick what is at stake when classification schemes, 
machine learning, recommendation algorithms, and 
visualizations mediate the relationships between 
educators, learners, policymakers, and researchers. 
The challenge of understanding how theory and an-
alytics relate is to move “from clicks to constructs” 
in a principled way.

Learning analytics are a specific incarnation of the 
bigger shift to an algorithmically pervaded society. The 
frame we place around the relationship of theory to 
learning analytics must therefore be enlarged beyond 
considerations of what is normally considered “edu-
cational theory,” to engage with the critical discourse 
around how sociotechnical infrastructures deliver 
computational intelligence in society.

The remainder of the chapter argues that by design 
— or else by accident — the use of a learning analytics 
tool is always aligned with assessment regimes, which 
are in turn grounded in epistemological assumptions 
and pedagogical practices. Moreover, as we shall ex-
plain, a long history of design thinking demonstrates 
that designed artifacts unavoidably embody implicit 
values and claims. Fundamentally then, we argue that 
deploying a given learning analytics tool expresses a 
commitment to a particular educational worldview, 
designed to nurture particular kinds of learners.

In an earlier paper (Knight, Buckingham Shum, & Lit-
tleton, 2014) we put forward a triadic depiction of the 
relationship between elements of theory and practice 
in the development of learning analytic techniques, 
as depicted in Figure 1.1 (we refer the reader to this 
paper for further discussion of the depicted relation-
ships). Our intention was to illustrate the tensions and 
inter-relations among the more or less theoretically 
grounded stances we take through our pedagogic and 
assessment practices and policies, and their underlying 
epistemological implications and assumptions.

The use of a triangle highlights these tensions: that 
assessment can be the driving force in how we un-
derstand what “knowledge” is; that assumptions about 
pedagogy (for example, a kind of folk psychology; Olson 
& Bruner, 1996) influence who we assess and how; that 
assessment and pedagogy are sometimes in tension, 
where the desire for summative assessment overrides 

THEORY INTO PRACTICE
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pedagogically motivated formative feedback; and that 
drawing alignment between one’s epistemological 
view (of the nature of knowledge) and assessment 
or pedagogy practices is challenging — relationships 
between the three may be implied, but they are not 
entailed (Davis & Williams, 2002). Of course, other 
visualizations might be imagined, and the theoretical 
and practical purposes for which such heuristics are 
devised is important to consider. To give two exam-
ples, we have considered versions of the depiction in 
which: 1) assessment and pedagogy are built on the 
foundation of epistemology (in a hierarchical structure), 
and 2) are brought into alignment in a Venn diagram 
structure, with greater overlap implying a greater 
complementarity of the theorized position.

Learning analytics, as a new form of assessment 
instrument, have potential to support current edu-
cational practices, or to challenge them and reshape 
education; considering their theoretic-positioning 
is important in understanding the kind of education 
systems we aim for. For example, learning analytics 
could have the potential to 1) marginalize learners (and 
educators) through the transformation of education 
into a technocratic system; 2) limit what we talk about 
as “learning” to what we can create analytics for; and 
3) exclude alternative ways of engaging in activities 
(that may be hard to track computationally), to the 
detriment of learners. Algorithms may both ignore, 
and mask some key elements of the learning process. 
The extent to which analytics can usefully support 
educators and learners is an important question. These 
are pressing issues given the rise of learning analytics, 
and increasing interest in mass online education at 
both the pre-university and university levels (e.g., the 
growing interest in MOOCs).

Expanding on this prior work, the rest of the chapter 
aims to illustrate the application of our approach, with 
the aim of providing actionable guidance for those 
developing learning analytics approaches and tools. 
To do this, we have developed a set of provocations 

centred on the triad of epistemology, pedagogy, and 
assessment.

We use these provocations to illustrate how the im-
plicit “claims” made by a learning analytics tool can 
be deconstructed. The approach invites reflection 
on the affordances of the tool’s design at different 
levels (including data model, learner experience, and 
learning analytics visualization).

Computer-supported learning — individual or collabo-
rative — covers a huge array of learning contexts. Such 
tools support many forms of rich learner interaction 
with peers and resources, which are implicit claims 
about learning. However, the emergence of computa-
tional analytics enables designers — and by extension 
the artifacts — to value certain behaviours above 
others, namely, those logged, analyzed, and rendered 
visible to some stakeholder group. The implicit claim 
is that these are particularly important behaviours. 
We measure what we value.

We provide a set of “six W” questions to be considered 
in the development of learning analytics. Of course, 
across these questions, there is overlap, and any one 
question might be expressed in multiple ways. The 
intention is neither to prescribe these as the only 
questions to be asked, nor that within each element 
of the triad only particular questions should apply. 
As the descriptions of the provocations make clear, 
within each facet of the triad, multiple theoretical 
questions can and should be asked. Rather, we hope 
to provide heuristic guidance to readers in developing 
their own analytics.

Epistemology — What Are We 
Measuring?
The first provocation invites the analytic designer 
to consider what “knowledge” looks like within the 
analytic approach being developed, asking, What 
are we trying to measure? We pose this question to 
prompt consideration of the connection between a 
conceptual account of the object of measurement (the 
knowledge being assessed), and a practical account of 
the methods and measures used to quantify activity 
and outputs within particular tasks. Asking What 
are we trying to measure? encourages us to consider 
our learning design, the skills and facts we want our 
students to learn, and what it means for students to 
“come to know.” This is a question of epistemology; 
it concerns the nature of the constructs, why they 
“count” as knowledge, the evidentiary standard and 
kind required for a claim of knowledge to be made.

This knowledge might be of a more broadly proposi-
tional kind (sometimes characterized as “knowledge 
that,” characterized as recall of facts), a more broad set 
of skills and characteristics (sometimes characterized 
as “knowledge how,” for example, the ability to write 

EPA PROVOCATIONS

Figure 1.1. The Epistemology–Assessment–Pedagogy 
(EPA) triad (Knight et al., 2014, p. 25).
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an essay), or dispositions to act in particular ways (for 
example, as those dispositions recently discussed as 
epistemic virtues in epistemology). Evidentiary stan-
dards and types concern the warrants indicative of 
knowledge, for example, whether knowledge can be 
conceptualized in terms of unitary propositions that 
may be recalled more or less appropriately within 
particular contexts, whether knowledge of something 
entails the ability to deploy it in some context, the kinds 
of justification and warrant (and the skills underlying 
these) that cement some claim as knowledge, and so 
on. These are — implicitly or explicitly — the targets 
of our measurement.

Epistemology — How Are We 
Measuring?
Closely related to this conceptual question regarding 
the epistemological status of the object of analysis 
is a question regarding our access — as researchers 
and educators — to that knowledge. This is a question 
regarding the epistemological underpinning of our 
research and assessment methods. There is a rich 
literature on the various epistemological concerns 
around quantitative and qualitative research methods, 
with a growing specific interest in digital research 
methods. In addition, there is a focused literature in 
the philosophy of assessment, exploring the episte-
mological concerns in assessment methods (Davis, 
1999). Across this literature, issues concerning the 
subjectivity of approaches, and the ability of meth-
odologies to give insights, are central. The question 
invites considerations regarding the ways in which 
analytic methods imply particular epistemologies. 
Note that this is not just a question of the reliability of 
our assessment methods, but concerns the ability of 
approaches to speak to an externally knowable world 
(and the nature of that world).

Pedagogy — Why is this Knowledge 
Important to Us?
The development of analytic approaches in learning 
contexts involves making decisions about what knowl-
edge will, and will not, be focused on; to measure what 
we value rather than value merely that which is easily 
measured (Wells & Claxton, 2002). This is, of course, in 
addition to a conceptual account of the nature of that 
knowledge. These decisions in part relate to debates 
around the kinds of important (or powerful) knowledge 
in society (see, for example, Young & Muller, 2015) 
and the role of knowledge-based curricula, including 
discussions around employability (or the balance of 
vocational and liberal educational aims), 21st-century 
skills, and so on. This question asks, Why does this 
analytic matter to educators and learners?

Answering this question might in part be salient to the 
kind of learning theory that the analytic sits within; 

to instrumental aims regarding the analytic’s con-
tribution to particular skills (perhaps employability 
skills); or university compliance (for example, reporting 
requirements). It might also relate to pedagogic aims 
such as the support of particular groups of students, 
and so on.

Pedagogy — Who is the Assessment/
Analytic For?
Extending the concern with the nature of the object of 
assessment above, is a further concern regarding the 
target of the analytic device, provoking the question, 
Who is the analytic for? In the development of analytic 
devices (and assessments more broadly), we should 
consider who the target of the device is, whether it 
supports teachers, parents, students, or administrators 
in understanding some aspect of learning. Is the analytic 
designed to provide insight at a macro (government, 
institutional), meso (school, class), or micro (individual 
student or activity) level (Buckingham Shum, 2012), 
and are there insights across these levels that can be 
effectively made sense of by all stakeholders (Knight, 
Buckingham Shum, & Littleton, 2013)?

This question regards the desire for analytic insights 
at multiple levels of a system, and the ability of indi-
vidual analytic approaches (including their outputs 
in various forms, such as dashboards) to support 
the following: 1) individual students in developing 
their learning; 2) educators in developing their own 
practice and in targeting their support at individual 
student needs; and 3) administrators in understanding 
how cohorts are developing and their organizational 
needs. As Crick argues in this handbook, a complex 
systems conception of analytics for different levels in 
the learning system, spanning from private personal 
data through to shared organizational data, implies 
different rationalities and authorities to interpret at 
the different levels (Deakin Crick, 2017).

This question raises a parallel concern regarding 
the ethical implications in developing analytics that 
(explicitly or implicitly) target particular groups. This 
concern is at two levels. First, analytics that require 
particular forms of technology or participation may 
create new divides between student cohorts, or 
entrench existing divides. Second, there is an eth-
ical concern regarding the use of student data by 
institutions, particularly where specific consent is 
not given, where no direct learning gain is directed 
to those students. This second issue is a particular 
consideration in cases wherein student data may be 
used largely to reduce institutional costs or the level 
of support given to particular students.

Assessment — Where Does the 
Assessment Happen?
Obvious though this is, we note that assessment al-
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ways takes place in a physical location, in response to 
particular task demands, in a sociocultural context, 
with a particular set of tools. Contrast an individual 
pen-and-paper exam in a silent hall with 300 peers, 
with an emergency response simulation on the ward, 
with tackling a statistics problem in a MOOC, with 
conflict resolution in relationship counselling. For 
each context, we must ask not only if the assessment 
is meaningful, but also to what extent meaningful 
computational analytics can be designed to add value.

Moreover, we should also consider the ways in which 
the assessment biases particular kinds of response 
— in sometimes-unintended ways. For example, par-
ticular groups of students, or kinds of knowledge, 
might be privileged over others through the design 
of assessment contexts with a very narrow definition 
of achievement; through requirements for behaviours 
that not all students might engage in; through the use 
of technologies that unfairly assume socioeconomic 
means; or through separating assessment from the 
applied context in which an expertise can be displayed 
authentically.

Across assessments, we should also consider the 
ways in which the particular systems shape the data 
obtained — note this is a practical concern regarding 
the reliability and validity of methods, rather than the 
related epistemological concern raised above. For ex-
ample, technologies are mediational tools, which shape 
the ways in which people interact with each other and 
the world around them, and hence, the activity they 
measure. This is true both of the specific technologies, 
and the task design used in assessments; for example, 
the use of “authentic” assessments provides a different 
range of possible responses than more traditional 
pen-and-paper assessments of various kinds.

Assessment — When Does the 
Assessment, and Feedback, Occur?
A final consideration relates to the temporal context 
of learning analytics, asking when the assessment and 
feedback cycle occurs. This provocation is intended 
to prompt consideration of the formative or/and 
summative nature of the learning analytic; whether 

or not a particular technology provides after-the-fact 
or real-time feedback, and whether this feedback is 
intended to provide a scaffold or model for current 
behaviour, is targeted at future behaviour and learning, 
or is just intended as a feedback mechanism on prior 
work (which may not be covered again).

In our earlier paper, we made a distinction between 
the metaphors of biofeedback and diagnostic learning 
analytics. The intention here was to draw a distinction 
between formative and summative assessments (re-
spectively). However, while the analogy can be drawn, 
of course systems that provide real-time feedback can 
be summative in nature, and can take on a “monitoring” 
role towards some end-point. In addition, diagnosis does 
not have the finality perhaps implied by the analogy — 
diagnosis provides insight into what is going wrong, 
which may be actionable by the “patient” (student) or 
“doctor” (educator). Instead, then, the focus should 
be on whether the analytic device is targeted at a 
summative snapshot perspective on student learning 
and monitoring towards that end, or instead, targeted 
at development and improvement over time.

Through the provocations, we have drawn attention 
to the ways in which analytic approaches and artifacts 
subscribe to particular perspectives on learning: they 
implicitly make claims across the EPA triad, and the 
provocations drawn from them.

Tools can be used in many ways, and should not 
be isolated from their context of use. Interactional 
affordances, like beauty, are to some degree “in the 
eye of the beholder.” We offer these provocations as a 
pragmatic tool for thinking, for designers, educators, 
researchers, and students — whether considering how 
one currently makes use of analytical tools, how one 
might do in the future, or indeed when designing new 
tools for new contexts. We propose that it is productive 
to consider these provocations in order to reflect on 
the EPA claims being made through the deployment 
of a learning analytic tool within a given context.

CONCLUSION
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The newly established field of learning analytics (LA) 
features an inherent interest in computational or algo-
rithmic methods of data analysis. In this perspective, 
“analytics” is more than just the empirical analysis 
of learning interactions in technology-rich settings, 
it actually also calls for specific computational and 
mathematical approaches as part of the analysis. This 
line of research builds on techniques of data mining 
and network analysis, which are adapted, specialized, 
and potentially developed further in an LA context.

To better understand the potential and challenges 
of this endeavor, it is important to introduce some 
distinctions regarding the nature of the underlying 
methods. Computational approaches used in LA include 
analytics of 1) network structures including actor–actor 
(social) networks but also actor–artefact networks, 2) 
processes using methods of sequence analysis, and 3) 
content using text mining or other techniques of com-
putational artefact analysis. This distinction is not only 
relevant for “technologists” who actually work with and 
on the computational methods, it is also important for 
the design of “LA-enriched” educational environments 
and scenarios. We should not expect LA to develop 
new computational-analytic techniques from scratch 
but to adapt and possibly extend existing approaches 

in an LA context. First, the different premises and 
affordances of the different types of methods should 
be well understood. Furthermore, the combination 
and synergetic use of different types of methods is 
often desirable from an application perspective but 
this constitutes new challenges from a conceptual as 
well as a computational point of view.

The computational analysis of interaction and com-
munication in group learning scenarios and learning 
communities has been a topic of research even before 
the field of LA was constituted, and this work is still 
relevant to LA. Early adoptions of social network 
analysis (SNA type 1) in this context include the works 
of Haythornthwaite (2001), Reffay & Chanier (2003), 
Harrer, Malzahn, Zeini, and Hoppe (2007), and De Laat, 
Lally, Lipponen, and Simons (2007). Process-oriented 
analytics techniques (type 2) have an even longer 
history, especially in the analysis of interactions in 
a computer-supported collaborative learning (CSCL) 
context (Mühlenbrock & Hoppe, 1999; Harrer, Martínez-
Monés, & Dimitracopoulou, 2009). Although somewhat 
later and less numerous, content-based analyses (type 
3) based on computational linguistics techniques have 
been successfully applied to the analysis of collabo-
rative learning processes (e.g., by Rosé et al., 2008).

Chapter 2: Computational Methods for the Analysis 
of Learning and Knowledge Building Communities

H. Ulrich Hoppe

Learning analytics (LA) features an inherent interest in algorithms and computational 
methods of analysis. This makes LA an interesting field of study for computer scientists 
and mathematically inspired researchers. A differentiated view of the different types of 
approaches is relevant not only for “technologists” but also for the design and interpre-
tation of analytics applications. The “trinity of methods” includes analytics of 1) network 
structures including actor–actor (social) networks but also actor–artefact networks, 2) 
processes using methods of sequence analysis, and 3) content using text mining or other 
techniques of artefact analysis. A summary picture of these approaches and their roots is 
given. Two recent studies are presented to exemplify challenges and potential benefits of 
using advanced computational methods that combine different methodological approaches. 

Keywords: Trinity of computational methods, knowledge building, actor–artefact networks, 
resource access patterns
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Network-Analytic Methods
Network-analytic approaches, especially social net-
work analysis (SNA), are characterized by taking a 
relational perspective and by viewing actors as nodes 
in a network, represented as a graph structure. In this 
sense, a network consists of a set of actors, and a set 
of ties between pairs of actors (Wasserman & Faust, 
1994). The type of pairwise connection defines the 
nature of each social network (Borgatti, Mehra, Brass, 
& Labianca, 2009). Examples of different types of ties 
are affiliation, friendship, professional, behavioural 
interaction, or information sharing. The visualization 
of such network structures has emerged as a specific 
subfield (Krempel, 2005). Standard methods of net-
work analysis allow for quantifying the importance of 
actors by different types of “centrality measures” and 
detecting clusters of actors connected more densely 
among each other than the average (detection of “co-
hesive subgroups” or “community detection” — for an 
overview, see Fortunato, 2010).

A well-known inherent limitation of SNA is that the 
target representation, i.e., the social network, aggre-
gates data over a given time window but no longer 
represents the underlying temporal dynamics (i.e., 
interaction patterns). It has been shown that the size 
of the time window of aggregation has a systematic 
influence on certain network characteristics such 
as subcommunity structures (Zeini, Göhnert, Heck-
ing, Krempel, & Hoppe, 2014). To explicitly address 
time-dependent effects, SNA techniques have been 
extended to analyzing time series of networks in 
dynamic approaches.

It is important to acknowledge that network analytic 
techniques (even under the heading of SNA) do not 
exclusively deal with actors and social relations as 
basic elements. So-called “affiliation networks” or 
“two-mode networks” (Wasserman & Faust, 1994) 
are based on relations between two distinct types 
of entities, namely actors and affiliations. Here, the 
“affiliation” type can be of a very different nature, 
including, for example, publications as affiliations in 
relation to authors as actors in the context of coauthor-
ing networks. In general, two-mode networks can be 
used to model the creation and sharing of knowledge 
artefacts in knowledge building scenarios. In pure form, 
these networks are assumed to be bipartite, i.e., only 
alternating links actor–artefact (relation “created/
modified”) or artefact–actor (relation “created-by/
modified-by”) would be allowed. Using simple matrix 
operations, such bipartite two-mode-networks can be 
“folded” into homogeneous (one-mode) networks of 
either only actors or only artefacts. Here, for example, 
two actors would be associated if they have acted 
upon the same artefact. We would then say that the 
relation between the actors was mediated by the ar-

tefact. Similarly, we can derive relationships between 
artefacts by considering agents (one actor engaged in 
the creation of two different artefacts) as mediators.

We have seen an increasing number of studies of ed-
ucational communities using SNA techniques related 
to networked learning and CSCL. Originally, networks 
derived from email and discussion boards were the 
most prominent conditions studied, as for example the 
early study of cohesion in learning groups (Reffay & 
Chanier, 2003). Meanwhile, network analysis belongs 
to the core of LA techniques. The classification of 
approaches to “social learning analytics” by Ferguson 
and Shum (2012), though not primarily computation-
ally oriented, prominently mentions network analysis 
techniques including both actor–actor and actor–ar-
tefact networks.

Process-Oriented Interaction 
Analysis
The computational analysis of learner (inter-)actions 
based on the system’s logfiles has a tradition in CSCL. 
There were even attempts to standardize action-logging 
formats in CSCL systems to facilitate the sharing and 
combination of existing interaction analysis techniques 
(Harrer et al., 2009). One of the earliest examples of 
applying intelligent computational techniques in a 
CSCL context (namely sequential pattern recognition) 
was suggested and exemplified by Mühlenbrock and 
Hoppe (1999). This approach was later used in an 
empirical context to pre-process CSCL action logs in 
order to automatically detect the occurrence of certain 
collaboration patterns such as “co-construction” or 
“conflict” (Zumbach, Mühlenbrock, Jansen, Reimann, 
& Hoppe, 2002).

Whereas these approaches were developed in a learn-
ing-related research context, there are also more 
general techniques that can be adapted and used, such 
as the scalable platforms management forum (SPMF) 
and library of sequential patterns mining methods 
(Fournier-Viger et al., 2014). In an LA context, SPMF is 
used by the LeMo tool suite for the analytics of activities 
on online learning platforms (Elkina, Fortenbacher, 
Merceron, 2013). In another recent study, Bannert, 
Reimann, & Sonnenberg (2014) have used “process 
mining,” a computational technique with roots in au-
tomata theory, to characterize patterns and strategies 
in self-regulated learning.

Content Analysis Using Text-Mining 
Methods
There is a tradition of content-analysis-based hu-
man interpretation and coding often used as input 
to quantitative empirical research, as discussed by 
Strijbos, Martens, Prins, and Jochems (2006) from a 
CSCL perspective. In contrast, from a computational 
point of view, we are interested in applying informa-
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tion-mining techniques to extract semantic information 
from artefacts. Obviously, this is of particular interest 
in the case of learner-generated artefacts. Rosé et al. 
(2008) has demonstrated the usefulness of automatic 
text classification with a corpus of CSCL transcripts. 
Sherin (2013) used computational techniques of con-
tent analysis on student interview data to discover 
the students’ understanding of science concepts. 
Content analysis techniques have also been used for 
the clustering of e-learning resources according to 
their similarity (Hung, 2012). He (2013) proposed the 
usage of similar techniques for grouping learners’ 
main topics in student-to-teacher online questions 
and peer-to-peer chat messages in the context of 
online video-based learning.

Typically, these methods of textual content analysis 
are based on the “bag of words” model in which the 
given order of words in a text is of no relevance to the 
analysis. This is the case for a variety of probabilistic 
topic modelling techniques such as the currently quite 
popular method of latent Dirichlet allocation (LDA; 
Blei, 2012). A method that does take into account the 
positioning of words in a text is network text analysis 
(NTA). NTA is a text mining method that connects 
content analysis with network representations in that 
it extracts a network of concepts from given texts 
(Carley, Columbus, & Landwehr, 2013). Links between 
concepts are established if the corresponding terms 
co-occur with a certain frequency in a sliding window 
of pre-specified width that runs over a normalized 
version of the text. A “meta thesaurus” allows for 
introducing different concept categories (e.g., “per-
son,” “location,” “domain_concept” et cetera). On this 

basis, multimode networks can be formed, in which 
the concept–concept relations are restricted to cer-
tain inter-category types such as location–person or 
person–domain_concept. These representations can 
in turn be analyzed using network-analytic concepts 
such as centrality measures or the detection of cohesive 
subgroups as a network-based clustering technique.

Figure 2.1 shows the result of applying NTA to transcripts 
from teacher–student workshops in the context of the 
European project JuxtaLearn (Hoppe, Erkens, Clough, 
Daems, & Adams, 2013). The resulting networks nicely 
reflect the different topics from the areas of biology, 
chemistry, and physics, initially presented by students 
and then discussed in the whole group. Here topics 
(pentagon-shaped nodes) and topic–topic relations are 
depicted in grey, whereas persons (square nodes) and 
person–topic relations are darker (black).

In the topic–topic network, the three different fields 
of science appear as more densely connected islands 
(or “cohesive subgroups”) although certain cross-links 
exist (e.g., diffusion in biology is linked to molecule in 
chemistry). The person–topic links allow for judging 
the importance of the individuals’ contributions in the 
presentations and discussion. Most contributions stay 
within one subfield. Student S5 stands out in terms of 
degree centrality (14 connections to different topics) 
and with most contributions to physics but one link 
bridging over into chemistry. In the JuxtaLearn project, 
this approach has been further developed to assess 
students’ problems of understanding from question/
answer collections related to science videos (Daems, 
Erkens, Malzahn, & Hoppe, 2014). The extracted net-

Figure 2.1. Topic–topic and person–topic relations extracted from transcripts of teacher–student 
workshops.
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works of concepts have been contrasted with teach-
er-created taxonomies. This has led to an enrichment 
of the taxonomies and to the identification of specific 
problems of understanding on the part of the learners. 
From a pedagogical perspective, this provides em-
pirical insights relevant to curriculum construction 
and curriculum revision (here specifically related to 
teacher-created micro-curricula).

Figure 2.2 summarizes the characteristics of the three 
methodological approaches in terms of their basic 
representational characteristics and typical tech-
niques. Overlapping areas between the approaches 
are of particular importance for new integrative or 
synergetic applications.

The remainder of this article presents two case stud-
ies of applying specific computational techniques 
to the analysis of learning and knowledge building 
in communities. The first example shows that more 
sophisticated methods of network analysis may yield 
interesting insights in a case where “first order ap-
proaches” would fail to resolve interesting structures. 
In that it considers the evolution of patterns of resource 
access on a learning platform over time, it combines 
the network analytic approach with process aspects. 
The second case describes the adoption and revision 
of a scientometric method to characterize the evo-
lution of ideas in a knowledge-building community. 
This network-analytic approach is then combined 
with content-based text mining methods. So, both 
examples support the general point that we can expect 
additional benefit from combining different methods.

Example 1: Dynamic Resource Access 
Patterns in Online Courses
Nowadays higher education practice is commonly 
supported by learning platforms such as Moodle to 

distribute educational materials of various types, in-
cluding lecture slides, videos, and task assignments, 
but also to collect exercise or quiz results and to 
facilitate individual or group work using forums or 
wikis. In this way, classical presence lectures are 
turned into blended learning courses or, according 
to Fox (2013), “small private online courses” (SPOCs). 
As for the traces that learners leave on such learning 
platforms, the most abundant actions are resource 
access activities that constitute actor (learner) — ar-
tefact (learning resource) relations. Only in special 
cases, such as the co-editing of wiki articles, such data 
may be interpreted in a quite straightforward way as 
actor–actor relations by “folding away” the mediating 
artifact (i.e., inter-connecting co-authors of the same 
wiki article). If applied to instructor-provided lecture 
materials, the actor–actor relation based on access to 
the same lecture would not be selective and would 
result in a dense network. Accordingly, the detection 
and tracing of clusters or subcommunities in such 
induced actor–actor networks would not be likely to 
provide interesting insights.

In a study based on one of the author’s regular master 
courses (Hecking, Ziebarth, & Hoppe, 2014), a more 
sophisticated technique has been used to overcome 
this problem. Applying a subcommunity detection 
algorithm for two-mode networks to the original 
learner-resource data leads to much more selective 
and differentiated results in terms of identifying 
groups of learners working with certain groups of 
materials in a given time slice. This approach is based 
on the network-analytic method of “bi-clique perco-
lation analysis” (Lehmann, Schwarz, & Hansen, 2008), 
which is a generalization of the clique percolation 
method originally defined for one-mode networks 
(Palla, Derenyi, Farkas, & Vicsek, 2005). The clique 
percolation method (CPM) builds subcommunities on 
the presence of cliques (fully connected subgraphs) 
in one-mode networks. CPM is of particular interest 
for the analysis of collaborating communities because 
the resulting clusters may overlap and thus can also 
be used to identify potential brokers or mediators 
between different subcommunities. This characteristic 
also holds for the bi-clique percolation method (BCPM) 
with two-mode networks. In their original article, 
Lehmann et al. (2008) identified the higher selectivity 
of subcommunity in the two-mode network. We have 
been able to corroborate this in our application case.

Figure 2.3 shows how, on principle, BCPM can be used 
to trace cohesive clusters in two-mode networks. First, 
BCPM is applied to each time slice of the network (left-
hand side). The diagram on the right abstracts from 
the individual entities and just depicts and inter-links 
between groups of actors (squares) and groups of 
resources (circles). In one particular time slice, two 

Figure 2.2. The “trinity” of methodological 
approaches.
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groups of different types are linked by a vertical edge, 
indicating that these two groups form a bipartite 
cluster. Horizontal edges appear across time slices 
and link two groups of the same type, indicating that 
the two groups can be considered as similar. Here, 
we see a situation where the connection between 
actors and resources is switched from one time slice 
to other. In general, it is not clear if the basic groups 
“survive” from one time slice to the other (as is the case 
here). Palla, Barabasi, and Vicsek (2007) have defined 
a complex system of transformations (such as “birth,” 
“merger,” “split” et cetera) that can be used to trace 
the evolution of subgroups over time.

In our study (Hecking et al., 2014), affiliation networks 
were built based on students’ access to learning re-
sources during a blended learning course on interactive 
learning and teaching technologies. The course was 
resource intensive in the sense that the traditional 
lecture was accompanied by a variety of additional 
learning resources like lecture videos, slides, serious 
games, as well as a glossary of important concepts 
created by the students themselves as a wiki. Stu-
dents and resources were simultaneously grouped 
into mixed and overlapping clusters as explained 
above. Those clusters can be interpreted as a group 
of students who have a common interest in a group of 
learning resources but not necessarily having social 
connections. A typical example cluster is depicted in 

Figure 2.3.

By applying the method to the student–resource net-
works of particular weeks during the lecture period, 
this analysis reflects certain groupings induced by 
explicit assignments but also yields some surprising 
insights regarding the usage materials. This can be seen, 
for example, in Figure 2.4 where the orange coloured 
cluster comprises lecture videos and students who 
seem to have a distinct interest in learning resources 
compared to the others.

In addition, the tracking of bipartite student–resource 
clusters was used to investigate student resource-ac-
cess behaviour during exam preparation after the last 
lecture. This period is particular interesting because 
by then the entire pool of learning materials, succes-
sively added week by week to the course, was available, 
including the wiki articles created by the students.

The swim lane diagram in Figure 2.5 depicts the resource 
access patterns found in the course during this phase. 
Time slices where build based on a time window size 
of 4 days. The oral exams were distributed over two 
weeks for most of the students, while for another study 
program the examination phase began six weeks after 
the last lecture. One finding is that a large majority 
of students accessed large portions of the learning 
material over several time slices (highlighted blue 
box). Between time slices 2 and 5, there was a stable 

Figure 2.3. Evolving two-mode clusters (left) and the corresponding swim lane diagram (right).

Figure 2.4. Bipartite clusters of students and learning resources (black nodes belong to more than one cluster).
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Figure 2.5. Swim lane diagram of the evolving stu-
dent–resource clusters during the exam phase.

set of students (stud. group 3) using this material for 
exam preparation. In contrast, the students of the 
study program who had their oral exams later had a 
more diverse resource access behaviour (green box). 
Also, they began their exam preparation much closer 
to the time of the exam compared to the other study 
programs. In the last time slice, three of the four student 
groups merged to a larger group that was then more 
affiliated to the core learning material (res. group 1).

On the one hand, this example shows the possible 
expressiveness of sophisticated network analysis 
methods in a case where “first order methods” would 
not be able to resolve interesting and meaningful 
structural relations. On the other hand, it demonstrates 
that additional effort is needed to support a dynamic, 
evolutionary interpretation of network-based models 
(given that each single network is “ignorant” about time).

In an ongoing research project on supporting small 
group collaboration in MOOCs, we have used this 
approach of tracking cohesive clusters of learners and 
resources to distinguish “mainstreaming behaviour” 
from more individual or idiosyncratic patterns of re-
source usage on the part of learners (Ziebarth et al., 
2015). Given this model-based distinction, we found 
that extrinsic motivation was more prevalent in the 

mainstreaming group. This suggests that specific 
patterns in actor–artefact relations may serve as in-
dicators for learning styles.

Example 2: Analyzing the Evolution of 
Ideas in Knowledge-building 
Communities
Scientific production can be seen as a prototypical case 
of knowledge building in a community. Accordingly, 
methods developed to analyze scientific production 
and collaboration (“scientometric methods”) can plau-
sibly also be used to analyze other types of knowledge 
building in networked learning communities. Hummon 
and Doreian (1989) have proposed the method of “main 
path analysis” (MPA) to detect the main flow of ideas 
in citation networks with scientific publications as 
nodes connected by citations. The original paper uses 
a corpus of publications in DNA biology as an example.

The MPA method relies on the acyclic nature of cita-
tion graphs. Different from other network-analytic 
techniques, MPA has an implicit notion of time that 
stems from the nature of citation networks (always 
the citing paper is more recent than the cited one). As 
a consequence of this time ordering, and given that 
every collection is finite, in a corpus, there are always 
documents not cited by others (end-points or “sinks”) 
as well as documents that do not cite other documents 
in the corpus (“sources”). The idea of MPA is to find 
the most used edges in terms of the information flow 
from the source nodes to the sink nodes. One common 
approach to finding these edges is the “search path 
count” or SPC method (Batagelj, 2003). All sources in 
the network are connected to a single artificial source 
and all sinks to a single artificial sink. SPC assigns a 
weight to an edge according to the number of paths 
from the source to the sink on which the edge occurs. 
The main path can then be found by traversing the 
graph from the source to the sink by using the edges 
with the highest weight, as depicted in Figure 2.6.

The idea of applying MPA to learning communities 
working with hyper-linked connections of wiki docu-
ments was first proposed by Iassen Halatchliyski and 
colleagues (2012). However, MPA cannot be applied 
directly to hyper-linked web documents because the 
premise of directed acyclic graphs (DAGs) is usually 
not fulfilled. Since the content of articles in a wiki is 
dynamically evolving, hyperlinks between two arti-
cles do not induce a temporal order between them 
and cycles or even bidirectional citation links are 
quite frequent. In Halatchliyski, Hecking, Göhnert, & 
Hoppe (2014), we have proposed a formal modification 
that allows for applying MPA also to this case. The 
adapted approach considers the particular revisions 
(successive versions) of articles instead of the articles 
themselves. Revisions of an evolving wiki article are 
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artefacts with stable content as scientific publica-
tions. In such a network based on versions as nodes, 
we introduce revision edges between successive 
revisions of the same article. The original hyperlinks 
between different articles connect specific revisions 
and also introduce new versions. This trick avoids 
cyclic structures and allows for applying MPA. In the 
context of the Wikiversity learning community, we 
have used the coincidence of articles with identified 
main paths has as a basis to judge the importance or 
weight of contributions and to characterize author 
profiles in terms of specific role models (inspirator, 
connector, worker). These characterizations serve 
as supportive information for the management of 
knowledge building communities.

In a subsequent study (Hoppe, Göhnert, Steinert, & 
Charles, 2014), we have combined the network-analytic 
method of MPA with content analyses to analyze chat 
interactions in an educational community (Tapped 
In — see Farooq, Schank, Harris, Fusco, & Schlager, 
2007). Here, the characteristic of chat as a synchronous 
communication medium, especially regarding turn 
taking, possible parallel threading, and interactional 
coherence had to be taken into account. Our work 
used contingency analysis (Suthers, Dwyer, Medina, & 
Vatraou, 2010) as theoretical background and reference 
to detect general dependencies based on operational 

rules. We reconstructed and refined this approach by 
using the concept of dialogue act tagging (Wu, Khan, 
Fisher, Shuler, & Pottenger, 2005) to enrich the basic 
set of indicators. We have tested our method using 
several examples of chat protocols from a teacher 
community as benchmarks. This allowed us to assess 
the agreement between the contingency links generated 
by our method with previously hand-coded contin-
gencies (Suthers & Desiato, 2012) based on the F-score 
(a measure used in information retrieval combining 
precision and recall). The automatically generated 
contingencies reached an F-score similarity of 83% 
to 97%, which is comparable to the pairwise F-score 
similarity of manually analyzed graphs. Figure 2.7 shows 
a fragment of a chat sequence with contingency links 
indicated on the right hand side, main path contribu-
tions highlighted in bold, and the message categories 
resulting from dialogue act tagging (e.g., “Statement” 
or “ynQuestion”) added in brackets.

The main path information should be interpreted as 
an indicator for the relevance of contributions in the 
evolution and progress of the overall discourse. This 
relevance measure for contributions can in turn be 
used to estimate the influence of participants in the 
discourse. Since we did not have human ratings for 
this feature, we have compared the measure “per-
centage of contributions on main path” (%MainPath) 
per actor to other influence rankings based on the 
well-established PageRank and Indegree measures. 
We applied these measures to different versions of 
the contingency graphs resulting from human and 
automatic coding. As a result, we found a 0.82 (0.82) 
correlation of %MainPath with PageRank and a 0.69 
(0.88) correlation with Indegree. Per se, %MainPath 
is just another competing indicator. However it is 
different from the other measures since it takes into 
account the flow of arguments in the discourse and 
not only local (Indegree) or globally weighted prestige 
(PageRank). As can be seen in Figure 2.6, MPA also 
allows for filtering the discourse for main threads 
of argument. In this sense, MPA makes the network 
model more specific and meaningful. However, further 
investigation is needed to validate these constructs.

In general, we cannot expect LA to invent genuinely 
new computational methods of data mining and anal-
ysis. Yet, we have seen the successful adoption of a 
number of existing techniques. A prominent case is 
certainly social network analysis — to the extent that 
SNA concepts such as centrality measures or cohesive 
clusters (subcommunities) are now part of the con-
ceptual repertoire used in LA discourse. This is still 
less the case for process-oriented techniques (such as 

DISCUSSION AND OUTLOOK 

Figure 2.6. Example network illustrating the SPC 
method (edge weights are SPC counts; thick edges 

indicate the main paths).
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sequential pattern mining) or linguistics-based meth-
ods for the analysis of dialogue and textual artefacts. 
The examples and arguments presented in this article 
corroborate 1) that even SNA has more to offer than 
the better known “first order approaches” and 2) the 
most benefit can be expected from combining different 
types of analytic methods. Regarding network analysis 
techniques, moving from pure actor–actor networks to 
actor–artefact (or two-mode) networks provides a richer 
basis of information that can resolve more significant 
and meaningful relations. The example on analyzing 
resource access in online courses illustrates how this 
can make a difference. It also shows the inclusion of 
time by considering temporal sequences of networks.

This article looks at the issues and challenges primarily 
from a computational perspective. From a pedagogical 
perspective, it is important to identify the affordances 
but also the deficits of certain methods in order to 
judge their potential benefits. For example, when 
targeting “interaction patterns” in knowledge building 
communities it should be clear that pure SNA models 
would only reveal static actor–actor relations but not 
time-dependent patterns. Possible extensions would 
use time series of networks and/or actor–artefact 
relations. Network-text analysis is an example of an 
approach that converts textual artefacts into net-
works of concepts (of possibly different categories) 
and thus allows for combining content and network 
analytic approaches. On the other hand, given these 
computational methods, where are the potential ped-
agogical added values? In this respect, we have seen 
the following examples:

• Concept networks derived from learner-gener-
ated texts using NTA can reveal students’ mental 
models and misconceptions. This can be a basis 
for enriching domain taxonomies and for curric-
ulum revision.

• The primary information that we get from learning 
platforms is about learners accessing (or possibly 
creating/uploading) resources. From sequences of 
ensuing two-mode learner–artefact networks, we 
can classify learner behaviour as “main-streaming” 
or more individually varied, possibly intrinsically 
motivated or curiosity-driven.

• Techniques borrowed from scientometrics allow 
for identifying the main lines of the evolution of 
ideas in knowledge building communities. On this 
basis, we can characterize contributions and the 
role of contributors to support better-informed 
decisions in the management of the community.

Forum participation in massive online courses has 
recently been the subject of several LA-inspired stud-
ies. Using a mix of analytic techniques involving SNA 
patterns combined with “regularity” of interactions 
and content assessment (based on human ratings), 
Poquet and Dawson (2016) have characterized suc-
cess factors for productive and supportive forum 
interactions. Interestingly, they found an important 
influence of certain community members who were 
not themselves part of densely connected subgroups 
(or “cliques”) on the positive evolution of the networked 
community. In a similar context, Wise, Cui, and Vy-
tasek (2016) have identified certain linguistic features 

Figure 2.7. Fragment of a chat protocol with inferred contingency links (mainpath contributions and 
links indicated in bold).
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as predictors for distinguishing content-related from 
non-content-related (social or organizational) talk in 
such forums. In addition to domain-specific vocabulary, 
they also found general terms such as “understand,” 
“example,” “difference,” or question words among the 
predictors of content-related contributions. These, in 
turn, correspond to so-called “signal concepts” used 
in the network-text analysis of educational video 
comments by Daems, Erkens, Malzahn, and Hoppe 
(2014). This again shows the importance of having a 

mix of modelling approaches and analysis techniques 
“at hand” to gain better insight and understanding of 
the determinants of learning and knowledge building 
communities.

The overarching claim and hope is to increase the 
awareness of the richness and variety of computational 
methods in the LA community, and thus to lay the 
ground for more synergy between LA and computa-
tionally inspired research.
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Knowing what students know and — given the increased 
attention to affective measures — how they feel is the 
basis for many conversations about learning. Measur-
ing a student’s knowledge, skills, attitudes/aptitudes/
abilities (KSAs), and/or emotions is, however, less 
straightforward than measuring his or her height or 
weight. Psychological measurement is a noisy endeavor 
that can have high-stakes consequences, such as as-
signment to a special program (advanced or remedial), 
admission to a university, employment, hospitalization, 
or incarceration. Even small errors of measurement 
at the individual level can have large consequences 
when results are aggregated for groups (Kane, 2010). 
Sensitivity to these consequences has emerged over 
a century of methodology research enshrined in the 
Standards for Educational and Psychological Testing 
(AERA, APA, & NCME, 2014). Insofar as measurement 
may be used in learning analytics and educational 
data mining for the purposes of understanding and 
optimizing learning and learning environments (Sie-
mens & Baker, 2012), what are the tolerances for errors 
of measurement? After all, it has been argued that 
“harnessing the digital ocean” of data could ultimately 

replace the need for separate assessments (Behrens 
& DiCerbo, 2014). In the meantime, at minimum, one 
would like to avoid misunderstanding learning or 
diminishing learner experiences.

Discussions of psychological measurement often 
begin by drawing contrasts with physical measure-
ment (for example, Armstrong, 1967; Borsboom, 2008; 
DeVellis, 2003; Lord & Novick, 1968; Maul, Irribarra, & 
Wilson, 2016; Michell, 1999; Sijtsma, 2011). A number 
of important facets of psychological measurement 
are raised in the process, namely its instrumentation 
or operationalization, the repeatability or precision 
of measurements, sources of error, and the inter-
pretation of the measure itself. It can be said that 
psychological measurement comprises the following: 
defining a construct; specifying a measurement model 
and (developing) a reliable instrument; analyzing and 
accounting for various sources of error (including 
operator error); and framing a valid argument for 
particular uses of the outcome.

WHAT IS MEASUREMENT? 
PHILOSOPHY AND BASIC IDEAS

Chapter 3: Measurement and its Uses in 
Learning Analytics

Yoav Bergner

Psychological measurement is a process for making warranted claims about states of mind. 
As such, it typically comprises the following: defining a construct; specifying a measurement 
model and (developing) a reliable instrument; analyzing and accounting for various sources 
of error (including operator error); and framing a valid argument for particular uses of the 
outcome. Measurement of latent variables is, after all, a noisy endeavor that can neverthe-
less have high-stakes consequences for individuals and groups. This chapter is intended to 
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in learning analytics and educational data mining. It is organized thematically rather than 
historically, from more conceptual material about constructs, instruments, and sources 
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Constructs
Do psychological constructs really exist? In what 
sense can we really know a student’s state of mind? 
We say that variables like physical length of an object 
are directly observed, or manifest, whereas a person’s 
mental states or psychological traits are only indirectly 
observed, or latent. The term construct is used inter-
changeably with latent variable, while trait is used 
to imply a construct that is stable over time (Lord & 
Novick, 1968). In fact, even physical measurement is 
indirectly instrumented. Although we can perceive 
length directly through our senses, the measurement 
of length involves a process of comparison with a ref-
erence object or instrument, such as a tape measure. 
The tape measure provides a scale, such as inches or 
centimeters, which formalizes comparisons of length. 
For example, we can quantify the difference in two 
lengths by subtracting one measurement from the other.

In the first half of the twentieth century, efforts to settle 
philosophical issues of measurement led Bridgman (1927) 
and others to operationalism, wherein physical concepts 
like length, mass, and intensity are understood to be 
“synonymous with” the operations used to measure 
them. That is, length is understood as the outcome of 
a (possibly hypothetical) length measurement proce-
dure. This idea can be carried over to psychological 
constructs, such as math ability and extraversion, by 
equating the constructs to scores on instruments used 
to measure them. Math ability is then equivalent to a 
score on a math test, and extraversion is a score on 
a Likert-item questionnaire. This positivist attitude 
is reflected in Stevens’ definition of measurement 
as, “the assignment of numerals to objects or events 
according to rules” (1946, p. 677). The operationalist 
view of constructs was highly influential in the past, 
but it has been rejected for a host of reasons (Maul, 
Irribarra, & Wilson, 2016; Michell, 1999), notably that 
operationalism forces a redefinition of the construct 
for every instrument that exists to measure it.

If an operationalist interpretation is rejected, it ap-
pears to leave open epistemological and ontological 
questions about latent variables. Mislevy (2009, 2012) 
articulates a constructivist-realist position, namely that 
we can talk as if a construct exists without a commit-
ment to strict realism by committing to model-based 
reasoning. Model-based reasoning means accepting a 
simplified representation of a system — for example, 
a construct-mediated relationship between persons 
and responses — that captures salient aspects (e.g., 
patterns) and allows us to explain or predict phenom-
ena (Mislevy, 2009; we return to the explanatory/
predictive distinction later in this chapter). As George 
Box famously said, “all models are wrong, but some are 
useful” (Box, 1979). The challenge remains to come up 
with useful models or, in terms of Stevens’ definition, 

useful measurement rules.

Physical theories tend to be few in number and more 
comprehensive, whereas psychological theories are 
numerous and narrowly defined (DeVellis, 2003). Since 
constructs are invented things, there is no empirical 
limit to their number. It is possible to talk about a con-
struct in the absence of a measurement instrument, 
but a measurement instrument is always designed to 
measure something. Therefore, we can infer an ex-
tremely partial list of constructs relevant to learning 
analytics from the instruments already developed to 
measure them. Examples include intelligence (e.g., the 
Stanford–Binet Intelligence Scale), scholastic aptitude 
(e.g., that SAT test), academic achievement (numerous 
examples include both large-scale tests and course 
exams), personality (e.g., the “big five” factor model; 
Digman, 1990), achievement-goal orientation (e.g., 
Midgley et al., 2000), achievement emotions (Pekrun, 
Goetz, Frenzel, Barchfeld, & Perry, 2011), grit (Duck-
worth, Peterson, Matthews, & Kelly, 2007), self-theories 
of intelligence and fixed/growth mindset (Dweck, 
2000; Yeager & Dweck, 2012), intrinsic motivation 
(Deci & Ryan, 1985; Guay, Vallerand, & Blanchard, 
2000), self-regulated learning and self-efficacy (e.g., 
Pintrich & De Groot, 1990), learning power (Bucking-
ham Shum & Deakin Crick, 2012; Crick, Broadfoot, & 
Claxton, 2004), and crowd-sourced learning ability 
(Milligan & Griffin, 2016).

Several of the constructs listed above are multidimen-
sional, that is they include multiple factors. The value 
of combining versus separating out related constructs 
is a subject of debate (Edwards, 2001; Schwartz, 2007).

Measurement Instruments
Psychological measurement instruments are typi-
cally called tests or questionnaires (also surveys and 
inventories) and are made up of items or indicators. 
The word test is more often used for constructs like 
intelligence, cognitive ability, and psychomotor skills, 
wherein the subject, or examinee, is instructed to try 
to maximize his or her performance (Sijtsma, 2011). 
Questionnaire respondents, by contrast, are asked to 
respond honestly about their thoughts, feelings, and 
behaviours. (Response bias can blur this distinction, 
as we shall describe when we come to validity). Note 
that this description of how subjects are expected to 
interact with instruments reveals the rudiments of a 
measurement model. We assume that the more able 
test taker will obtain a higher score on an ability test 
and that the more anxious subject will obtain a higher 
score on an anxiety questionnaire.

Sometimes the term measurement scale is used inter-
changeably with the instrument (DeVellis, 2003). Scale 
implies that the test or questionnaire has been scored. 
Binary items that have correct and incorrect answers 
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and yes/no questions are usually scored dichotomously 
with values in {0, 1}. Likert scale, rating scale, and vi-
sual-analogue scales (Luria, 1975) are other item types 
that can take discrete or continuous numerical values. 
Adding up the scores of individual items into a sum 
score (also, raw score) is one procedure for scoring 
an instrument, but it is not the only or necessarily the 
best procedure (Lord & Novick, 1968; Millsap, 2012). 
Weighted sum scores and item response theory (IRT; 
Baker & Kim, 2004) offer a range of alternatives.

The use of tests and questionnaires is a matter of both 
efficiency and standardization, compared with the 
alternative of observing people in real life and waiting 
for them to spontaneously express thoughts or exhibit 
the behaviours of interest (Sijtsma, 2011). In learning 
analytics, efficient collection of data is usually not the 
problem, but the lack of standardization can make it 
challenging to account for measurement error.

Source of Error in Measurements
We know from experience that psychological measure-
ments are not as consistently repeatable as physical 
measurements. We also know that people’s respons-
es to an instrument may not faithfully reflect their 
abilities, attitudes, or other constructs of interest. 
Statistical models allow us to think of items, indicators, 
or tests as random samples of a latent variable. The 
latent variable can be a random variable, or it can be 
fixed, as in true score theory (Lord & Novick, 1968). 
Either way, the measurement samples will have error 
resulting from the inherent non-repeatability, which 
is sometimes called random error and is unbiased (in 
the sense of having an expectation value of zero over 
some distribution of repeated measures). There can 
also be systematic error, which is biased.

More precise or formal statements about error arise 
when we adopt a measurement framework or model. 
For example, in true score theory and factor analysis 
we can reason in terms of parallel tests or equivalent 
forms to derive estimates of an instrument’s reliability. 
Measurement error can also be defined as any vari-
ance in the data not attributed to the construct, as 
explained by the model (AERA, APA, & NCME, 2014). 
We will revisit the sources of error after we flesh out 
our discussion of measurement models.

Reliability
Reliability is attributed to an instrument and is a 
measure of the consistency of scores (AERA, APA, & 
NCME, 2014), specifically the proportion of the total 
variance in scores attributed to the latent variable 
(DeVellis, 2003). It can be sample-dependent (in 
true score theory) and model-dependent (in more 
complicated models). The word is sometimes used 
to mean a particular reliability coefficient, most 
commonly Cronbach’s (1951) alpha, a, which ranges 

from [0,1]. However, the term reliability is also used 
in the sense of test-retest reliability, which is actually 
a correlation, and inter-rater reliability (e.g., Cohen’s 
kappa, k; Cohen, 1968). Practitioners sometimes lean 
uncritically on guidelines for acceptable values of a, 
such as .70 as a lower bound (Cortina, 1993), to decide 
that scales are good enough to use. But it should be 
noted that statistical power improves with higher 
values of a (DeVellis, 2003). Thus, effort in improving 
the reliability of a scale can often outweigh the benefit 
of recruiting larger samples.

Validity
Validity is the foremost topic in the Standards, whose 
first chapter begins, “Validity refers to the degree to 
which evidence and theory support the interpretations 
of test scores for proposed uses of tests … It is incor-
rect to use the unqualified phrase ‘the validity of the 
test’” (p. 11). Substituting the broader term “measure” 
for the narrower “test,” it should be self-evident that 
validity is of paramount importance to learning an-
alytics. There is a palpable focus in the Standards on 
shaping the language used in validation arguments, 
an approach also evident in Messick’s (1995) influential 
reworking of Cronbach and Meehl (1955) (see also Kane, 
2001). Types of evidence about validity (rather than 
“types of validity”) include evidence about response 
processes, evidence about the internal structure of 
the instrument, convergent and discriminant evidence, 
criterion references (including predictive criteria), and 
evidence of generalizability.

We referred earlier in this chapter to the assumption 
that responses to questionnaires correspond to honest 
thoughts and feelings. However, there is extensive 
literature on types of response bias, from acquies-
cence bias (yea-saying; Messick & Jackson, 1961) to 
social desirability bias (also, faking good; Nederhof, 
1985) to bias from extreme and moderate types of 
responders (i.e., people who tend to choose extreme 
ends of Likert-scales) (Bachman & O’Malley, 1984). 
Although more often documented for questionnaires 
and surveys about sensitive topics such as willingness 
to cheat, sexual fantasies, or attitudes about race, 
self-tuning or censoring of responses can also hap-
pen on educational tests, such as the force concept 
inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) 
used to assess Newtonian thinking. Mazur (2007) 
reported a student specifically asking, “How should 
I answer these questions? According to what you 
taught us, or by the way I think about these things?’” 
Finally, intentional rapid guessing behaviour can be 
thought of as a form of response bias (Wise & Kong, 
2005). It should be clear that all of these sources of 
response bias challenge the uncritical interpretation 
of scale scores.
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Measurement Models
The rubber meets the road in the technical details 
of measurement models. A measurement model is a 
formal mathematical relationship between a latent 
variable or set of variables and an observable variable 
or set of variables. A fully statistical measurement 
model may specify a distribution for the latent vari-
able(s), a distribution for the observed variable(s), and 
a functional relationship between them. The latent 
variables are often understood as causally explaining 
the observations, which are subject to errors. Variances 
and covariances of random variables are described, 
explicitly or implicitly, in the model. Models make as-
sumptions, for example the assumption of monotonicity 
(or, stricter, linearity) of the relationship between the 
construct and the measure or the assumption of zero 
covariance between error terms of unique items. If the 
assumptions of a model are violated, inferences made 
using the model may be wrong (Lord & Novick, 1968).

Since categorical and continuous variables involve 
different statistical methods, types of measurement 
models are sometimes classified into families according 
to the type of latent and observed variables, as shown 
in Table 3.1. This classification is not exhaustive, as 
hybrid models exist as well as generalized frameworks 
(Skrondal & Rabe-Hesketh, 2004) in which these 
model families become special cases. Growth models 
are extensions of measurement models to repeated 
measures and can apply to both continuous and cat-
egorical latent variables (e.g., Meredith & Tisak, 1990; 
Rabiner, 1989; Raudenbush & Bryk, 2002).

We mentioned previously that psychological and 
educational measurement is applied for a variety of 
purposes including classification, diagnosis, ranking, 
placement, and certification of individuals as well 
as corresponding inferences about groups. Work in 
learning analytics and educational data mining also 
explores the complex web of relationships between 
psychological scales, behaviour, and performance in 
digital learning environments (Tempelaar, Rienties, 

& Giesbers, 2015). The purpose of this section is to 
provide a bit more depth about models and their uses 
in learning analytics and educational data mining. All 
topics are not treated equally, reflecting both space 
constraints and selection bias.

Factor Analysis
Factor analysis (Mulaik, 2009) models the correlations 
among observed variables through a linear relation-
ship to a set of latent variables known as factors. The 
original one-factor model is Spearman’s (1904) model 
of general intelligence g, used to explain correlations 
between scores on unrelated subject tests. True score 
theory, also known as classical test theory (Lord & 
Novick, 1968), can be derived as a special case of a single 
factor model in which all of the item factor loadings 
are the same. Thurstone (1947) developed the multiple 
(seven) factors model of intelligence.

Factor analysis is commonly divided into two enterprises. 
Exploratory factor analysis (EFA) is used to determine 
the number of latent factors from data without strong 
theoretical assumptions and is commonly part of 
scale development. However, EFA requires a number 
of important methodological decisions which, if made 
poorly, can lead to problematic results (Fabrigar, 
Wegener, MacCallum, & Strahan, 1999). In particular, 
Fabrigar et al. (1999) caution against confusing EFA with 
principal components analysis (PCA), a dimensionality 
reduction technique, which can result in erroneous 
conclusions about true factor structure. Confirmatory 
factor analysis (CFA) is a complementary set of tech-
niques to test a theoretically proposed factor model by 
examining residuals between expected and observed 
correlations. Thus, CFA can be used to reject a model. 
CFA, along with path analysis and latent growth models, 
is subsumed by structural equation modelling (SEM; 
Bollen, 1989; Kline, 2010). Confirmatory factor analysis 
is not the same thing as running EFA multiple times 
with different population samples, although the case 
has been made for doing the latter (DeVellis, 2003).

Some learning analytics research is directly concerned 
with scale development and its integration with data 
gathered from learning management systems (e.g., 
Buckingham Shum & Deakin Crick, 2012; Milligan & 
Griffin, 2016). Other work focuses on associations be-
tween existing scales and outcome measures, such as 
the relationship between achievement emotions (Pekrun 
et al., 2011) and decisions regarding face-to-face and 
online instruction (Tempelaar, Niculescu, Rienties, 
Giesbers, & Gijselaers, 2012) or between motivational 
measures and completion of a massive open online 
course (Wang & Baker, 2015). When adapting an in-
strument or, especially, part of an instrument for new 
purposes, practitioners should be mindful of whether 
these new uses merit new validation arguments.

Table 3.1. Families of Latent Variable Models

Latent/Observed Observed 
continuous

Observed 
categorical

Latent continuous
Factor models (Bol-
len, 1989; Mulaik, 
2009)

Item response mod-
els (Lord & Novick, 
1968; Baker & Kim, 
2004)

Latent categorical
Latent mixture 
models (McLachlan 
& Peel, 2004)

Latent class 
models (Goodman, 
2002)

SPECIFIC USES OF MEASUREMENT 
MODELS IN LEARNING ANALYTICS
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Latent Class and Latent Mixture 
Models
Dedic, Rosenfeld, and Lasry (2010) used latent class 
analysis to understand the distribution of physics 
misconceptions based on students’ wrong answers 
on a physics concept test. Data came from admin-
istrations both before and at the end of a physics 
course (pre- and post-test). The authors identified 
an apparent progression from Aristotelian to Newto-
nian thinking through discrete classes of dominance 
fallacies. A widely used method for topic modelling 
of documents, latent Dirichlet allocation (LDA; Blei, 
Ng, & Jordan, 2003; see also several chapters in this 
volume) is a latent mixture model. Mixed membership 
models (Erosheva, Fienberg, & Lafferty, 2004) further 
generalize latent mixtures by allowing “fuzzy” or 
weighted assignments of an individual to multiple 
classes. The Gaussian mixture model forms the basis 
for model-based cluster analysis (Fraley & Raftery, 
1998) applied to performance trajectories of MOOC 
learners (Bergner, Kerr, & Pritchard, 2015). It should 
be noted that not all clustering algorithms, however, 
are latent mixture models.

Item Response Theory (IRT)
Item response theory distinguished itself in the his-
torical development of testing theory by modelling 
individual person-item interactions rather than total 
test scores, as in classical test theory. Conceptually, 
the purpose of IRT is “to describe the items by item 
parameters and the examinees by examinee parameters 
in such a way that we can predict probabilistically the 
response of any examinee to any item, even if similar 
examinees have never taken similar items before” 
(Lord, 1980, p. 11). A sample item characteristic curve 
(ICC) or, equivalently, item response function (IRF) for 
a binary item (e.g., correct/incorrect, agree/disagree, 
et cetera) is shown in Figure 3.1.

The salient characteristics of Figure 3.1 are as follows:

1. The trait (e.g., ability) is quantified as a continuous 
random variable and is represented by θ on the 
horizontal axis. The variable is standardized to have 
a mean of zero and a variance of 1 in the popula-
tion of interest. More of the trait, corresponding 
to a higher value of θ, is expected to increase the 
probability P of a positive (or correct) response. 
This is the monotonicity assumption. An observed 
violation of monotonicity means that that the 
fundamental person-item relationship is wrong, 
and including the item in a test would lead to bad 
fit and unreliable inferences.

2. Two ways of interpreting these curves were de-
scribed by Holland (1990). In the stochastic subject 
interpretation, one literally imagines this curve as 
applying to an individual whose performance is 
inherently unpredictable. To paraphrase Holland, 
the stochastic subject explanation is intuitive, but 
not wholly satisfactory; we do not have a mecha-
nistic explanation for the stochastic nature of the 
subject. In the random sampling interpretation, 
on the other hand, this curve makes sense as 
applied to a sample population of examinees. For 
example, among examinees within a certain ability 
range, some proportion will answer correctly. 
The points and error bars in the figure reflect 
this observation.1 

3. The value of θ for which P = 0.5 is a reference 
intercept, which for a cognitive ability test item 
is called the difficulty. Note that difficulty is ipso 
facto on the same scale as ability, and so it makes 
sense to talk about the difference between a per-
son’s ability and the difficulty of an item.

4. The form of the probability link is commonly para-
metric with respect to the trait θi of individual i 
and a (set of) item parameters βj, for item j,

Pij = P(Xij = 1|θi, βj) = f(θi, βj),                    (1)

as in the case of the Rasch model (a single difficulty 
parameter) or of the two-parameter logistic (2PL) 
model. The 2PL model is shown in Figure 3.2; the 
fit to data is visibly good, and a G2 goodness-of-
fit test confirms as much. It should be noted that 
non-parametric IRT methods exist (Sijtsma, 1998).

When a person responds to several items in a measure-
ment instrument, the idea is to combine the response 
information to make posterior estimates of the trait. 
For the likelihood of a response vector to factor into 
a product of individual item-level probabilities, the 
responses must be otherwise independent, conditional 
on the trait. This conditional independence assumption 

1 For the stochastic subject, these sample values would have to rep-
resent a set of identical trials by the same subject with no memory 
of the other trials. Although this seems odd in a cognitive test item, 
it is plausible in a psychomotor context. See Spray (1997). 

Figure 3.1. A sample item characteristic curve (ICC). 
Dotted lines indicate the P = 0.5 intercept.
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may require the introduction of additional factors that 
explain inter-item dependence (e.g., Rijmen, 2010).

Evidence that IRT has some traction in education 
outside of high-stakes testing applications can be 
found in physics education research applications to 
the force concept inventory (FCI; Hestenes et al., 1992) 
and the mechanics baseline test (MBT; Hestenes & 
Wells, 1992). While these instruments have been in use 
for twenty-five years, item response model analyses 
started to appear more recently (Morris et al., 2006; 
Wang & Bao, 2010). Model-data fit for the FCI were 
generally acceptable. Cardamone et al. (2011), however, 
discovered two malfunctioning items in the MBT by 
inspecting the item response functions. An example 
is shown in Figure 3.2.

Something is fishy if low-ability students are more 
likely to answer an item correctly than average-ability 
students. Upon closer inspection, it was discovered 
that ambiguous wording of this test item allowed 
students holding a common misconception to misread 
the question and coincidentally choose the correct 
response for the wrong reason. In this case, two 
wrongs did make a right.

Following exploratory factor analyses of the FCI that 
identified multiple dimensions (Ding & Beichner, 2009; 
Scott, Schumayer, & Gray, 2012), a variation of mul-
tidimensional IRT was applied to the MBT (Bergner, 
Rayyan, Seaton, & Pritchard, 2013). Item response 
theory models have also been extended to the inher-
ently sequential process behind multiple attempts to 
answer (answer-until-correct), an affordance which 
is common in online homework (Attali, 2011; Bergner, 
Colvin, & Pritchard, 2015; Culpepper, 2014).

Growth Models
Growth models apply any time a latent trait is chang-
ing systematically between measurements. They can 
be applied to changing attitudes (e.g., George, 2000), 
but we focus here on application to cognitive ability 
domains. There is an extensive literature in educa-
tional data mining on student models for intelligent 
problem-solving tutors, which are distinguished from 
curriculum sequencing tutors (Desmarais & Baker, 2011).

In cognitive tutors for mathematics (Anderson, Corbett, 
Koedinger, & Pelletier, 1995), sequences of practice 
items are designed to support mastery learning of 
fine-grained knowledge components (also, skills or 
productions), according to a cognitive model. Two 
approaches for modelling growth towards mastery 
in data from these systems are Bayesian knowledge 
tracing (BKT; Corbett & Anderson, 1995) and the ad-
ditive factors models (AFM; Cen, Koedinger, & Junker, 
2008; Draney, Pirolli, & Wilson, 1995). Learning curves 
analysis (Käser, Koedinger, & Gross, 2014; Martin, 
Mitrovic, Mathan, & Koedinger, 2010) has also been 
used to check for discrepancies between data and the 
cognitive model underlying the tutor.

According to the “law of practice” (Newell & Rosen-
bloom, 1981), the aggregate error rate T as a function 
of practice opportunity n should decay according 
to a power law T=Bn

-a, where B and a are empirically 
determined. Bad fit between data and model, for 
example using r-squared measures, may motivate 
improvements to knowledge mapping. This may be 
seen as an analogue to the item analysis in Figure 3.2, 
where a faulty item is detected. In this case, however, 
the assignment of a sequence of items to a knowledge 
component is seen as faulty.

In BKT, the latent variable is mastery of a procedural 
knowledge component and is binary-valued, M ∈ {0, 1}. 
The probability link between mastery and correctness 
X ∈ {0, 1} on any given opportunity is a 2x2 conditional 
probability table, but by analogy with Eq. (1), it can be 
written in terms of guess (g) and slip (s) parameters as,

P(X = 1|M) = (1 - s)M g(1-M)                                      (2)

Importantly, the attempts are not viewed as inde-
pendent. Rather, the key idea in BKT is that students 
begin with some prior probability of mastery and 
move towards mastery (they learn) on each practice 
opportunity according to the rule,

P(Mn) = P(Mn-1) + t(1 - P(Mn-1))
                              (3)

Here t is a growth parameter. Recently, van de Sande 
(2013) demonstrated that BKT implies an exponential 
rather than a power law relationship between prac-
tice attempts and error rates. This would make BKT a 
mis-specified model for data that satisfy a power law 

Figure 3.2. A poorly fitting item from the mechanics 
baseline test (MBT).
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of practice. The additive factors model, by contrast, 
is designed to fit the power law of practice paradigm. 
Käser et al. (2014) showed that prediction accuracy of 
BKT is often indistinguishable from AFM. Regarding fit 
of the latter, they noted systematic bias in aggregate 
residuals analyses.

AFM has been referred to as an extension of IRT 
(Koedinger, McLaughlin, & Stamper, 2012), and indeed 
the relation to the linear logistic test model (LLTM; 
Fischer, 1973) was clear in the progenitor of this model 
(Draney et al., 1995). However, in passing to its current 
form, the model was changed in a critical way. The 
LLTM is a Rasch-type IRT model in which the difficul-
ty of an item is decomposed as a sum over potential 
properties of the item. Writing the Rasch model as,

logit(Pij) = ln(Pij/(1-Pij)) = θi - βj,                (4)

the difficulty βj  of item j is further decomposed,

βj=cj + ∑k wjkak,                             (5)

where ak are difficulties of “basic” operations (Fischer’s 
term) and the indicators wik are 0 or 1 depending on 
whether these operations are required in item j. If 
all items use the same operations, the model clearly 
reduces to the Rasch model with a simple offset,

βj = cj+ a.                                  (6)

Although the model of Draney et al. (1995) contained 
an item-level difficulty parameter, in AFM only the 
difficulties of the component skills are retained. In 
addition, a practice term is introduced,2

βj
AFM = ∑kwjkak - ∑kwjkγkTik ,                    (7)

where γk is a growth parameter and Tik is a count of 
the previous practice attempts of learner i on skill k. 
If a sequence of practice problems all involve the same 
skills, which is common for tutor applications, then for 
each sequence, this parameter reduces to,

βj
AFM = a - γTi .                             (8)

Importantly, this is not a property of the item at all, 
as is clear from the subscripts on the right hand side, 
which depend only on the learner. By dropping the cj 
parameter in Equations (7)–(8), the AFM has actually 
become a fixed effect growth model.

From a modelling perspective, it is not surprising that 
the item-level difficulty parameter was removed, as 
keeping both difficulty and growth parameters creates 
a problem for identifiability. A model is identifiable if 
its parameters can be unambiguously learned given 
sufficient data. However, for students working on a 
fixed sequence of items, the increased success rate due 
to learning/growth can be attributed to decreasing 

2 One sign convention from Cen et al. (2008) has been changed to 
make the model consistent with the usual Rasch model, with a diffi-
culty rather than an easiness parameter. 

item difficulty. The two effects cannot be distinguished 
unless item difficulties have been separately calibrated 
under conditions where there is no growth.

Cognitive Diagnostic Models
A seminal study of mixed-number subtraction using 
cognitive task analysis led Tatsuoka (1983) to develop 
the Q-matrix method and a model for diagnosing 
specific sub-skills (e.g., converting a whole number 
to a fraction) in an educational test. The Q-matrix 
is a discrete mapping of items to requisite sub-skills 
and is traditionally specified in the assessment model. 
Cognitive diagnostic models have since been consid-
erably generalized (Rupp & Templin, 2008; von Davier, 
2005), and efforts to learn the Q-matrix from data 
have appeared in educational data mining research 
(Barnes, 2005; Desmarais, 2012; Koedinger et al., 2012).

Having explored some of the measurement models 
involved in studying motivation, emotion, and cog-
nition, it is worth revisiting the important subject of 
error. Practitioners should be mindful that additional 
sources of error could be introduced by using models 
with the wrong parameters, by using the wrong models, 
or by using the models wrongly.

The use of a model may depend on parameters whose 
estimation is itself subject to error. These uncertainties 
should be acknowledged, but they are not necessarily 
serious if the model is consistent as a data-generating 
model for the observed data. That is, we think of the 
statistical model as a stochastic process that can be used 
to generate (also, sample or simulate) data (Breiman, 
2001). For example, we can simulate data from coin 
flips using a Bernoulli process, even if we are unsure 
about whether the real coin is fair. In principle, our 
parameter for the probability of heads in our model can 
be improved with more data from the real coin. This is 
different from the case when the model itself, either 
in terms of the latent variables or the link functions, 
is inconsistent with the true generating model. The 
second case is called model mis-specification (White, 
1996). Goodness-of-fit tests evaluate the consistency 
between the observed data and the generating model 
to retain or reject the model (White, 1996; Haberman, 
2009; Ames & Penfield, 2015).

Predictive modelling is one of the most prominent 
methodological approaches in educational data mining 
(Baker & Siemens, 2014; Baker & Yacef, 2009). Measure-
ment theory, by contrast, is decidedly explanatory, 
as are most of the statistical methods traditionally 
used in the social sciences (Breiman, 2001; Shmueli, 

SOURCES OF ERROR, REVISITED
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2010). While an explanatory model can be used to 
make predictions — and an error-free explanatory 
model would make perfect predictions — a predictive 
model is not necessarily explanatory. Breiman (2001) 
expressed the distinction in terms of two cultures: the 
data modelling culture (98% of statistics, informally 
according to Breiman) and the algorithmic modelling 
culture (the 2%, in which Breiman included himself).3  
Shmueli (2010) contrasted the entire design process 
for statistical modelling when viewed from either a 
prediction or an explanation lens. The interpretabil-
ity or non-interpretability of predictors in a complex 
prediction model is only one aspect of the distinction 
(see also Liu & Koedinger, this volume). The different 
viewpoints fundamentally inform how researchers 
handle error and uncertainty.

The predictive view is expressed, for example, in a 
recent best paper from the educational data mining 
conference. The authors assert that, “the only way 
to determine if model assumptions are correct is to 
construct an alternative model that makes different 
assumptions and to determine whether the alternative 
outperforms [out-predicts] BKT” (Khajah, Lindsey, 
& Mozer, 2016, p. 95, editorial note added). Strictly 
speaking, model prediction performance is not a way 
to determine if model assumptions are violated. By 
contrast, both informal checks and formal tests for 
goodness-of-fit have been discussed above. However, 
the quote is a reflection of the algorithmic modelling 
culture in which models are validated by predictive 
accuracy (Breiman, 2001). More problematically, it 
carries a presumption that predictive power points to 
the truer model. In fact, it is explanatory power that 
plays this role. Put in terms of variance components, 
“in explanatory modelling the focus is on minimizing 

3 Breiman uses the term information in place of explanation and in 
contrast to prediction. 

bias to obtain the most accurate representation of the 
underlying theory. In contrast, predictive modelling 
seeks to minimize the combination of bias and vari-
ance, occasionally sacrificing theoretical accuracy 
for improved empirical precision” (Shmueli, 2010, p. 
293). It should be emphasized that explanatory power 
and predictive power do not always point in the same 
direction. Indeed, Hagerty and Srinivasan (1991) proved 
that, in noisy circumstances, under-specified multiple 
regression models can have more predictive power 
than the correctly specified (true) model.

Suthers and Verbert (2013) have described learning 
analytics as a “middle space” between learning science 
and analytics. Perhaps it may also be thought of as 
occupying a methodological middle space between 
explanatory and predictive approaches. In that case, 
the field may benefit from understanding the nuances 
of both perspectives.

Psychological measurement is almost as old as psy-
chology itself and as old as statistics. Authoritative, 
technical, and somewhat encyclopedic sources are 
the anthology of psychometrics in the Handbook of 
Statistics series (Rao & Sinharay, 2006) and the “bible” 
of Educational Measurement, now in its fourth edition 
(Brennan, 2006). Educational measurement volumes 
and the Standards (AERA, APA, & NCME, 2014) tend to 
emphasize testing, where specific issues are reliability, 
validity, generalizability, comparability, and fairness. 
DeVellis’ (2003) concise volume on scale development 
is a non-technical introduction to psychological 
measurement and omits topics specific to large-scale 
testing, such as linking scores from parallel test forms.
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In 2011, the New Media Consortium’s Horizon Report 
(NMC, 2011) pointed to the increasing importance of 
learning analytics as an emerging technology, which 
has since developed from a mid-range technology or 
trend to one to be realized within a “one year or less” 
time-frame (NMC 2016, p. 38). Though there are clear 
linkages between learning analytics and the more 
established field of educational data mining, there 
are also important distinctions regarding, inter alia, 
automation, aims, origins, techniques, and methods 
(Siemens & Baker, 2012). As the field of learning an-
alytics has developed as a distinct field of research 
and practice (see van Barneveld, Arnold, & Campbell, 
2012), so too thinking around ethical issues has slowly 
moved in from the margins. Slade and Prinsloo (2013) 
established one of the earliest frameworks developed 
with a focus on ethics in learning analytics. Since then, 
the number of authors publishing in this sub-field has 
significantly increased, resulting in a growing number 
of frameworks, codes of practices, taxonomies, and 
guidelines (Gašević, Dawson & Jovanović, 2016).

In the wider context of public concerns surrounding 

increasing surveillance and the (un)warranted col-
lection, analysis, and use of personal data, “fears and 
realities are often indistinguishably mixed up, leading 
to an atmosphere of uncertainty among potential ben-
eficiaries” (Drachsler & Greller, 2016, p. 89). Gašević et 
al. (2016) also suggest that further challenges remain 
“to be addressed in order to further aid uptake and 
integration into educational practice,” and see ethics 
and privacy as important enablers to the field of learn-
ing analytics “rather than barriers” (p. 2).

We briefly situate set the context for considering the 
ethical implications of learning analytics, before 
mapping our personal research journey in the field. 
We then consider recent developments and conclude 
by flagging a selection of issues that continue to require 
broader and more critical engagement.

There is some consensus that the future of learning 
will be digital, distributed, and data-driven such that 
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education “enables quality of life and meaningful em-
ployment through (a) exceptional quality research; (b) 
sophisticated data collection and; (c) advanced machine 
learning and human learning analysis/ support” (Sie-
mens, 2016, Slide 2). Although considerations of the 
ethical implications of learning analytics were initially 
on the margins of the field, the prominence of ethics 
has come a long way and is increasingly foregrounded 
(Gašević et al., 2016). In a context where much is to 
be said for the potential economic benefits (for both 
students and the institution) of more successful 
learning experiences resulting from increased data 
harvesting, we should not ignore the possibilities of 
“data-proxy-induced hardship… when the detail ob-
tained from the data-proxy comes to disadvantage its 
embodied referent in some way” (Smith, 2016, p. 16; also 
see Ruggiero, 2016; Strauss, 2016b; and Watters, 2016).

Ethical implications around the collection, analysis, 
and use of student data should take cognizance of the 
potentially conflicting interests and claims of a range of 
stakeholders, such as students and institutions. Views 
on the benefits, risks, and potential for harm resulting 
from the collection, analysis, and use of student data 
will depend on the interests and perceptions of the 
particular stakeholder. In this chapter, we hope to 
provide insight into the different positionalities, claims, 
and interests of primarily students and institutions.

Although now becoming more established, ethics 
and the need to question how student data is used 
and under what conditions was very much a marginal 
issue in the early years of the field. The first attempts 
to explore wider issues around learning analytics 
were presented at LAK ’12 in Vancouver. The large 
majority of sessions at this conference remained 
focused on developmental work. There was some 
mention of stakeholder perceptions of the ways in 
which student data could be used, notably Drachsler 
and Greller (2012), though their paper suggested that 
surveyed stakeholder considerations were largely 
focused on privacy and not considered particularly 
contentious. A further paper (Prinsloo, Slade, & Galpin, 
2012) touched upon the need to consider the impacts 
of all stakeholders on students’ learning journeys in 
order to increase the success of students’ learning. 
The notion of “thirdspace” provided a useful heuristic 
to map the challenges and opportunities, but also 
the paradoxes of learning analytics and its potential 
impact on student success and retention. At the same 
conference, an exploratory workshop (Slade & Galpin, 
2012) built upon early work by Campbell, DeBlois, and 
Oblinger (2007) aiming to consider and expand upon 

a number of assumed relevant ethical issues from 
different stakeholder perspectives.

Work in 2013 moved onto an examination of exist-
ing institutional policy frameworks that set out the 
purposes for how data would be used and protected 
(Prinsloo & Slade, 2013). The growing advent of learn-
ing analytics had seen uses of student data expanding 
rapidly. In general, policies relating to institutional use 
of student data had not kept pace, nor taken account 
of the growing need to recognize ethical concerns, 
focusing mainly on data governance, data security, 
and privacy issues. The review identified clear gaps 
and the insufficiency of existing policy.

Taking a sociocritical perspective on the use of learn-
ing analytics, Slade and Prinsloo (2013) considered a 
number of issues affecting the scope and definition of 
the ethical use of learning analytics. A range of ethical 
issues was grouped within three broad, overlapping 
categories, namely:

• The location and interpretation of data

• Informed consent, privacy, and the de-identifi-
cation of data

• The management, classification, and storage of data

Slade and Prinsloo (2013) proposed a framework based 
on the following six principles:

1. Learning analytics as moral practice — focusing 
not only on what is effective, but on what is ap-
propriate and morally necessary

2. Students as agents — to be engaged as collabora-
tors and not as mere recipients of interventions 
and services

3. Student identity and performance as temporal 
dynamic constructs — recognizing that analytics 
provides a snapshot view of a learner at a particular 
time and context

4. Student success as a complex, multidimensional 
phenomenon

5. Transparency as important — regarding the pur-
poses for which data will be used, under what 
conditions, access to data, and the protection of 
an individual’s identity

6. That higher education cannot afford not to use data

These principles offer a useful starting position, but 
ought sensibly to be supported by consideration of 
a number of practical considerations, such as the 
development of a thorough understanding of who 
benefits (and under what conditions); establishment 
of institutional positions on consent, de-identification 
and opting out; issues around vulnerability and harm 
(e.g., inadvertent labelling); systems of redress (for 
both student and institution); data collection, analyses, 

ESTABLISHING ETHICAL PRINCI-
PLES: HOW FAR HAVE WE COME?
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access, and storage (e.g., security issues and avoiding 
perpetuation of bias); and governance and resource 
allocation (including clarity around the key drivers 
for “success” (and what success means), existing con-
straints, and the conditions that must be met).

This latter aspect of resource allocation was carefully 
explored in a later paper considering the concept of 
educational triage (Prinsloo & Slade, 2014a). Although 
learning analytics offers theoretical opportunities for 
HEIs (higher education institutions) to proactively 
identify and support students at risk of failing or drop-
ping out, they do so in a context whereby resources 
are (increasingly) limited. The challenge then is where 
best to direct support resources and on what basis that 
decision is made. The concept of educational triage as 
a means of directing support toward students most 
likely to “survive” requires careful consideration of 
a number of related and complex issues, such as the 
balance between respecting student autonomy and, 
at the same time, ensuring the long-term sustain-
ability of the institution; the notion of beneficence (to 
always act in the student’s best interest); the need for 
non-maleficence (inflicting the least harm possible to 
reach a beneficial outcome); and maintaining a sense of 
distributive justice (understanding that demographic 
characteristics have and do impact support provided 
and assumptions made, and the need to recognize 
and address this).

An increasing awareness of learning analytics as a 
means of doing something to the student without 
that student necessarily knowing triggered further 
exploration of issues around surveillance, student 
privacy and institutional accountability (Prinsloo & 
Slade, 2014b). The resulting discussion challenged 
assumptions around learning analytics as a produc-
er of accurate, objective, fully complete pictures of 
student learning, and also reviewed the potentially 
unequal relationship between institution and student. 
In considering existing frameworks regarding the use 
and analysis of personal data, the study suggested six 
elements that could form a basis for a student-centred 
learning analytics:

1. The use of aggregated, non-personalized data is 
essential in delivering effective and appropriate 
teaching and learning, but students should be able 
to make informed opt in/out decisions

2. Students should have full(er) knowledge of which 
data is collected and how it is used

3. Students should ensure that their personal data 
records are complete and up to date

4. The surveillance of activities and the harvesting 
of data must not harm student progress

5. Algorithmic output should be subject to (potential) 

human review, and corrected if needed

6. Learning analytics essentially provides context 
and time-specific, provisional, incomplete pictures 
of students, and algorithms should be frequently 
reviewed and validated

Issues around surveillance and the need to recognize 
students as active agents in the use of their own data 
was explicitly addressed within the development of The 
Open University (OU; 2014) policy on the ethical use 
of student data for learning analytics. As part of the 
stakeholder consultation, a representative group of 50 
students explored their understanding of the ways in 
which data is used to support students in completing 
their study goals over a three-week period. A study of 
responses (Slade & Prinsloo, 2014) found that students 
appeared largely unaware of the extent to which data 
was already actively collected and used, and they raised 
a number of concerns. The major concern related 
to the potential to actively consent (or not), with a 
majority of students expressing a wish for a right to 
opt out. This direct involvement of student voices in 
shaping a policy dealing with the ethics of learning 
analytics offered unique insight into the ways in which 
students regard their data — as a valuable entity to be 
carefully protected and even more carefully applied. 
Given that the sample in Slade and Prinsloo (2014) may 
not be fully representative of the total population, the 
outcomes cannot be generalized across institutional 
and geopolitical contexts.

In response to this growing awareness of student con-
cern, Prinsloo and Slade (2015) questioned whether our 
assumptions and understanding of issues surround-
ing student attitudes to privacy may be influenced 
by both the apparent ease with which the public 
appear to share the detail of their lives and by our 
largely paternalistic institutional cultures. The study 
explored issues around consent and the seemingly 
simple choice to allow students to opt-in or opt-out 
of having their data tracked. As a foundation for the 
discussion, the terms and conditions of three massive 
open online course (MOOC) providers were reviewed 
to establish information given to users regarding the 
uses of their data. This extended into a discussion of 
how HEIs can move toward an approach that engages 
and more fully informs students of the implications 
of learning analytics on their personal data. A similar 
theme was pursued in Prinsloo and Slade (2016a). This 
paper challenged the tendency for many HEIs to adopt 
an authoritarian approach to student data. Despite 
the rapid growth in the deployment of learning ana-
lytics, few HEIs have regulatory frameworks in place 
and/or are fully transparent regarding the scope of 
student data collected, analyzed, used, and shared. 
Student vulnerability was explored in the nexus be-
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tween realizing the potential of learning analytics; 
the fiduciary duty of HEIs in the context of their 
asymmetrical information and power relations with 
students; and the complexities surrounding student 
agency in learning analytics. The aim was to consider 
ways in which student vulnerability may be addressed, 
increasing student agency, and empowering them as 
active participants in learning analytics — moving from 
quantified data objects to qualified and qualifying 
selves (see also Prinsloo & Slade, 2016b).

It is broadly accepted that the increasing value of 
data as a sharable commodity with an increasing ex-
change value has overtaken our legal and traditional 
ethical frameworks (Zhang, 2016). “Deep economic 
pressures are driving the intensification of connection 
and monitoring online” (Couldry, 2016, par. 13) and 
“What’s needed is more collective reflection on the 
costs of capitalism’s new data relations for our very 
possibilities of ethical life” (Couldry, 2016, par. 35). As 
such, there have been attempts in different geopolitical 
and institutional contexts to grapple with the ethical 
implications of learning analytics. Sclater, Peasgood, 
and Mullan (2016), for example, review practices within 
higher education in the United States, Australia, and 
the United Kingdom. They summarize their findings 
by indicating that learning analytics makes significant 
contributions for 1) quality assurance and quality im-
provement; 2) boosting retention rates; 3) assessing and 
acting upon differential outcomes among the student 
population; and 4) the development and introduction 
of adaptive learning. The report acknowledges the 
many opportunities, but also highlights threats such 
as “ethical and data privacy issues, ‘over-analysis’ and 
the lack of generalizability of the results, possibilities 
for misclassification of patterns, and contradictory 
findings” (p. 16). In their review, the one institutional 
example of a policy level bid to address the ethical 
concerns in learning analytics is that of The Open 
University (UK). In 2014, the OU published a “Policy 
on ethical use of student data for learning analytics” 
delimiting the nature and scope of data collected and 
analyzed and an explicit specification of data that will 
not be collected and used for learning analytics. The 
policy establishes the following eight principles (p. 6):

1. Learning analytics is an ethical practice that 
should align with core organizational principles, 
such as open entry to undergraduate level study.

2. The OU has a responsibility to all stakeholders to 
use and extract meaning from student data for 
the benefit of students where feasible.

3. Students should not be wholly defined by their 

visible data or our interpretation of that data. [This 
principle furthermore warns against stereotyping 
students and acknowledges those individuals who 
do not fit into typical patterns. The principle also 
makes it clear that members of staff may not have 
access to the full data set, which can seriously 
impact the reliability of the analysis.]

4. The purpose and the boundaries regarding the 
use of learning analytics should be well defined 
and visible.

5. The University is transparent regarding data 
collection, and will provide students with the 
opportunity to update their own data at regular 
intervals.

6. Students should be engaged as active agents in 
the implementation of learning analytics (e.g., 
informed consent, personalized learning paths, 
interventions).

7. Modelling and interventions based on analysis of 
data should be sound and free from bias.

8. Adoption of learning analytics within the OU re-
quires broad acceptance of the values and benefits 
(organizational culture) and the development of 
appropriate skills across the organization.

As one of the first institutional responses to the ethi-
cal implications in the collection, analysis, and use of 
student data, this policy and its principles attempted 
to map uncharted territory. Of specific interest is 
the definition of “informed consent” as referring to 
“the process whereby the student is made aware of 
the purposes to which some or all of their data may 
be used for learning analytics and provides consent. 
Informed consent applies at the point of reservation 
or registration on to a module or qualification” (Open 
University, 2014, p. 3). The policy does not address the 
possibility of students who prefer to opt out of the 
collection, analysis, and use of their data (as discussed 
by Engelfriet, Manderveld, & Jeunink, 2015; Sclater, 
2015; also see Shacklock, 2016).

In a recent overview of learning analytics practices in 
the Australian context, Dawson, Gašević, and Rogers 
(2016) report that the “relative silence afforded to 
ethics across the studies is significant” (p. 3) and that 
this “does not reflect the seriousness with which the 
sector should consider these issues” (p. 33). The report 
suggests that “It is likely that the higher education 
sector has not been ready for such a conversation 
previously, although it is argued that as institutions are 
maturing, ethical considerations take on a heightened 
salience” (p. 33).

Also in the Australian context, Welsh and McKinney 
(2015) position the need for a Code of Practice in learn-

RECENT DEVELOPMENTS IN 
ETHICAL FRAMEWORKS
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ing analytics in the context of the “relative immaturity 
of the discipline with institutions, practitioners and 
technology vendors still figuring out what works and 
finding the boundaries of ‘acceptable’ practice” and 
the real potential for abuse/misuse and discrimination 
(p. 588). Of particular importance is the commitment 
that “The University will not engage in Learning Ana-
lytics practices that use data sources: (a) not directly 
related to learning and teaching; and/or (b) where 
users may not reasonably expect such data collection 
by the University to occur” (p. 590). Student data will 
only be used in the context of the original purpose for 
which the data in question was collected; its use can 
continue under the following conditions: 

Explicit informed consent is gathered from 
those who are the subject of measurement. 
Where informed consent means that: (a) clear 
and accurate information is provided about 
what data is or may be collected, why and how 
it is collected, how it is stored and how it is 
used; and (b) agreement is freely given to the 
practice(s) described. (p. 590)

The above principles should be read in conjunction 
with two remaining principles regarding how col-
lected data should be used to enhance teaching and 
learning and to give students “greater control over 
and responsibility for their learning” (p. 591); and one 
of transparency and informed participation. For a full 
discussion, see Welsh and McKinney (2015).

Drachsler and Greller (2016) provide a broad overview 
of ethics, privacy, and respective legal frameworks, 
and highlight challenges such as the real possibility 
of exploitation in light of the asymmetrical power 
relationship between data gatherer and data object, 
issues of ownership, anonymity and data security, 
privacy and data identity, as well as transparency and 
trust. They present a checklist (DELICATE©) to ensure 
that learning analytics proceeds in an acceptable and 
compliant way “to overcome the fears connected to 
data aggregation and processing policies” (p. 96).

Sclater (2015) proposes a (draft) taxonomy of ethical, 
legal, and logistical issues in learning analytics with 
an overview of how a range of stakeholders, such as 
senior management, the analytics committee, data 
scientists, educational researchers, IT, and students 
are impacted and have responsibility in learning 
analytics. The draft covers a wide range of issues in-
cluding, inter alia, consent; identity; potential impacts 
of opting out; the asymmetrical relationship between 
the institution and students; (boundaries around) 
the permissible uses of student data; transparency; 
data included (and excluded) from use; and student 
autonomy, amongst others. See Sclater (2015) for a full 
list of ethical concerns.

In the Dutch higher education context, Engelfriet et 
al. (2015) consider the implications of the Law for the 
Protection of Personal Information for learning ana-
lytics. These include the need for permission (and the 
responsibility arising from receiving consent) and the 
implications of the consensual agreement between a 
service provider and recipient that the provider may 
use any personal information needed for the provision 
of the service. The law distinguishes between essential 
information and “handy” information. Engelfriet et al. 
(2015) take a contentious view that, given that learning 
analytics is seen as an emerging practice, it may safely 
be regarded as collecting “handy” information, and 
so perhaps excluded from the need for consensual 
agreement between the institution and students. The 
authors suggest that these four principles should guide 
learning analytics:

• Personal information be used only in the context 
and purpose for which it was provided

• Subsequent use of such data should be reconcilable 
with the original context and purpose

• Data should be carefully collected and analyzed, and 
“sneaky” (“stiekeme” in Dutch) usage of analytics is 
not permissible; this appears to emphasize a need 
for transparency, student consultation, and buy in

• Data may only be collected when the purpose/
use of the collected data is made explicitly clear

Engelfriet et al. (2015) explore student rights around 
the governance of their data, including the following:

• Easy access to collected information

• The right to correct wrong information (or inter-
pretations arising from it)

• The right to remove irrelevant information

Of particular interest is an exploration of the ethical 
implications for algorithmic decision making and the 
authors flag examples that lead to potential conflict 
with Dutch law. The implication is that humans need to 
take responsibility for and have oversight of algorith-
mic decision making. Algorithms may, at most, signal 
particular behaviour for the attention of faculty or 
support staff. Further, students have a right to appeal 
decisions made based on analyses of their personal 
data. In cases where HEIs subcontract to software 
developers, the final responsibility and oversight 
remains securely with the institution and cannot be 
delegated (see Engelfriet et al., 2015).

It falls outside the scope of this chapter to map current 
and future gaps in our understanding of the complex-
ities and practicalities at the intersections between 

SOME FUTURE CONSIDERATIONS 
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student data and advances in technology and methods 
of analysis. We would like to conclude, however, with 
some pointers for future consideration.

Given the mandate of higher education institutions to 
ensure effective, appropriate, cost-effective learning 
experiences and to support students to be successful, 
there is broad agreement that institutions have a right 
to collect and use student information. However, there 
is no easily agreed upon position around consent, that 
is, in allowing students to opt out of the collection, 
analysis, and use of their data. Student positions 
around consent may be influenced by issues not wholly 
logical or rational. The often-implicit calculation of 
benefits, costs, and risks will depend on a range of 
factors such as, inter alia, previous experiences, need, 
and perceived benefits (see, for example, Daniel Pink 
in O’Brien. 2010).

One recent example of opt out was led by the National 
Center for Fair and Open Testing in the US who en-
couraged students to refuse to take government-man-
dated standardized tests. Around 650,000 students 
opted out in the 2014–2015 school year (FairTest, n.d.), 
with the US Department of Education responding by 
threatening to withhold funding (Strauss, 2016a).

Further research is needed to explore potential conflicts 
between students’ concerns, their right to opt-out, and 
the implications for the mandate of higher education 
to use student data to make interventions at an in-
dividual level. Central to this issue is the question of 
“who benefits?” (see Watters, 2016). Any consideration 
of the ethics around the collection, analysis, and use 
of student data (whether in learning analytics or in 
formal assessments) should also recognize the con-
testing claims and vested interests.

In the broader context of online research, Vitak, Shil-
ton, and Ashktorab (2016) point to various challenges 
regarding ethical research practices in online contexts, 
such as the increasing and persisting concerns about 
re-identification: “researchers still struggle to balance 
research ethics considerations with the use of online 
datasets” (p. 1). Interestingly, their findings also show 
that many the researchers go beyond the Belmont 
principles (with the main emphasis on ensuring that 
outcomes outweigh potential harms caused by the 
research) by referring to “(1) transparency with par-
ticipants, (2) ethical deliberation with colleagues, and 
(3) caution in sharing results” (par. 66).

There is also increasing concern balancing optimism 
around artificial intelligence (AI), machine learning, 
and big data. For example, the Executive Office of 
the President of the US released a report (Munoz, 
Smith, & Patil, 2016) that highlights benefits, but also 
addresses concerns regarding the potential harm 
inherent in the use of big data. The report recognizes 

that if “these technologies [algorithmic systems] are 
not implemented with care, they can also perpetuate, 
exacerbate, or mask harmful discrimination” (p. 5). 
It makes a number of suggestions relating to invest-
ment in research into the mitigation of algorithmic 
discrimination, encouraging the development and 
use of robust and transparent algorithms, algorithmic 
auditing, improvements in data science “fluency,” and 
the roles of the government and private sector in 
setting codes of practice around data use.

Similarly, the UK Government recently released a 
“Data science ethical framework” (Cabinet Office, 2016) 
providing guidance on “ethical issues which sit outside 
the law” (p. 3). The framework explores issues such as 
the nature of the benefits of the collection, analysis, 
and use of personal data; the scope and nature of 
intrusion; the quality of the data and the automation 
of the decisions relating to the collected data; the risk 
of negative unintended consequences; whether the 
data objects agreed to the collection and analysis; the 
nature and scope of the oversight; and the security 
of the collected data. The framework also proposes a 
“Privacy Impact Assessment” requiring data scientists 
to clarify “tricky issues” (p. 6), such as reviewing the 
extent to which the benefits of the project outweigh 
the risks to privacy and negative unintended con-
sequences; steps undertaken to minimize risks and 
ensure correct interpretation; and the extent to which 
the opinions of the data objects/public regarding the 
project were considered (see Cabinet Office, 2016).

In the context of the algorithmic turn in (higher) edu-
cation, and the increasing blurring of the boundaries 
between broader developments in data and neurosci-
ence, we need a critical approach to considering the 
ethical implications of learning analytics as we find our 
way through the myth, mess, and methods (Ziewitz, 
2016) of student data. For example, Williamson (2016a) 
considers “educational data science as a biopolitical 
strategy focused on the evaluation and management 
of the corporeal, emotional and embrained lives of 
children” (p. 401, emphasis added). As such, we have 
to consider the basis and scope of authority of educa-
tional data scientists who have “increasing legitimate 
authority to produce systems of knowledge about 
children and to define them as subjects and objects 
of intervention” (Williamson, 2016a, p. 401). Learning 
analytics in future will be essentially based on and 
driven by algorithms and machine learning and we 
therefore have to consider how algorithms “reinforce, 
maintain, or even reshape visions of the social world, 
knowledge, and encounters with information” (Wil-
liamson, 2016b, p. 4). Accountability, transparency, and 
regulatory frameworks will be essential elements in 
the frameworks ensuring ethical learning analytics 
(see Prinsloo, 2016; Taneja, 2016).
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While this chapter maps the progress in considering 
the ethical implications of the collection, analysis, 
and use of student data, it is clear that the poten-
tial for harm will not be addressed without further 
consideration of institutional processes to ensure 
accountability and transparency. As Willis, Slade, 
and Prinsloo (2016) indicate, learning analytics often 
falls outside the processes and oversight provided 
by institutional review boards (IRBs). It is not clear at 
this stage by whom and how the ethical implications 
of learning analytics will be assured.

Since the emergence of learning analytics in 2011, 
the field has not only matured, but also become more 
nuanced in increasingly considering the fears and re-
alities of ethical implications in the collection, analysis, 
and use of student data. In this chapter, we provide 
an overview of how our own thinking has developed 
alongside broader developments in the field. Against 
a backdrop of technological advances and increasing 
concerns around pervasive surveillance, and a growing 

consensus that the future of higher education will 
be digital, distributed, and data-driven, this chapter 
maps how far the discourses surrounding the ethical 
implications of learning analytics have come, as well 
as some of the future considerations.

Each of the frameworks, code of practices, and 
conceptual mappings of the ethical implications in 
learning analytics discussed adds a further layer and 
a richer understanding of how we may move toward 
using student data-proxies to increase the effective-
ness and appropriateness of teaching, learning, and 
student support strategies in economically viable and 
ethical ways. The practical implementation of that 
understanding remains largely incomplete, but still 
wholly pertinent.

We would like to acknowledge the comments, critical 
inputs, and support received from the editorial team 
and specially the reviewers of this chapter.
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Predictive analytics are a group of techniques used 
to make inferences about uncertain future events. 
In the educational domain, one may be interested in 
predicting a measurement of learning (e.g., student 
academic success or skill acquisition), teaching (e.g., 
the impact of a given instructional style or specific 
instructor on an individual), or other proxy metrics 
of value for administrations (e.g., predictions of re-
tention or course registration). Predictive analytics 
in education is a well-established area of research, 
and several commercial products now incorporate 
predictive analytics in the learning content manage-
ment system (e.g., D2L,1 Starfish Retention Solutions,2 
Ellucian,3 and Blackboard4). Furthermore, specialized 
companies (e.g., Blue Canary,5 Civitas Learning6) now 
provide predictive analytics consulting and products 
for higher education.

In this chapter, we introduce the terms and workflow 
related to predictive modelling, with a particular 
emphasis on how these techniques are being applied 
in teaching and learning. While a full review of the 
literature is beyond the scope of this chapter, we en-
courage readers to consider the conference proceedings 

1 http://www.d2l.com/ 
2 http://www.starfishsolutions.com/ 
3 http://www.ellucian.com/ 
4 http://www.blackboard.com/ 
5 http://bluecanarydata.com/ 
6 http://www.civitaslearning.com/ 

and journals associated with the Society for Learning 
Analytics and Research (SoLAR) and the International 
Educational Data Mining Society (IEDMS) for more 
examples of applied educational predictive modelling.

First, it is important to distinguish predictive mod-
elling from explanatory modelling.7 In explanatory 
modelling, the goal is to use all available evidence 
to provide an explanation for a given outcome. For 
instance, observations of age, gender, and socioeco-
nomic status of a learner population might be used 
in a regression model to explain how they contribute 
to a given student achievement result. The intent of 
these explanations is generally to be causal (versus 
correlative alone), though results presented using these 
approaches often eschew experimental studies and 
rely on theoretical interpretation to imply causation 
(as described well by Shmueli, 2010).

In predictive modelling, the purpose is to create a model 
that will predict the values (or class if the prediction 
does not deal with numeric data) of new data based on 
observations. Unlike explanatory modelling, predictive 
modelling is based on the assumption that a set of known 
data (referred to as training instances in data mining 
7 Shmueli (2010) notes a third form of modelling, descriptive 
modelling, which is similar to explanatory modelling but in which 
there are no claims of causation. In the higher education literature, 
we would suggest that causation is often implied, and the majority 
of descriptive analyses are actually intended to be used as causal 
evidence to influence decision making. 
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literature) can be used to predict the value or class of 
new data based on observed variables (referred to as 
features in predictive modelling literature). Thus the 
principal difference between explanatory modelling 
and predictive modelling is with the application of the 
model to future events, where explanatory modelling 
does not aim to make any claims about the future, 
while predictive modelling does.

More casually, explanatory modelling and predictive 
modelling often have a number of pragmatic differ-
ences when applied to educational data. Explanatory 
modelling is a post-hoc and reflective activity aimed 
at generating an understanding of a phenomenon. 
Predictive modelling is an in situ activity intended to 
make systems responsive to changes in the underlying 
data. It is possible to apply both forms of modelling 
to technology in higher education. For instance, Lonn 
and Teasley (2014) describe a student-success system 
built on explanatory models, while Brooks, Thompson, 
and Teasley (2015) describe an approach based upon 
predictive modelling. While both methods intend 
to inform the design of intervention systems, the 
former does so by building software based on theory 
developed during the review of explanatory models by 
experts, while the latter does so using data collected 
from historical log files (in this case, clickstream data).

The largest methodological difference between the two 
modelling approaches is in how they address the issue 
of generalizability. In explanatory modelling, all of the 
data collected from a sample (e.g., students enrolled in 
a given course) is used to describe a population more 
generally (e.g., all students who could or might enroll in 
a given course). The issues related to generalizability 
are largely based on sampling techniques. Ensuring the 
sample represents the general population by reducing 
selection bias, often through random or stratified sam-
pling, and determining the amount of power needed 
to ensure an appropriate sample, through an analysis 
of population size and levels of error the investigator 
is willing to accept. In a predictive model, a hold out 
dataset is used to evaluate the suitability of a model 
for prediction, and to protect against the overfitting 
of models to data being used for training. There are 
several different strategies for producing hold out 
datasets, including k-fold cross validation, leave-one-
out cross validation, randomized subsampling, and 
application-specific strategies.

With these comparisons made, the remainder of this 
chapter will focus on how predictive modelling is 
being used in the domain of teaching and learning, 
and provide an overview of how researchers engage 
in the predictive modelling process.

Problem Identification
In the domain of teaching and learning, predictive 
modelling tends to sit within a larger action-oriented 
educational policy and technology context, where in-
stitutions use these models to react to student needs 
in real-time. The intent of the predictive modelling 
activity is to set up a scenario that would accurately 
describe the outcomes of a given student assuming 
no new intervention. For instance, one might use a 
predictive model to determine when a given individual 
is likely to complete their academic degree. Applying 
this model to individual students will provide insight 
into when they might complete their degrees assuming 
no intervention strategy is employed. Thus, while it is 
important for a predictive model to generate accurate 
scenarios, these models are not generally deployed 
without an intervention or remediation strategy in mind.

Strong candidate problems for a successful predictive 
modelling approach are those in which there are quan-
tifiable characteristics of the subject being modelled, 
a clear outcome of interest, the ability to intervene in 
situ, and a large set of data. Most importantly, there 
must be a recurring need, such as a class being ordered 
year after year, where the historical data on learners 
(the training set) is indicative of future learners (the 
testing set).

Conversely, several factors make predictive modelling 
more difficult or less appropriate. For example, both 
sparse and noisy data present challenges when trying 
to create accurate predictive models. Data sparsity, or 
missing data, can occur for a variety of reasons, such as 
students choosing not to provide optional information. 
Noisy data occurs when a measurement fails to capture 
the intended data accurately, such as determining a 
student’s location from their IP address when some 
students are using virtual private networks (proxies 
used to circumvent region restrictions, a not uncommon 
practice in countries such as China). Finally, in some 
domains, inferences produced by predictive models 
may be at odds with ethical or equitable practice, 
such as using models of student at-risk predictions 
to limit the admissions of said students (exemplified 
in Stripling et al., 2016).

Data Collection
In predictive modelling, historical data is used to gen-
erate models of relationships between features. One 
of the first activities for a researcher is to identify the 
outcome variable (e.g., grade or achievement level) as 
well as the suspected correlates of this variable (e.g., 
gender, ethnicity, access to given resources). Given 
the situational nature of the modelling activity, it is 

PREDICTIVE MODELLING 
WORKFLOW
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important to choose only those correlates available at 
or before the time in which an intervention might be 
employed. For instance, a midterm examination grade 
might be predictive of a final grade in the course, but 
if the intent is to intervene before the midterm, this 
data value should be left out of the modelling activity.

In time-based modelling activities, such as the predic-
tion of a student final grade, it is common for multiple 
models to be created (e.g., Barber & Sharkey, 2012), 
each corresponding to a different time period and set 
of observed variables. For instance, one might gen-
erate predictive models for each week of the course, 
incorporating into each model the results of weekly 
quizzes, student demographics, and the amount of 
engagement the students have had with respect digital 
resources to date in the course.

While state-based data, such as data about demograph-
ics (e.g., gender, ethnicity), relationships (e.g., course 
enrollments), psychological measures (e.g., grit, as in 
Duckworth, Peterson, Matthews, & Kelly, 2007, and 
aptitude tests), and performance (e.g., standardized 
test scores, grade point averages) are important for 
educational predictive models, it is the recent rise 
of big event-driven data collections that has been a 
particularly powerful enabler of predictive models 
(see Alhadad et al., 2015 for a deeper discussion). 
Event-data is largely student activity-based, and is 
derived from the learning technologies that students 
interact with, such as learning content management 
systems, discussion forums, active learning technol-
ogies, and video-based instructional tools. This data 
is large and complex (often in the order of millions 
of database rows for a single course), and requires 
significant effort to convert into meaningful features 
for machine learning.

Of pragmatic consideration to the educational re-
searcher is obtaining access to event data and creating 
the necessary features required for the predictive 
modelling process. The issue of access is highly con-
text-specific and depends on institutional policies and 
processes as well as governmental restrictions (such 
as FERPA in the United States). The issue of converting 
complex data (as is the case with event-based data) 
into features suitable for predictive modelling is re-
ferred to as feature engineering, and is a broad area 
of research itself.

Classification and Regression
In statistical modelling, there are generally four types 
of data considered: categorical, ordinal, interval, and 
ratio. Each type of data differs with respect to the 
kinds of relationships, and thus mathematical opera-
tions, which can be derived from individual elements. 
In practice, ordinal variables are often treated as 

categorical, and interval and ratio are considered as 
numeric. Categorical values may be binary (such as 
predicting whether a student will pass or fail a course) 
or multivalued (such as predicting which of a given set of 
possible practice questions would be most appropriate 
for a student). Two distinct classes of algorithms exist 
for these applications; classification algorithms are 
used to predict categorical values, while regression 
algorithms are used to predict numeric values.

Feature Selection
In order to build and apply a predictive model, features 
that correlate with the value to predict must be created. 
When choosing what data to collect, the practitioner 
should err on the side of collecting more information 
rather than less, as it may be difficult or impossible 
to add additional data later, but removing information 
is typically much easier. Ideally, there would be some 
single feature that perfectly correlates with the cho-
sen outcome prediction. However, this rarely occurs 
in practice. Some learning algorithms make use of 
all available attributes to make predictions, whether 
they are highly informative or not, whereas others 
apply some form of variable selection to eliminate the 
uninformative attributes from the model.

Depending on the algorithm used to build a predictive 
model, it can be beneficial to examine the correlation 
between features, and either remove highly correlated 
attributes (the multicollinearity problem in regression 
analyses), or apply a transformation to the features to 
eliminate the correlation. Applying a learning algorithm 
that naively assumes independence of the attributes 
can result in predictions with an over-emphasis on the 
repeated or correlated features. For instance, if one 
is trying to predict the grade of a student in a class 
and uses an attribute of both attendance in-class on a 
given day as well as whether a student asked a question 
on a given day, it is important for the researcher to 
acknowledge that the two features are not independent 
(e.g., a student could not ask a question if they were not 
in attendance). In practice, the dependencies between 
features are often ignored, but it is important to note 
that some techniques used to clean and manipulate 
data may rely upon an assumption of independence.8  
By determining an informative subset of the features, 
one can reduce the computational complexity of the 
predictive model, reduce data storage and collection 
requirements, and aid in simplifying predictive models 
for explanation.

8 The authors share an anecdote of an analysis that fell prey to the 
dangers of assuming independence of attributes when using resam-
pling techniques to boost certain classes of data when applying the 
synthetic minority over-sampling technique (Chawla, Bowyer, Hall, 
& Kegelmeyer, 2002). In that case, missing data with respect to city 
and province resulted in a dataset containing geographically impos-
sible combinations, reducing the effectiveness of the attributes and 
lowering the accuracy of the model. 
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Missing values in a dataset may be dealt with in several 
ways, and the approach used depends on whether data 
is missing because it is unknown or because it is not 
applicable. The simplest approach either is to remove 
the attributes (columns) or instances (rows) that have 
missing values. There are drawbacks to both of these 
techniques. For example, in domains where the total 
amount of data is quite small, the impact of removing 
even a small portion of the dataset can be significant, 
especially if the removal of some data exacerbates an 
existing class imbalance. Likewise, if all attributes 
have a small handful of missing values, then attribute 
removal will remove all of the data, which would not 
be useful. Instead of deleting rows or columns with 
missing data, one can also infer the missing values 
from the other known data. One approach is to re-
place missing values with a “normal” value, such as the 
mean of the known values. A second approach is to fill 
in missing values in records by finding other similar 
records in the dataset, and copying the missing values 
from their records.

The impact of missing data is heavily tied to the choice 
of learning algorithm. Some algorithms, such as the 
naïve Bayes classifier can make predictions even when 
some attributes are unknown; the missing attributes 
are simply not used in making a prediction. The nearest 
neighbour classifier relies on computing the distance 
between two data points, and in some implementations 
the assumption is made that the distance between a 
known value and a missing value is the largest pos-
sible distance for that attribute. Finally, when the 
C4.5 decision tree algorithm encounters a test on an 
instance with a missing value, the instance is divided 
into fractional parts that are propagated down the 
tree and used for a weighted voting. In short, missing 
data is an important consideration that both regularly 
occurs and is handled differently depending upon 
the machine learning method and toolkit employed.

Methods for Building Predictive 
Models
After collecting a dataset and performing attribute 
selection, a predictive model can be built from his-
torical data. In the most general terms, the purpose 
of a predictive model is to make a prediction of some 
unknown quantity or attribute, given some related 
known information. This section will briefly introduce 
several such methods for building predictive models. 
A fundamental assumption of predictive modelling is 
that the relationships that exist in the data gathered 
in the past will still exist in the future. However, this 
assumption may not hold up in practice. For example, 
it may be the case that (according to the historical data 
collected) a student’s grade in Introductory Calculus is 
highly correlated with their likelihood of completing a 
degree within 4 years. However, if there is a change in 

the instructor of the course, the pedagogical technique 
employed, or the degree programs requiring the course, 
this course may no longer be as predictive of degree 
completion as was originally thought. The practitioner 
should always consider whether patterns discovered 
in historical data should be expected in future data.

A number of different algorithms exist for building 
predictive models. With educational data, it is com-
mon to see models built using methods such as these:

1. Linear Regression predicts a continuous numeric 
output from a linear combination of attributes.

2. Logistic Regression predicts the odds of two or 
more outcomes, allowing for categorical predictions.

3. Nearest Neighbours Classifiers use only the 
closest labelled data points in the training dataset 
to determine the appropriate predicted labels 
for new data.

4. Decision Trees (e.g., C4.5 algorithm) are repeated 
partitions of the data based on a series of single 
attribute “tests.” Each test is chosen algorithmi-
cally to maximize the purity of the classifications 
in each partition.

5. Naïve Bayes Classifiers assume the statistical 
independence of each attribute given the classi-
fication, and provide probabilistic interpretations 
of classifications.

6. Bayesian Networks feature manually constructed 
graphical models and provide probabilistic inter-
pretations of classifications.

7. Support Vector Machines use a high dimensional 
data projection in order to find a hyperplane of 
greatest separation between the various classes.

8. Neural Networks are biologically inspired algo-
rithms that propagate data input through a series 
of sparsely interconnected layers of computational 
nodes (neurons) to produce an output. Increased 
interest has been shown in neural network ap-
proaches under the label of deep learning.

9. Ensemble Methods use a voting pool of either 
homogeneous or heterogeneous classifiers. Two 
prominent techniques are bootstrap aggregating, 
in which several predictive models are built from 
random sub-samples of the dataset, and boost-
ing, in which successive predictive models are 
designed to account for the misclassifications of 
the prior models.

Most of these methods, and their underlying soft-
ware implementations, have tunable parameters that 
change the way the algorithm works depending upon 
expectations of the dataset. For instance, when build-
ing decision trees, a researcher might set a minimum 
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leaf size or maximum depth of tree parameter used in 
order to ensure some level of generalizability.

Numerous software packages are available for the 
building of predictive modelling, and choosing the 
right package depends highly on the researcher’s 
experience, the desired classification or regression 
approach, and the amount of data and data cleaning 
required. While a comprehensive discussion of these 
platforms is outside the scope of this chapter, the 
freely available and open-source package Weka (Hall 
et al., 2009) provides implementations of a number of 
the previously mentioned modelling methods, does 
not require programming knowledge to use, and has 
associated educational materials including a textbook 
(Witten, Frank, & Hall, 2011) and series of free online 
courses (Witten, 2016).

While the breadth of techniques covered within a given 
software package has led to it being commonplace for 
researchers (including educational data scientists) to 
publish tables of classification accuracies for a number 
of different methods, the authors caution against this. 
Once a given technique has shown promise, time is 
better spent reflecting on the fundamental assump-
tions of classifiers (e.g., with respect to missing data or 
dataset imbalance), exploring ensembles of classifiers, 
or tuning the parameters of particular methods being 
employed. Unless the intent of the research activity 
is to compare two statistical modelling approaches 
specifically, educational data scientists are better 
off tying their findings to new or existing theoretical 
constructs, leading to a deepening of understanding of 
a given phenomenon. Sharing data and analysis scripts 
in an open science fashion provides better opportunity 
for small technique iterations than cluttering a pub-
lication with tables of (often) uninteresting precision 
and recall values.

Evaluating a Model
In order to assess the quality of a predictive model, 
a test dataset with known labels is required. The 
predictions made by the model on the test set can be 
compared to the known true labels of the test set in 
order to assess the model. A wide variety of measures 
is available to compare the similarity of the known 
true labels and the predicted labels. Some examples 
include prediction accuracy (the raw fraction of test 
instances correctly classified), precision, and recall.

Often, when approaching a predictive modelling 
problem, only one omnibus set of data is available for 
building. While it may be tempting to reuse this same 
dataset as a test set to assess model quality, the per-
formance of the predictive model will be significantly 
higher on this dataset than would be seen on a novel 

dataset (referred to as overfitting the model). Instead, 
it is common practice to “hold out” some fraction of 
the dataset and use it solely as a test set to assess 
model quality.

The simplest approach is to remove half of the data 
and reserve it for testing. However, there are two 
drawbacks to this approach. First, by reserving half of 
the data for testing, the predictive model will only be 
able to make use of half of the data for model fitting. 
Generally, model accuracy increases as the amount 
of available data increases. Thus, training using only 
half of the available data may result in predictive mod-
els with poorer performance than if all the data had 
been used. Second, our assessment of model quality 
will only be based on predictions made for half of the 
available data. Generally, increasing the number of 
instances in the test set would increase the reliabil-
ity of the results. Instead of simply dividing the data 
into training and testing partitions, it is common to 
use a process of k-fold cross validation in which the 
dataset is partitioned at random into k segments; 
k distinct predictive models are constructed, with 
each model training on all but one of the segments, 
and testing on the single held out segment. The test 
results are then pooled from all k test segments, and 
an assessment of model quality can be performed. 
The important benefits of k-fold cross validation are 
that every available data point can be used as part of 
the test set, no single data point is ever used in both 
the training set and test set of the same classifier at 
the same time, and the training sets used are nearly 
as large as all of the available data.

An important consideration when putting predictive 
modelling into practice is the similarity between 
the data used for training the model and the data 
available when predictions need to be made. Often in 
the educational domain, predictive models are con-
structed using data from one or more time periods 
(e.g., semesters or years), and then applied to student 
data from the next time period. If the features used to 
construct the predictive model include factors such 
as students’ grades on individual assignments, then 
the accuracy of the model will depend on how similar 
the assignments are from one year to the next. To get 
an accurate assessment of model performance, it is 
important to assess the model in the same manner as 
will be used in situ. Build the predictive model using 
data available from one year, and then construct a 
testing set consisting of data from the following year, 
instead of dividing data from a single year into training 
and testing sets.



HANDBOOK OF LEARNING ANALYTICSPG 66 CHAPTER 5 PREDICTIVE MODELLING IN TEACHING & LEARNING PG 67

Predictive analytics are being used within the field of 
teaching and learning for many purposes, with one 
significant body of work aimed at identifying students 
at risk in their academic programming. For instance, 
Aguiar et al. (2015) describe the use of predictive 
models to determine whether students will graduate 
from secondary school on time, demonstrating how the 
accuracy of predictions changes as students advance 
from primary school through into secondary school. 
Predicted outcomes vary widely, and might include a 
specific summative grade or grade distribution for a 
student or class of achievement (Brooks et al., 2015) 
in a course. Baker, Gowda, and Corbett (2011) describe 
a method that predicts a formative achievement for 
a student based on their previous interactions with 
an intelligent tutoring system. In lower-risk and 
semi-formal settings such as massive open online 
courses (MOOCs), the chance that a learner might 
disengage from the learning activity mid-course is 
another heavily studied outcome (Xing, Chen, Stein, 
& Marcinkowski, 2016; Taylor, Veeramachaneni, & 
O’Reilly, 2014).

Beyond performance measures, predictive models 
have been used in teaching and learning to detect 
learners who are engaging in off-task behaviour (Xing 
and Goggins, 2015; Baker, 2007) such as “gaming the 
system” in order to answer questions correctly with-
out learning (Baker, Corbett, Koedinger, & Wagner, 
2004). Psychological constructs such as affective and 
emotional states have also been predictively modelled 
(D’Mello, Craig, Witherspoon, McDaniel, & Graesser, 
2007; Wang, Heffernan, & Heffernan, 2015), using a 
variety of underlying data as features, such as textual 
discourse or facial characteristics. More examples 
of some of the ways predictive modelling has been 
used in Educational Data Mining in particular can 
be found in Koedinger, D’Mello, McLaughlin, Pardos, 
and Rosé (2015).

Computational and statistical methods for predictive 
modelling are mature, and over the last decade, a 
number of robust tools have been made available for 
educational researchers to apply predictive modelling 
to teaching and learning data. Yet a number of chal-
lenges and opportunities face the learning analytics 
community when building, validating, and applying 
predictive models. We identify three areas that could 
use investment in order to increase the impact that 
predictive modelling techniques can have:

1. Supporting non-computer scientists in predictive 
modelling activities. The learning analytics field 
is highly interdisciplinary and educational re-
searchers, psychometricians, cognitive and social 
psychologists, and policy experts tend to have 
strong backgrounds in explanatory modelling. 
Providing support in the application of predictive 
modelling techniques, whether through the inno-
vation of user-friendly tools or the development 
of educational resources on predictive modelling, 
could further diversify the set of educational 
researchers using these techniques.

2. Creating community-led educational data science 
challenge initiatives. It is not uncommon for re-
searchers to address the same general theme of 
work but use slightly different datasets, implemen-
tations, and outcomes and, as such, have results 
that are difficult to compare. This is exemplified 
in recent predictive modelling research regarding 
dropout in massive open online courses, where 
a number of different authors (e.g., Brooks et al., 
2015; Xing et al., 2016; Taylor et al., 2014; Whitehill, 
Williams, Lopez, Coleman, & Reich, 2015) have 
all done work with different datasets, outcome 
variables, and approaches.

Moving towards a common and clear set of out-
comes, open data, and shared implementations 
in order to compare the efficacy of techniques 
and the suitability of modelling methods for given 
problems could be beneficial for the community. 
This approach has been valuable in similar research 
fields  and the broader data science community  and 
we believe that educational data science challenges 
could help to disseminate predictive modelling 
knowledge throughout the educational research 
community while also providing an opportunity 
for the development of novel interdisciplinary 
methods, especially related to feature engineering.

3. Engaging in second order predictive modelling. 
In the context of learning analytics, we define 
second order predictive models as those that in-
clude historical knowledge as to the effects of and 
intervention in the model itself. Thus a predictive 
model that used student interactions with content 
to determine drop out (for instance) would be an 
example of first order predictive modelling, while 
a model that also includes historical data as to the 
effect of an intervention (such as an email prompt 
or nudge) would be considered a second order 
predictive model. Moving towards the modelling 
of intervention effectiveness is important when 
multiple interventions are available and person-
alized learning paths are desired.

CHALLENGES AND OPPORTUNITIES

PREDICTIVE ANALYTICS IN 
PRACTICE
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Despite the multidisciplinary nature of the learning 
analytics and educational data mining communities, 
there is still a significant need for bridging under-
standing between the diverse scholars involved. 
An interesting thematic undercurrent at learning 
analytics conferences are the (sometimes-heated) 
discussions of the roles of theory and data as drivers 
of educational research. Have we reached the point 
of “the end of theory” (Anderson, 2008) in educational 
research? Unlikely, but this question is most salient 
within the subfield of predictive modelling in teaching 

and learning: while for some researchers the goal 
is understanding cognition and learning processes, 
others are interested in predicting future events and 
success as accurately as possible. With predictive 
models becoming increasingly complex and incom-
prehensible by an individual (essentially black boxes), 
it is important to start discussing more explicitly the 
goals of research agendas in the field, to better drive 
methodological choices between explanatory and 
predictive modelling techniques.
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Across the vast majority of educational data mining 
research, models are evaluated based on their predictive 
accuracy. Most often, this takes the form of assessing 
the model’s ability to correctly predict successes and 
failures in a set of student response outcomes. Much 
less commonly, models may be validated based on their 
ability to predict post-test outcomes (e.g., Corbett & 
Anderson, 1995) or pre-test/post-test gains (e.g., Liu 
& Koedinger, 2015).

While predictive modelling has much to recommend 
it, the field of educational data mining could benefit 
from more emphasis on developing explanatory models. 
Explanatory models seek to identify interpretable con-
structs that are causally related to outcomes (Shmueli, 
2010). In doing so, they provide an explanation of the 
data that can be connected to existing theory. The 
focus is on why a model fits the data well rather than 
only that it fits well. Often, explanatory models provide 

an interpretation of the data that has implications for 
theory, practice, or both. Here, we review educational 
data mining efforts that have produced explanatory 
models and, in turn, can lead to improvements to 
learning outcomes and/or learning theory.

Educational data mining research has largely focused 
on developing two types of models: the statistical model 
and the cognitive model. Statistical models drive the 
outer loop of intelligent tutoring systems (VanLehn, 
2006) based on observable features of students’ per-
formance as they learn. Cognitive models are repre-
sentations of the knowledge space (facts, concepts, 
skills, et cetera) underlying a particular educational 
domain. The majority of the research reviewed here 
concerns cognitive model refinement and discovery. 
We also briefly review other examples of explanatory 
models outside the realm of cognitive model discovery 
that educational data mining research has produced.

Chapter 6: Going Beyond Better Data 
Prediction to Create Explanatory Models of 
Educational Data

Ran Liu, Kenneth R. Koedinger

In the statistical modelling of educational data, approaches vary depending on whether 
the goal is to build a predictive or an explanatory model. Predictive models aim to find a 
combination of features that best predict outcomes; they are typically assessed by their 
accuracy in predicting held-out data. Explanatory models seek to identify interpretable 
causal relationships between constructs that can be either observed or inferred from the 
data. The vast majority of educational data mining research has focused on achieving pre-
dictive accuracy, but we argue that the field could benefit from more focus on developing 
explanatory models. We review examples of educational data mining efforts that have pro-
duced explanatory models and led to improvements to learning outcomes and/or learning 
theory. We also summarize some of the common characteristics of explanatory models, 
such as having parameters that map to interpretable constructs, having fewer parameters 
overall, and involving human input early in the model development process. 

Keywords: Explanatory models, model interpretability, educational data mining (EDM), 
closing the loop, cognitive models
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Cognitive models map knowledge components (i.e., 
concepts, skills, and facts; Koedinger, Corbett, & 
Perfetti, 2012) to problem steps or tasks on which 
student performance can be observed. This mapping 
provides a way for statistical models to make inferences 
about students’ underlying knowledge based on their 
observable performance on different problem steps. 
Thus, cognitive models are an important basis for 
the instructional design of automated tutors and are 
important for accurate assessment of learning and 
knowledge. Better cognitive models lead to better 
predictions of what a student knows, allowing adaptive 
learning to work more efficiently. Traditional ways 
of constructing cognitive models (Clark, Feldon, van 
Merriënboer, Yates, & Early, 2008) include structured 
interviews, think-aloud protocols, rational analysis, and 
labelling by domain experts. These methods, however, 
require human input and are often time consuming. 
They are also subjective, and previous research (Nathan, 
Koedinger, & Alibali, 2001; Koedinger & McLaughlin, 
2010) has shown that expert-engineered cognitive 
models often ignore content distinctions that are 
important for novice learners. Here, we review three 
examples of efforts to discover and refine cognitive 
models based on data-driven techniques that alleviate 
expert bias while reducing the load on human input.

For statistical modelling purposes, the work described 
here uses a simplification of a cognitive model composed 
of hypothesized knowledge components. A knowledge 
component (KC) is a fact, concept, or skill required to 
succeed at a particular task or problem step. We refer 
to this specialized form of a cognitive model as a KC 
model or, alternatively, a Q-matrix (Barnes, 2005). The 
statistical model we used to evaluate the predictive 
fit of data-driven cognitive model discoveries is a 
logistic regression model called the additive factors 
model (AFM; Cen, Koedinger, & Junker, 2006), a gen-
eralization of item-response theory to accommodate 
learning effects.

Data-Driven Cognitive Model 
Improvement
Difficulty factors assessment (DFA; e.g., Koedinger & 
Nathan, 2004) moves beyond expert intuition by using 
a data-driven knowledge decomposition process to 
identify problematic elements of a defined task. In 
other words, when one task is much harder than a 
closely related task, the difference implies a knowledge 
demand of the harder task that is not present in the 
easier one. Stamper and Koedinger (2011) illustrated 
a method that uses DFA, along with freely accessible 
educational data and built-in visualization tools on 

DataShop1 (Koedinger et al., 2010), to identify and 
validate cognitive model improvements. The method 
for cognitive model refinement iterates through the 
following steps: 1) inspect learning curve visualizations 
and fitted AFM coefficient estimates for a given KC 
model, 2) identify problematic KCs and hypothesize 
changes to the KC model, 3) re-fit the AFM with the 
revised KC model and investigate whether the new 
model fits the data better.

Through manual inspection of the visualizations of a 
geometry dataset (Koedinger, Dataset 76 in DataShop2), 
potential improvements to the best existing KC model 
at the time were identified (Stamper & Koedinger, 2011). 
Most of the KCs in this model exhibited relatively smooth 
learning curves with a consistent decline in error rate. 
One KC in the original model, compose-by-addition, 
exhibited a particularly noisy curve with large spikes 
in error rate at certain opportunity counts. In addition, 
the AFM parameter estimates for the compose-by-ad-
dition KC suggested no apparent learning (the slope 
parameter estimate was very close to zero, and not 
because the performance was at ceiling). A bumpy 
learning curve and low slope estimate are indications 
of a poorly defined KC. One common cause for a poorly 
defined KC is that some of its constituent items require 
some knowledge demand that other items do not. In 
other words, the original KC should really be split 
into two different KCs. To improve the KC model, all 
compose-by-addition problem steps were examined, 
and domain expertise was applied to hypothesize 
about additional knowledge that might be required on 
certain steps. As a result, the compose-by-addition KC 
was split into three distinct KCs, and each of the 20 
steps previously labelled with the compose-by-addition 
KC were relabelled accordingly. The revised model 
resulted in smoother learning curves and, when fit 
with the AFM, yielded significantly better predictions 
of student performance than the original KC model 
did. Although this KC model improvement was aided by 
visualizations resulting from fitting a statistical model, 
the actual improvements were generated manually 
and thus were readily interpretable.

The discovered KC model improvements had clear im-
plications for revising instruction. Koedinger, Stamper, 
McLaughlin, and Nixon (2013) used the data-driven KC 
model improvements to generate a revised version of 
the Geometry Area tutor unit. Revisions included adding 
the newly discovered skills to the KC model driving 
adaptive learning, resulting in changes to knowledge 
tracing, and the creation of new tasks to target the 
new skills. In an A/B experiment, half of the students 
completed the revised tutor unit and the other half 

1 http://pslcdatashop.org
2 Geometry Area 1996–1997: https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=76 

COGNITIVE MODEL DISCOVERY 
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competed the original tutor unit. Students using the 
revised tutor reached mastery more efficiently and 
exhibited better learning on the skills targeted by the 
KC model improvement, based on pre- to post-test gains 
(Koedinger et al., 2013). These results show that the 
data-driven DFA technique lends itself to generating 
explanatory KC model refinements that can result in 
instructional modifications and improved learning 
outcomes.

Learning Factors Analysis
Learning factors analysis (LFA; Cen et al., 2006) was 
developed to automate the data-driven method of 
KC model refinement to further alleviate demands 
on human time. LFA searches across hypothesized 
knowledge components drawn from different existing 
KC models, evaluates different models based on their 
fit to data, and outputs the best-fitting KC model in 
the form of a symbolic model. As such, LFA greatly 
reduces demands on human effort while simultane-
ously easing the burden of interpretation, even if it 
does not automatically accomplish it.

We applied the LFA search process across 11 datasets 
spanning different domains and different educational 
technologies, all publicly available from DataShop. 
Across all 11 datasets, this automated discovery process 
improved KC models’ fit to data beyond the best existing 
human-tagged KC models (Koedinger, McLaughlin, & 
Stamper, 2012). Importantly, we demonstrated in an 
example dataset (Koedinger, Dataset 76 in DataShop) an 
interpretable explanation for the specific improvements 
made by the best LFA-discovered model. A manual KC 
model comparison between the best-fitting LFA model 
and the best-fitting human-tagged model revealed 
that the LFA model tagged separate KCs for forwards 
(i.e., find area given radius) and backwards (i.e., find 
radius given area) circle area problems, whereas these 
had been grouped together as a single “circle-area” 
KC in the human-tagged model. No such differences 
were found between the models for other shapes like 
rectangles, triangles, and parallelograms. Applying 
domain expertise to interpret the automated discov-
ery, we hypothesized that LFA’s model improvement 
may have captured the difficulty of knowing when 
and how to apply a square root operation for back-
wards circle-area problems, which is not required for 
forwards circle-area problems nor for the backwards 
area problems of other shapes.

We then assessed the external validity of this interpre-
tation beyond the dataset from which the discoveries 
were made. We evaluated the presence of the square 
root difficulty in a novel dataset (Bernacki, Dataset 
748 in DataShop3), one with a different structure 

3 Motivation for learning HS geometry 2012 (geo-pa): https://pslc-
datashop.web.cmu.edu/DatasetInfo?datasetId=748 

from that used to make the discovery (Liu, Koedinger, 
& McLaughlin, 2014). Among other differences, the 
novel dataset contained more backwards circle-area 
problems and, importantly, forwards (i.e., find area 
given side length) and backwards (i.e., find side length 
given area) square-area problems. These square-area 
problems were not at all present in the original dataset 
from which the LFA-generated discovery was made. 
Applying our interpretation of the discovery, we 
constructed a KC model that tags separate forwards 
and backwards KCs only for shapes where backwards 
steps require computing a square root (squares, cir-
cles) but not for shapes where backwards steps don’t 
(triangles, rectangles, parallelograms). When used 
in conjunction with the AFM, this KC model yielded 
the best fit to the novel dataset compared to several 
expert-tagged control KC models.

Since the novel dataset had a different structure from 
the original dataset, including differences relevant to 
the KC model discovery (i.e., existence of backwards 
square-area problems), it would not have been viable 
to apply directly the LFA-discovered KC model on this 
new dataset. Interpretation is necessary in order to 
test the generalizability of discoveries across contexts 
with non-identical structures. Furthermore, interpre-
tations help anchor all subsequent data exploration and 
analyses to something meaningful that can then be 
translated into concrete improvements to instructional 
design. Our current research is “closing the loop” on 
this LFA-generated discovery by assessing learning 
outcomes resulting from a tutor redesigned around 
the improved KC model (Liu & Koedinger, submitted).

Automated Cognitive Model Discovery 
Using SimStudent
An alternative automated approach uses a state-of-the-
art machine-learning agent, SimStudent, to discover 
cognitive models automatically without requiring 
existing ones. SimStudent is an intelligent agent that 
inductively learns knowledge, in the form of rules, by 
observing a tutor solve sample problems and by solving 
problems on its own and receiving feedback (Li, Mat-
suda, Cohen, & Koedinger, 2015). One of the benefits of 
SimStudent is that it can simulate features of novices’ 
learning trajectories of which domain experts may 
not even be aware. Real students entering a course 
do not usually have substantial domain-specific prior 
knowledge, so a realistic model of human learning ought 
not to assume this knowledge is given. In addition, 
SimStudent can be used to test alternative models 
of human learning to see which best predicts human 
behaviour (MacLellan, Harpstead, Patel, & Koedinger, 
2016). For several datasets spanning various domains, 
SimStudent generated cognitive models that fit the 
data better than the best human-generated cognitive 
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models (Li et al., 2011; MacLellan et al., 2016).

The output of the SimStudent’s learning takes the 
form of production rules (Newell & Simon, 1972), and 
each production rule essentially corresponds to one 
knowledge component (KC) in a KC model. Using data 
from an Algebra dataset (Booth & Ritter, Dataset 293 
in DataShop4) and in conjunction with the AFM, Li and 
colleagues (2011) compared a KC model generated by 
SimStudent to a KC model generated by hand-coding 
actual students’ actions within the tutor. The SimStu-
dent-generated model better fit the actual student 
performance data than the human-generated model did.

More importantly, inspecting the differences between 
the SimStudent model and the human-generated model 
revealed interpretable features that explained the 
advantages of the SimStudent model. One example of 
such a difference is that SimStudent created distinct 
production rules (KCs) for division-based algebra 
problems of the form Ax=B, where both A and B are 
signed numbers, and for the form –x=A, where only A is 
a signed number. To solve Ax=B, SimStudent learns to 
simply divide both sides by the signed number A. But, 
since –x does not represent its coefficient (–1) explicitly, 
SimStudent must first recognize that –x translates 
to –1x, and then it can divide both sides by –1. The 
human-generated model predicts that both forms of 
division problems should have the same error rates. In 
fact, real students have greater difficulty making the 
correct move on steps like –x = 6 than on steps like 
–3x = 6. Within the same Algebra dataset, problems 
of the form Ax=B (average error rate = 0.28) are easier 
than problems of the form –x=A (average error rate = 
0.72). SimStudent’s split of division problems into two 
distinct KCs suggests that students should be tutored 
on two subsets of problems, one subset corresponding 
to the form Ax=B and one subset specifically for the 
form –x=A. Explicit instruction that highlights for 
students that –x is the same as –1x may be beneficial 
(Li et al., 2011).

We hypothesized that the interpretation of this particular 
SimStudent KC model discovery would generalize to 
novel problem types, just as the LFA-generated model 
discovery did. In a novel equation-solving dataset 
(Ritter, Dataset 317 in DataShop5), we tested whether 
the explicit vs. implicit coefficient distinction similarly 
applied to combine like terms problems. We looked at 
differences in performance for items of the form Ax 
+ Bx = C, where both A, B, and C are signed numbers 
(explicit-coefficient items), and items where either A 
or B were equal to 1 or –1 with the coefficient percep-

4 Improving skill at solving equations via better encoding of alge-
braic concepts (2006–2008): https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=293 
5 Algebra I 2007–2008 (Equation Solving Units): https://pslc-
datashop.web.cmu.edu/DatasetInfo?datasetId=317 

tually absent (implicit-coefficient items). This analysis 
confirmed that explicit-coefficient items (average 
error rate = 0.35) are easier than implicit-coefficient 
items (average error rate = 0.45) among combine like 
terms problems. This new dataset not only replicated 
the original finding that SimStudent made on divide 
problems, but it also revealed that the finding general-
izes to a separate procedural skill, combine like terms.

Fitting a KC model with separate KCs for the explicit- vs. 
implicit-coefficient forms of combine like terms items 
revealed a large improvement in predictive fit relative 
to a KC model with a single combine like terms KC. 
Furthermore, although the learning curves for both 
the explicit-coefficient divide and combine like terms 
KCs reflected smooth and decreasing error rates, the 
respective learning curves for implicit-coefficient 
divide and combine like terms items were both flat, 
with slopes close to zero. This suggests that students 
would benefit greatly from more practice on, and more 
explicit attention to problem steps involving implicit 
coefficients. Here, again, the explanatory power of the 
SimStudent KC model discovery made it possible to 
generalize the explanation to distinct problem types 
on which SimStudent was never trained.

Comparison to Other Work
Both LFA and SimStudent are capable of producing 
cognitive model discoveries that not only significantly 
improve predictive accuracy but are readily interpre-
table and, thus, explanatory. We have demonstrated 
that the interpretations yielded by these cognitive 
model discoveries generalize to novel problem types 
not present in the data from which the discoveries were 
made. Finally, they produce clear recommendations 
for revising instruction, even in contexts that are 
very different from those in which the original data 
were collected. These are all hallmarks of explanatory 
modelling efforts that move beyond simply improving 
predictive accuracy to have meaningful impact on 
learning theory and instruction.

The fact that methods like LFA are “human-in-the-loop” 
— that is, requiring input from a domain expert — has 
been cited as a limitation. In the case of LFA, one or 
more expert-tagged cognitive models are required 
initially in order to produce new model discoveries. 
We argue, however, that this “human-in-the-loop” 
feature leads the results of such modelling efforts to 
be explanatory. There have been a number of recent 
efforts to fully automate the process of discovering 
and/or improving cognitive models (González-Brenes 
& Mostow, 2012; Lindsey, Khajah, & Mozer, 2014). These 
methods have much to recommend, as they dramat-
ically reduce demands on human time and produce 
competitive results in predictive accuracy. However, 
the resulting cognitive models of these efforts have 
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not been interpreted or acted upon with respect to 
improving instruction.

Other modelling efforts, including a “human-in-the-
loop” component like Ordinal SPARFA-Tag (Lan, Studer, 
Waters, & Baraniuk, 2013), have yielded considerably 
more interpretable cognitive models than many alter-
native methods. Although humans must do any final 
interpretation of modelling efforts, methods like LFA 
and Ordinal SPARFA-Tag greatly improve the likelihood 
of generating sensible resulting models by incorpo-
rating the human effort up front. In fact, comparing 
the original SPARFA model (Lan, Studer, Waters, & 
Baraniuk, 2014), which only incorporates concept tags 
post-hoc, to Ordinal SPARFA-Tag, which incorporates 
domain-expert concept tags in the model development 
process up front, shows that the latter model results 
in much more interpretable cognitive models.

More attention and effort towards generating inter-
pretable cognitive models is, in our view, progress in 
the right direction. Nevertheless, as we have argued, 
expert labelling is still subject to biases and does not 
offer much to advance learning theory using the rich 
educational data available. Human involvement improves 
interpretability, whereas the data-driven component 
offers ways to alleviate subjective biases and advance 
our understanding of how novices learn. Methods such 
as LFA leverage both the unique strengths of human 
involvement and of automation towards creating models 
that are more predictive and explanatory.

A growing body of research suggests that modelling 
student-specific variability in statistical models of 
educational data can yield better predictive accuracies 
and potentially inform instruction. Prior attempts to 
group students based on features available in educa-
tional datasets have focused on techniques such as 
K-means and spectral clustering. These techniques 
have been used to generate student clusters predictive 
of post-test performance (Trivedi, Pardos, & Heffernan, 
2011) and that yield predictive accuracy improvements 
when clusters are fit with different sets of parameters 
(Pardos, Trivedi, Heffernan, & Sárközy, 2012). Many 
clustering techniques, however, tend to result in 
student groupings that are difficult to interpret. Yet, 
interpretation is critical if the results of clustering are 
to eventually inform improvements in instructional 
policy (e.g., individualizing instruction appropriately 
to different groups of students).

In recent research (Liu & Koedinger, 2015), we devel-
oped a method for grouping students that not only 
dramatically improves the predictive accuracy of the 
AFM but inherently lends itself to producing mean-
ingful student groups. By doing a first-pass fit of the 

AFM to the data and examining systematic patterns 
in the residuals (differences between predicted and 
actual data) across different practice opportunities, 
we consistently found students belonging to one of 
three learning rate groups: 1) those who exhibit flatter 
learning curves than the AFM predicts, 2) those who 
exhibit steeper learning curves, and 3) those whose 
learning curves are on par with the model’s predictions. 
Introducing a parameter that individualizes learning 
rates to each of these learning rate groups substantially 
improves model predictive accuracy, beyond that of 
the regular AFM, across a variety of datasets span-
ning multiple educational domains. Across datasets, 
the slope parameter estimates for each of the three 
groups were consistent with our interpretation of the 
groups (i.e., the estimated group-level slopes were 
always lowest for the flat-curve group, and highest for 
the steep-curve group). Furthermore, in a subset of 
datasets for which there exist paper pre- and post-test 
data, we observed a systematic relationship between 
learning-curve group and the degree of pre- to post-
test improvement (Liu & Koedinger, 2015).

Unlike other, more “bottom-up” methods of creating 
stereotyped groups of students, this method yielded 
student groups that are readily interpretable and 
potentially actionable. For example, it is clear that the 
flat-curve student group represents either students 
who are already performing at ceiling when they start 
the unit or curriculum (and thus do not have much 
room for improvement) or students who are starting 
anywhere below ceiling but struggling to progress 
with the material. In either case, there are clear in-
structional implications for students classified into 
this group. The explanatory power of the resulting 
model again benefitted from doing some up-front 
interpretation and developing the model with an eye 
towards interpretability.

We argue for the importance of considering the inter-
pretability and actionability of educational data mining 
efforts in producing more explanatory models. For a 
model to be explanatory, one should be able to under-
stand why the model achieves better predictive accuracy 
than alternatives. In addition, the understanding of 
this why should either advance our understanding of 
how learners learn the relevant material or have clear 
implications for instructional improvements, or both. 
We summarize by outlining some of the features that 
tend to characterize explanatory models.

Explanatory modelling efforts tend to start with “clean” 
independent variables that have either simple functions 
or map to clearly defined constructs. For example, LFA 

STUDENT GROUPING

TOWARDS BUILDING EXPLANATORY 
MODELS
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derives new variables from existing, expert-labelled 
variables using simple split, merge, or add operators. 
Another example comes from automated analyses 
of verbal data in education, a branch of educational 
data mining that includes automated essay scoring, 
producing tutorial dialogue, and computer-supported 
collaborative learning. A major consideration in this 
area is how to transform raw text or transcriptions 
into features that can be used in a machine-learning 
algorithm. Approaches to this issue range from simple 
“bag of words” methods, which counts the frequency 
of each word present in the text, to much more so-
phisticated linguistic analyses. One consistent theme 
across findings is that feature representations motivated 
by interpretable, theoretical frameworks have been 
among the most promising (Rosé & Tovares, in press; 
Rosé & VanLehn, 2005). Thus, incorporating some 
human time and thought into defining and labelling 
these independent variables up front can greatly im-
prove the explanatory power of the resulting model.

Another feature of explanatory models, one that relates 
most to actionability, is that the dependent variable 
maps to a well-defined construct. The work on learning 
rate groups is an example of this: since the groups to 
which students are classified are defined up front, it 
is clear what it means for a student to be in the “flat” 
learning curve group, as opposed to the “steep” one. 
This makes the results from modelling readily action-
able. Another body of research in which the dependent 
variable tends to be well mapped to an interpretable 
construct is the modelling of affect and motivation 
using features of tutor log data. These techniques 
use pre-defined psychological or behavioural con-
structs, measured through questionnaires or expert 
observations, to develop and refine “detectors” that 
can identify those constructs within tutor log data 
activity (e.g., Winne & Baker, 2013; San Pedro, Baker, 
Bowers, & Heffernan, 2013; D’Mello, Blanchard, Baker, 
Ocumpaugh, & Brawner, 2014). The “detectors” are 

developed specifically to identify pre-determined 
constructs and, thus, the results of these algorithms 
are readily actionable. For example, Affective Auto-
Tutor is an intelligent tutoring system for computer 
literacy that automatically models students’ confusion, 
frustration, and boredom in real time. Detection of 
these affective states is then used to adapt the tutor 
actions in a manner that responds accordingly. An 
experimental study “closing the loop” on this affective 
detector showed higher learning gains for low-domain 
knowledge students who interacted with the Affec-
tive AutoTutor compared to a non-affective version 
(D’Mello et al., 2010). For these modelling efforts to 
be fully explanatory though, interpretations of the 
independent variables driving the affective outcomes 
are also needed.

Finally, explanatory models tend to be characterized 
by fewer estimated parameters (independent variables, 
or features). For example, the AFM has only one pa-
rameter for each student and two parameters for each 
knowledge component. Adding learning rate groups 
extends the model by only one additional parameter, 
group membership. This makes the contribution of 
the added parameter easy to attribute and interpret. 
Having fewer parameters also allows each parameter’s 
estimates to have more explanatory power, alleviating 
issues of indeterminacy. Because the AFM has only one 
difficulty parameter and one learning parameter for 
each KC, one can, for example, meaningfully interpret a 
low learning parameter estimate as suggesting that KC 
needs either refinement or instructional improvement.

We have illustrated some ways in which concrete steps 
in the design of educational data modelling efforts 
can yield more explanatory models. The relation-
ships between the fields of educational data mining, 
learning theory, and the practice of education could 
be greatly strengthened with increased attention to 
the explanatory power of models and their ability to 
influence future learning outcomes.
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With the large amounts of data related to student 
learning being collected by digital systems, the potential 
for using this data for improving learning processes 
and teaching practices is widely recognized (Gašević, 
Dawson, & Siemens, 2015). The emerging field of learning 
analytics recently gained significant attention from 
educational researchers, practitioners, administrators, 
and others interested in the intersection of technology 
and education and the use of this vast amount of data 
for improving learning and teaching (Buckingham 
Shum & Ferguson, 2012). Among the different types 
of data, the analysis of learning content is commonly 
used for the development of learning analytics sys-
tems (Buckingham Shum & Ferguson, 2012; Chatti, 
Dyckhoff, Schroeder, & Thüs, 2012; Ferguson, 2012; 
Ferguson & Buckingham Shum, 2012). These include 
various forms of data produced by instructors (course 
syllabi, documents, lecture recordings), publishers 
(textbooks), or students (essays, discussion messages, 
social media postings). In this chapter, we introduce 
content analytics, an umbrella term used to refer to 

different types of learning analytics focusing on the 
analysis of various forms of learning content. We 
further provide a critical reflection on the state of 
the content analytics domain, identifying potential 
shortcomings and directions for future studies. We 
begin by discussing different forms of learning con-
tent and commonly adopted definitions of content 
analytics. Special attention is given to the range of 
problems commonly addressed by content analytics, 
as well as to various methodological approaches, tools, 
and techniques.

Learning Content and Content Analytics
According to Moore (1989), the defining characteristic 
of any form of education is the interaction between 
learners and learning content. Without content 
“there cannot be education since it is the process of 
intellectually interacting with the content that re-
sults in changes in the learner’s understanding, the 
learner’s perspective, or the cognitive structures of 
the learner’s mind” (p. 2). While the most commonly 
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used forms of educational content are written ma-
terials (Cook, Garside, Levinson, Dupras, & Montori, 
2010), the ubiquitous access to personal computers 
and the Internet resulted in both a broad availability 
of learning resources and increased use of interactive 
and multimedia educational resources. Likewise, the 
emergence of web-based systems such as blogs and 
online discussion forums, and popular social media 
platforms (Twitter, Facebook) introduced a new di-
mension and provided access to a relatively new set 
of learner-generated resources (De Freitas, 2007, p. 
16). The overall result is that landscape of educational 
content is expanding and diversifying, bringing along 
a new set of potential advantages, benefits, challenges, 
and risks (De Freitas, 2007). This global trend also 
creates fertile ground for the development of novel 
learning analytics approaches.

To provide an overview of content analytics litera-
ture, we should first define what is meant by content 
analytics. We define content analytics as

Automated methods for examining, evaluating, 
indexing, filtering, recommending, and visual-
izing different forms of digital learning content, 
regardless of its producer (e.g., instructor, stu-
dent) with the goal of understanding learning 
activities and improving educational practice 
and research.

This definition reveals that content analytics focuses 
on the automated analysis of the different “resources” 
(textbooks, web resources) and “products” (assign-
ments, discussion messages) of learning. This is in 
clear contrast to analytics focused on the analysis of 
student behavioural data, such as the analysis of trace 
data from learning management systems. Although 
in general students can produce learning content of 
different types (text, video, audio), given the present 
state of educational technologies, and online/blended 
learning pedagogies, the content produced by the 
learners is predominantly text-based (assignment 
responses, discussion messages, essays). While there 
are cases where students produce non-textual content 
(video recordings of their presentations), they still 
represent a relative minority; consequently, very few 
analytical systems have been developed. Thus, the 
focus of this chapter is predominantly on text-based 
learning content, despite the broader definition of 
content analytics, which also encompasses multimedia 
learning content.

We should point out that content analytics is primarily 
defined in terms of the application domain, as many 
of the tools and techniques used are also employed 
in other types of learning analytics. As such, content 
analytics encompasses several more specific forms 
of analytics, including discourse analytics (Knight & 

Littleton, 2015), writing analytics (Buckingham Shum 
et al., 2016), assessment analytics (Ellis, 2013), and 
social learning analytics (Buckingham Shum & Fer-
guson, 2012). These particular analytics define their 
foci more specifically to examine learning content 
produced in particular learning products, processes, 
or contexts. As a consequence, our definition is broad-
er than, for example, the definition of social content 
analytics by Buckingham Shum and Ferguson (2012), 
as a “variety of automated methods that can be used 
to examine, index and filter online media assets, with 
the intention of guiding learners through the ocean 
of potential resources available to them” (p. 15). We 
argue that the definition of content analytics used 
in this report — which does not focus on a particular 
learning setting or process — enables the develop-
ment of standard analytical approaches applicable to 
many similar learning domains. Given the early stage 
of learning analytics development, the focus on the 
type of learning materials and the methodologies, 
techniques, and tools for their analysis promotes the 
establishment of community-wide standards of con-
ducting content analytics research, which is critical 
for the advancement of the learning analytics field.

It is important to emphasize the difference between 
content analysis (Krippendorff, 2003) and content an-
alytics, which are both commonly used techniques in 
educational research (Ferguson & Buckingham Shum, 
2012). Despite similar names, content analysis is a 
much older and well-established research technique 
widely used across social sciences, including research 
in education, educational technology, and distance/
online education (De Wever, Schellens, Valcke, & Van 
Keer, 2006; Donnelly & Gardner, 2011; Strijbos, Martens, 
Prins, & Jochems, 2006) to assess latent variables of 
written text. Given that many of the learning analytics 
systems are also focused on the examination of latent 
constructs, a large part of content analytics is an ap-
plication of computational techniques for the purpose 
of content analysis (Kovanović, Joksimović, Gašević, 
& Hatala, 2014). However, content analytics includes 
different additional forms of analysis, which are not 
the focus of content analysis, such as assessment of 
student writings, automated student grading, or topic 
discovery in the document corpora.

To provide an overview of content analytics, we con-
ducted a review of the published literature on learning 
analytics and educational technology to identify re-
search studies that made use of content analytics. We 
looked at the proceedings of the Learning Analytics 
and Knowledge Conference, the Journal of Learning 

CONTENT ANALYTICS TASKS 
AND TECHNIQUES
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Analytics, the Journal of Educational Data Mining, 
the Journal of Artificial Intelligence in Education, and 
Google Scholar. After obtaining the relevant studies, 
we grouped them based on the research problems 
being addressed. We identified three groups of stud-
ies roughly focused on the three main types of data 
used for content analytics (i.e., learning resources, 
students’ learning products, and students’ social in-
teractions). The remainder of this section provides a 
detailed overview of the identified groups of studies 
and associated tools and techniques.

Content Analytics of Learning Resources
One of the earliest uses of content analytics was for 
the analysis of educational resources and materials, 
and recommendation, organization, and evaluation of 
those resources. Given the vast amounts of learning 
materials available to students, one domain of par-
ticular interest is the recommendation of relevant 
learning-related content, based on various criteria such 
as student interest or course progress (Manouselis, 
Drachsler, Vuorikari, Hummel, & Koper, 2011; Romero & 
Ventura, 2010). The development of content analytics 
systems is typically based on recommender systems 
technologies, which can be split into two broad cat-
egories (Drachsler, Hummel, & Koper, 2008):

1. Collaborative filtering (CF) techniques, in which 
resources being recommended to a student were 
found by looking for either 1) related students 
(i.e., user-based CF), or 2) related resources (i.e., 
item-based CF). In the former case, students with 
a substantial overlap in their use of resources 
probably share common interests; in the latter 
case, resources used together by a large number 
of users are likely to be similar.

2. Content-based techniques, in which recommen-
dations are discovered by directly comparing the 
content of resources to be recommended and by 
looking for most similar resources to the ones 
a student is currently using or that match the 
student’s profile data.

Both approaches have been extensively used in edu-
cational technology (for an overview see Drachsler et 
al. 2008; Manouselis et al., 2011). For example, Walker, 
Recker, Lawless, and Wiley (2004) built AlteredVista, 
a collaborative system for discovering useful educa-
tional resources, while Zaldivar, García, Burgos, Kloos, 
and Pardo (2011) used content-based techniques to 
recommend course notes to students, based on their 
document browsing patterns. Content-based methods 
have also been used to recommend solutions (Hosseini 
& Brusilovsky, 2014) and relevant examples (Muldner 
& Conati, 2010) to programming tasks, and even to 
recommend suitable academic courses (Bramucci & 
Gaston, 2012). It should also be noted that the quality of 

recommendations is often dependent on the selection 
of particular document similarity measures (Verbert 
et al., 2012), which must be chosen to match the given 
learning context or activity.

Another important domain represents the automatic 
organization and classification of different instruc-
tional materials (often different learning objects), 
using automated techniques for keyword extraction, 
tagging, and clustering. For example, Bosnić, Verbert, 
and Duval (2010) compared different techniques for 
keyword extraction from learning objects, while 
Cardinaels, Meire, and Duval (2005) showed that an 
analysis of document content, usage, and context could 
be used to automatically create relevant metadata 
information for a given learning object. Techniques 
such as text clustering (Niemann et al., 2012), neural 
network classifiers (Roy, Sarkar, & Ghose, 2008), and 
collaborative tagging (Bateman, Brooks, McCalla, & 
Brusilovsky, 2007) have been used successfully to group, 
organize, and annotate different learning objects. 
More recently, with increased use of multimedia in 
education, different content analytics techniques have 
been used to automatically find important moments 
in lecture recordings to enhance navigation and use 
of video resources (Brooks, Amundson, & Greer, 2009; 
Brooks, Johnston, Thompson, & Greer, 2013).

In addition to organization and recommendation of 
learning resources, content analytics has been used 
to assess the quality of available instructional mate-
rials and how they impact learning outcomes. Dufty, 
Graesser, Louwerse, and McNamara (2006) showed that 
cohesiveness of the written text, as calculated by the 
Coh-metrix tool (Graesser, McNamara, & Kulikowich, 
2011; McNamara, Graesser, McCarthy, & Cai, 2014), 
can successfully be used to evaluate the grade-level 
of textbooks, giving significantly better results than 
the simple text readability measures (e.g., Flesch 
Reading Ease, Flesch–Kincaid Grade Level, Degrees of 
Reading Power). Research has also revealed the direct 
link between the coherence of the provided learning 
materials and student comprehension of the subject 
domain (McNamara, Kintsch, Songer, & Kintsch, 1996; 
Varner, Jackson, Snow, & McNamara, 2013). The rela-
tionship between coherence and comprehension is 
also moderated by the students’ level of background 
knowledge (Wolfe et al., 1998), which should be taken 
into account for recommending learning materials.

Content Analytics of Students’ Products 
of Learning
One of the core goals of learning analytics is to enable 
provision of timely and relevant feedback to learners 
while studying (Siemens et al., 2011). One of the earliest 
domains where content analytics has been applied is 
the analysis of student essays, also known as automated 
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essay scoring (AES). The most widely applied technique 
for automated essay scoring is Latent Semantic Analysis 
(LSA) (Landauer, Foltz, & Laham, 1998), used to measure 
the semantic similarity between two bodies of text 
through the analysis of their word co-occurrences. 
In the case of AES, LSA similarity is used to calculate 
the resemblance of an essay to a predefined set of 
essays and, based on those similarities, calculate a 
single, numeric measure of essay quality. In addition 
to LSA-based measures of essay quality, more recent 
systems such as WriteToLearn (Foltz & Rosenstein, 
2015) include an extensive set of visualizations to 
provide students with feedback designed to help them 
acquire essay writing skills. While AES systems have 
been primarily used for the provision of real-time feed-
back (Crossley, Allen, Snow, & McNamara, 2015; Foltz 
et al., 1999; Foltz & Rosenstein, 2015), they could also 
be used for the (partial) automation of essay grading 
(Foltz et al., 1999), as they have shown to be as reliable 
and consistent as human graders.

Besides calculating the similarity of a text to a pre-
defined collection of documents, LSA can also be used 
for calculating internal document similarity, often 
referred to as document coherence (the more coherent 
the document, the more semantically similar are its 
sentences). LSA is the underlying principle behind the 
Coh-metrix tool (Graesser et al., 2011; McNamara et al., 
2014), often used to measure the quality of document 
writing. Coh-metrix has been extensively utilized for 
the analysis of different forms of written materials, 
including essays, discussion messages, and textbooks 
(McNamara et al., 2014). For example, it was adopted 
in Writing-Pal (McNamara et al., 2012), which is an 
intelligent tutoring system that provides students 
with feedback during essay writing exercises, looking 
at the essay’s cohesiveness (calculated by Coh-metrix) 
as the indicator of its quality.

Another commonly adopted technique for the assess-
ment of student essays are graph-based visualization 
methods, also based on a text’s word co-occurrences. 
In addition to assessing the quality of writing, these 
tools are also used for summarizing essay content. For 
example, the OpenEssayist system (Whitelock, Field, 
Pulman, Richardson, & Van Labeke, 2014; Whitelock, 
Twiner, Richardson, Field, & Pulman, 2015) provides 
a graph-based overview of a student’s essay in order 
to help the student visualize the relationship between 
different parts of the essay with the goal of teaching 
students how to write high-quality essays with a sol-
id structure and a coherent narrative. Graph-based 
methods are also adopted for automated extraction of 
concept maps from students’ collaborative writings. 
Such concept maps are then used to provide visual 
feedback to learners (Hecking & Hoppe, 2015) as a 
means of helping them review and revise their essays.

Besides approaches based on word co-occurrences, 
natural language processing techniques have also been 
used, in particular for the linguistic and rhetorical 
analysis of student essays. For instance, XIP Dashboard 
(Simsek, Buckingham Shum, De Liddo, Ferguson, & 
Sándor, 2014; Simsek, Buckingham Shum, Sandor, De 
Liddo, & Ferguson, 2013) visualizes meta-discourse of 
essays and highlights rhetorical moves and functions 
that help assess the quality of an argument in the es-
say (Simsek et al., 2014). These approaches to content 
analytics are also very similar to discourse-centric 
learning analytics (Buckingham Shum et al., 2013; Knight 
& Littleton, 2015) given that they use the same set of 
techniques for understanding the linguistic functions 
of the different parts of written text.

In addition to analyzing student essays, similar content 
analytics methods have been used for other types of 
student writing, most notably short answers (Burrows, 
Gurevych, & Stein, 2014). In the context of teaching 
physics, Dzikovska, Steinhauser, Farrow, Moore, and 
Campbell (2014) built a novel adaptive feedback system 
that takes into account the content of students’ short 
answers, thus providing contextually relevant feedback. 
Likewise, the WriteEval system (Leeman-Munk, Wiebe, 
& Lester, 2014) evaluates students’ short answers and 
provides feedback with follow-up instructions and 
tasks. As with essay grading, a set of reference answers 
facilitates the work of this group of systems. Similar 
approaches are also used for teaching troubleshooting 
skills (Di Eugenio, Fossati, Haller, Yu, & Glass, 2008), 
logic (Stamper, Barnes, & Croy, 2010), and PHP pro-
gramming (Weragama & Reye, 2014). There have also 
been studies (Ramachandran, Cheng, & Foltz, 2015; 
Ramachandran & Foltz, 2015) showing the potential of 
using graph-based techniques for automated discovery 
of reference answers.

We should also note that many of the content analyt-
ics feedback systems have specifically been designed 
to provide instructors with feedback on student 
learning activities. For example, Lárusson and White 
(2012) used visualizations of student essays to inform 
instructors about the originality in student writings 
and particular points in time when students start to 
develop critical thinking. Besides providing feedback to 
students, automatic extraction of concept maps from 
student essays was also used to provide instructors 
with a broad overview of student learning activities 
(Pérez-Marín & Pascual-Nieto, 2010). Extraction of 
concept maps was also used for analysis of student 
chat logs (Rosen, Miagkikh, & Suthers, 2011), which are 
then used to provide instructors with an overview of 
social interactions and knowledge building among 
groups of students. Similarly, types of feedback and 
their effects on student engagement have also been 
explored. For instance, Crossley, Varner, Roscoe, and 
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McNamara (2013) investigated which types of feedback 
result in the biggest improvement in quality of student 
writing (based on the Coh-metrix analysis of student 
essays) while Calvo, Aditomo, Southavilay, and Yacef 
(2012) investigated how different types of feedback 
(i.e., directive, reflective) affect student essay editing 
behaviour. The ways in which students view and an-
notate video recordings has also been investigated 
(Gašević, Mirriahi, & Dawson, 2014; Mirriahi & Dawson, 
2013) showing the potential for combining the analysis 
of different types of learning content.

A large body of work has also examined the associa-
tion between different qualities of student essays and 
performance. The primary goal of these studies is to 
understand what encompasses successful writing (Allen, 
Snow, & McNamara, 2014; Crossley, Roscoe, & McNamara, 
2014; McNamara, Crossley, & McCarthy, 2009; Snow, 
Allen, Jacovina, Perret, & McNamara, 2015), and how 
it relates to course performance (Robinson, Navea, & 
Ickes, 2013; Simsek et al., 2015). Current research has 
also revealed direct links between the coherence of the 
provided learning materials and the quality of students’ 
reading summaries (Allen, Snow, & McNamara, 2015). 
Studies have also shown that insights into student 
comprehension of reading materials can be obtained 
through the analysis of their reading summaries using 
Coh-metrix cohesiveness measures and Information 
Content — a measure of text informativeness (Mintz, 
Stefanescu, Feng, D’Mello, & Graesser, 2014). Con-
tent analytics has also been used for understanding 
collaborative writing processes by using techniques 
such as Hidden Markov Models (Southavilay, Yacef, & 
Calvo, 2009, 2010) and probabilistic topic modelling 
(e.g., LDA; Southavilay, Yacef, Reimann, & Calvo, 2013). 
The same techniques are applied to understand how 
students learn to program (Blikstein, 2011), and even 
to analyze transcripts of student interviews to assess 
their expertise (Worsley & Blikstein, 2011) and knowl-
edge of a given domain (Sherin, 2012).

Content Analytics of Students’ Social In-
teractions
In online and distance education, asynchronous online 
discussions represent one of the primary means of 
interaction among students, and between students and 
instructors (Anderson & Dron, 2012). As such, insights 
into the overall discussion activity and contributions 
of different students are two areas where content 
analytics have been successfully applied, often using 
methods similar to those used for analyzing learning 
materials (e.g., LSA, Coh-metrix). Using LSA and Social 
Network Analysis (SNA), Teplovs, Fujita, and Vatrapu 
(2011) developed a visual analytics system that provides 
students with an overview of student contributions 
to online discourse. In addition to SNA, Hever et al. 
(2007) have also used process mining in combination 

with content analytics to raise awareness and enable 
better moderation of online discussions. Through the 
classification of student discussion messages based 
on their contribution type, textual content, and re-
lationships (i.e., links) Hever et al. (2007) developed 
a message classification system that can be used 
to label discussion messages based on predefined 
theoretical or pedagogical categories. In addition to 
online discussions, raising instructor awareness of 
student activities in social media is explored by the 
LARAe system (Charleer, Santos, Klerkx, & Duval, 
2014) showing the huge potential of social media for 
understanding student activities and learning progress. 
LARAe can automatically gather student social media 
postings (using RSS and Twitter API technologies) and 
then automatically assign one of 51 different badges to 
students, based on the observed social media activity. 
Instructors are then shown the collected information 
in the form of a dashboard for an easy overview of 
student activity and its change over time.

Online discussions have also been the focus of edu-
cation researchers, who typically have used manual 
content analysis methods for parsing student dis-
cussion messages. Over the years, several content 
analytics systems have been developed to automate 
this process, in particular, analysis using the popular 
Community of Inquiry (CoI) framework (Garrison, An-
derson, & Archer, 2001). For example, McKlin, Harmon, 
Evans, and Jones (2002) and McKlin (2004) developed 
a neural network classification system to automate 
coding of discussion messages for level of cognitive 
presence, the central construct of the CoI framework, 
focused on the development of students’ critical and 
deep thinking skills. Building on results by McKlin 
(2004), a Bayesian network classification is used by 
the Automated Content Analysis Tool (Corich, Hunt, 
& Hunt, 2012) to provide a more generalizable model 
of classification that can be adopted for a wider range 
of coding schemes besides cognitive presence. More 
recently, several studies (Kovanović et al., 2014, 2016; 
Waters, 2015) examined the use of different text-mining 
techniques for coding messages for level of cognitive 
presence. Kovanović et al. (2014) developed a support 
vector machine classifier using different surface-level 
classification features (i.e., n-grams, part-of-speech 
n-grams, linguistic dependency triplets, the number of 
mentioned concepts, and discussion position metrics), 
which achieved higher classification accuracy than 
previous reports (McKlin, 2004; McKlin et al., 2002). 
The study by Waters (2015) also showed the benefits of 
using the structure of online discussions for text clas-
sification using conditional random fields, a structured 
classification technique that takes into the account 
relationships (i.e., reply-to structure) among individual 
classification instances (i.e., discussion messages). 
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Finally, a study by Kovanović et al. (2016) showed that 
metrics provided by the Coh-metrix (Graesser et al., 
2011) and Linguistic Inquiry and Word Count (LIWC) 
tools (Tausczik & Pennebaker, 2010) — in combination 
with some of the NLP and discussion-position features 
— can be successfully used to develop a classification 
system almost as accurate as human coders. While 
further improvements are needed before this system 
can be widely adopted by educational researchers, the 
progress is promising and has the potential to advance 
research practices in content analysis.

With the social-constructivist view of learning and 
knowledge creation, a large body of work has uti-
lized content analytics for understanding the role 
of social interactions on knowledge construction. 
For example, there has been significant research on 
linguistic differences — as captured by LIWC metrics 
— in discussion contributions (Joksimović, Gašević, 
Kovanović, Adesope, & Hatala, 2014; Xu, Murray, Park 
Woolf, & Smith, 2013) and how those differences relate 
to student grades (Yoo & Kim, 2012). Similarly, Chiu and 
Fujita (2014a, 2014b), investigated interdependencies 
between different types of discussion contributions 
with statistical discourse analysis (SDA), a group of 
statistical methods used to provide realistic modelling 
of student discourse interactions, while Yang, Wen, 
and Rosé (2014) used LDA and mixed membership 
stochastic blockmodels (MMSB) to examine what 
types of student discussion contributions are likely to 
receive response. Finally, using simple word frequency 
analysis, Cui and Wise (2015) examined what kinds of 
contributions are most likely to be acknowledged and 
answered by instructors. These and similar studies 
have the goal of understanding how interactions in 
online discourse eventually shape the learning out-
comes and knowledge building. Similarly, different 
content analytics methods (text classification, topic 
modelling, mixed membership stochastic blockmodels) 
and tools (Coh-metrix, LIWC) have been applied to 
the products of student social interactions to gain a 
better understanding of students’ (co-)construction of 
knowledge. These include research on the formation 
of student sub-communities (Yang, Wen, Kumar, Xing, 
& Rosé, 2014), development of self-regulation skills 
(Petrushyna, Kravcik, & Klamma, 2011), small-group 
communication (Yoo & Kim, 2013), and collaboration 
on computer programming projects (Velasquez et 
al., 2014). Further studies also investigated the link 
between accumulation of students’ social capital in 
MOOCs (Dowell et al., 2015; Joksimović, Dowell et al., 
2015; Joksimović, Kovanović et al., 2015), showing that 
position within the social network, extracted from 
learner interaction within various learning platforms, 
is associated with higher levels of cohesiveness of 
social media postings.

Content analytics has also been used extensively to 
assess the level of student engagement and instructional 
approaches that can contribute to its development. 
With this in mind, the analysis of student discussion 
messages — using a variety of content analytics methods 
— has commonly been used to assess the level of course 
engagement (Ramesh, Goldwasser, Huang, Daumé, & 
Getoor, 2013; Vega, Feng, Lehman, Graesser, & D’Mello, 
2013; Wen, Yang, & Rosé, 2014b). Using probabilistic 
soft logic on both discussion content data and trace 
log data, Ramesh et al. (2013) examined student en-
gagement in the MOOC context, focusing on the types 
of learners based on their level of discussion activity 
and course performance. Similarly, Wen, Yang, and 
Rosé (2014a) conducted a student sentiment analysis 
of MOOC online discussions, which revealed a strong 
association between expressed negative sentiment and 
the likelihood of dropping out of the course. Similar 
results are presented by Wen et al. (2014b) who also 
showed that LIWC word categories (most directly, 
cognitive words, first person pronouns, and positive 
words) could be used to measure the level of student 
motivation and cognitive engagement. Finally, by 
looking at the discrepancy between student reading 
time and text complexity, Vega et al. (2013) developed 
a content analytics system that can detect disengaged 
students. The general idea of using text complexity 
to measure engagement is that the easier the text, 
the shorter the reading time, unless the student is 
disengaged. This and similar types of analysis that 
combine trace data (e.g., text reading time) with the 
analysis of learning materials (e.g., analysis of text 
resource reading complexity) can be successfully used 
to monitor student motivation and engagement in real 
time, which is especially important for courses with 
large numbers of students, such as MOOCs.

Topic discovery in learning content
With huge amounts of web and other forms of learning 
data being available, one of the principal uses of content 
analysis is the organization and summarization of vast 
quantities of available information. In this regard, the 
most popular content analytics technique is probabilistic 
topic modelling, a group of methods used to identify 
key topics and themes in the collection of documents 
(e.g., discussion messages or social media posts). The 
most widely used topic modelling technique is latent 
Dirichlet allocation (LDA; Blei, 2012; Blei, Ng, & Jordan, 
2003), which is often adopted in social sciences (Ra-
mage, Rosen, Chuang, Manning, & McFarland, 2009) 
and digital humanities (Cohen et al., 2012). The general 
goal of LDA and other topic modelling techniques is to 
identify groups of words that are often used together, 
and which denote popular topics and themes in the 
document collection. Alongside LDA, techniques based 
on logic programming, text clustering, and LSA have 
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also been used to extract main themes from student 
online discussions and social media postings.

Identification of main themes and topics has been ex-
tensively conducted in asynchronous online discussions. 
The primary goal is to raise instructors’ awareness of 
the quality of student discourse by identifying the main 
themes and their magnitude in online discussions. 
For example, Antonelli and Sapino (2005) adopted a 
rule-based approach to modelling online discussions 
while the use of LDA has been explored by Chen (2014) 
and Hsiao and Awasthi (2015). In addition to topic 
modelling in online courses, given the large volume of 
discussions in massive open online courses (MOOCs), 
there has been particular interest in topic extraction 
from MOOC discussions using various approaches. 
Reich, Tingley, Leder-Luis, Roberts, and Stewart (2014) 
used structural topic models — an extension of the 
LDA technique that enables examining the differences 
in topics across different covariates — to investigate 
topics in MOOC online discussions and how different 
student (e.g., age, gender) and post characteristics (e.g., 
receiving an up-vote) relate to the identified topics. 
Likewise, Ezen-Can, Boyer, Kellogg, and Booth (2015) 
identified main themes in MOOC discussions through 
clustering “bag-of-words” representations of student 
online discussions.

While the discovery of topics in online discussions 
has been largely investigated, the analysis of main 
themes across different social media has received 
much less attention. One example is a study by Pham, 
Derntl, Cao, and Klamma (2012) who used SNA and 
word frequency analysis to investigate learning as 
it is occurring on popular blogging platforms and 
most important topics of discussion. In most of the 
studies, the focus of topic modelling analysis was 
primarily on traditional blogging platforms, while the 
analysis of micro-blogging platforms (e.g., Twitter) 
has received much less attention. In most cases, the 
reason for focusing on traditional blogging platforms 
is that most of the methods for topic modelling (e.g., 
LDA) are designed to work on longer text documents 
from which a correct topical distribution can be ex-
tracted (Zhao et al., 2011). Although several variations 
of LDA for short texts have been proposed (Hong & 
Davison, 2010; Mehrotra, Sanner, Buntine, & Xie, 2013; 
Ramage, Dumais, & Liebling, 2010; Yan, Guo, Lan, & 
Cheng, 2013), they are not currently widely used in 
the learning analytics field and their value is yet to be 
evaluated. One notable exception is the study by Chen, 
Chen, and Xing (2015) who — using ordinary LDA and 
SNA — analyzed tweets from the first four Learning 
Analytics and Knowledge conferences (LAK’11–LAK’14) 
and examined popular topics, as well as the structure 
and evolution of the learning analytics community over 
time. Similarly, a study by Joksimović, Kovanović et 

al. (2015) investigated the alignment between course 
materials and student postings in different social 
media (i.e., Facebook, Twitter, blogs). This study did 
not utilize traditional topic modelling techniques, but 
rather used a novel document clustering technique for 
topic discovery. Finally, topic modelling use has also 
been explored outside of social media. For example, 
a study by Reich et al. (2014) used LDA to examine 
major themes of student course evaluations, poten-
tially providing an efficient, broad overview of course 
evaluation comments.

In this chapter, we presented an overview of content 
analytics, a set of analytical methods and techniques 
for analyzing different forms of learning content in 
order to understand or improve learning activities. 
The wide range of research studies illustrates the great 
potential for applying content analytics techniques in 
addressing open problems in contemporary educational 
research and practice. In general, content analytics 
has been used for the analysis of 1) course resources, 
2) student products of learning, and 3) student social 
interactions. Content analytics has been utilized to 
address a broad range of problems, such as recom-
mendation and categorization of different learning 
materials (e.g., Drachsler et al., 2008), provision of 
feedback during student writing (e.g., Crossley et al., 
2015), analysis of learning outcomes (e.g., Robinson et 
al., 2013), analysis of student engagement (e.g., Wen et 
al., 2014b), and topic discovery in online discussions 
(e.g., Reich et al., 2014). Given that learning analytics, 
as a research field, is still in its infancy, the list of 
problems being addressed by content analytics will 
likely expand in future. Likewise, as the field of con-
tent analytics matures, an important set of research 
practices and traditions will be established. Therefore, 
it is necessary to look toward future directions to pro-
vide the highest impact on educational research and 
practice. As such, we argue that current research in 
content analytics would be improved by 1) combining 
content analytics with other forms of analytics, and 2) 
developing content analytics systems based on existing 
educational theories. The early steps regarding the 
synergy between content analytics and other forms of 
analytics have already been observed. Several studies 
showed how content analytics could be successfully 
combined with

• Discourse analytics (Simsek et al., 2015, 2014, 2013),

• Process mining (Hever et al., 2007; Southavilay 
et al., 2009, 2010, 2013),

• Social network analysis (Drachsler et al., 2008; 
Joksimović, Kovanović et al., 2015; Joksimović et 

CONCLUSIONS AND FUTURE 
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al., 2014; Pham et al., 2012; Ramachandran & Foltz, 
2015; Rosen et al., 2011; Teplovs et al., 2011),

• Visual learning analytics (Hecking & Hoppe, 
2015; Lárusson & White, 2012; Pérez-Marín & 
Pascual-Nieto, 2010; Simsek et al., 2014; Whitelock 
et al., 2014, 2015), and

• Multimodal learning analytics (Blikstein, 2011; 
Worsley & Blikstein, 2011).

Likewise, it is important that additional forms of data 
— such as student demographics, prior knowledge, 
or standardized scores — are combined with content 
analytics, and in this regard, we also see some first 
steps (Crossley et al., 2015). Similar combined uses 
of traditional content analysis and other methods 
have been observed in mainstream online education 
research; more specifically, the use of social network 
analysis (De Laat, Lally, Lipponen, & Simons, 2007; 
Shea et al., 2010).

Finally, the development of content analytics should be 

based on well-established instructional theories. Many 
current approaches do not make use of the large body 
of educational research, which can limit the usefulness 
of the developed analytics systems and potentially 
even promote some detrimental learning practices 
(Gašević et al., 2015). Pedagogical considerations are 
particularly important for the provision of feedback, 
where the large body of previous research (Hattie & 
Timperley, 2007) demonstrates substantial differences 
in effectiveness between types of feedback provided. 
For example, the majority of feedback given by the 
current automated grading systems is summative in 
nature, although the most valuable feedback is on the 
process level, giving detailed instructions on identified 
weaknesses and suggestions for overcoming them. By 
building on existing educational knowledge, content 
analytics systems would not only increase in useful-
ness, but could also provide valuable opportunities for 
validation and refinement of the current understanding 
of learning processes.
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Language is one means to externalize our thoughts. 
It allows us to express ourselves to others, to ma-
nipulate our world, and to label objects in the envi-
ronment. Language allows us to internally construct 
and reconstruct our thoughts; it can represent our 
thoughts, and allow us to transform them. It allows us 
to construct and shape social experiences. Language 
provides a conduit to understanding and interacting 
with the world. 

Language is omnipresent in our lives — in our thoughts, 
our communications, what we read and write, and our 
interactions with others. Language is equally central 
to education. Our goal as instructors is to commu-
nicate information to students so that they have the 
opportunity to learn new information, to absorb it, 
and to integrate it. Students are tasked with under-

standing language used to communicate information, 
and then to connect that information with what they 
already know — to construct their understanding as 
individuals, in groups, and in coordination with each 
other and instructors.

Language plays important roles in our lives, and in 
education, and thus, it is important to recognize 
and understand those roles and outcomes. Text and 
discourse analysis provides one means to understand 
complex processes associated with the use of language. 
Discourse analysts systematically examine structures 
and patterns within written text and spoken discourse 
and their relations to behaviours, psychological pro-
cesses, cognition, and social interactions. Indeed, 
text and discourse analysis has provided a wealth of 
information about language.

Chapter 8: Natural Language Processing and 
Learning Analytics

Danielle S. McNamara1, Laura K. Allen1, Scott A. Crossley2, Mihai Dascalu3, 
Cecile A. Perret4

Language is of central importance to the field of education because it is a conduit for com-
municating and understanding information. Therefore, researchers in the field of learning 
analytics can benefit from methods developed to analyze language both accurately and 
efficiently. Natural language processing (NLP) techniques can provide such an avenue. NLP 
techniques are used to provide computational analyses of different aspects of language 
as they relate to particular tasks. In this chapter, the authors discuss multiple, available 
NLP tools that can be harnessed to understand discourse, as well as some applications of 
these tools for education. A primary focus of these tools is the automated interpretation 
of human language input in order to drive interactions between humans and computers, 
or human–computer interaction. Thus, the tools measure a variety of linguistic features 
important for understanding text, including coherence, syntactic complexity, lexical di-
versity, and semantic similarity. The authors conclude the chapter with a discussion of 
computer-based learning environments that have employed NLP tools (i.e., ITS, MOOCs, 
and CSCL) and how such tools can be employed in future research. 
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Traditionally, however, discourse analysis is laborious. 
First, for example, the meaningful units of language are 
identified and segmented (e.g., clauses, utterances) and 
then experts code those units (i.e., with respect to the 
particular analysis). The potential relations between 
the nature of those language units and outcomes are 
then assessed. In a world of big data, where there are 
thousands of utterances and exchanges between in-
dividuals, hand-coding language is nearly impossible. 
Large corpora of data open the doors to understanding 
language on a wider and even more meaningful scale, 
but traditional approaches to discourse analysis are 
simply not feasible. One solution derives from natural 
language processing (NLP).

NLP is the analysis of human language using comput-
ers, providing the means to automate discourse 
analysis. The term NLP was coined because it is the 
analysis of natural human language, in contrast to the 
use and analysis of computer languages. A variety of 
automated tools can be used to process natural lan-
guage. Indeed, the number and power of NLP tools 
have steadily increased since the mid-1990s (Jurafsky 
& Martin, 2000, 2008). As such, their impact and use 
within the realm of learning analytics and data min-
ing is steadily, if not exponentially, increasing. This 
chapter describes several tools currently available to 
researchers and educators to analyze language com-
putationally, focusing in particular on their uses in 
the realm of education.

Computational linguistics is a discipline that focus-
es on the development of computational models of 
language. NLP tools and techniques are often guided 
by theories, models, and algorithms developed in the 
field of computational linguistics, but the primary 
purpose of NLP tools is the automated interpretation 
of human language input. Such an endeavor calls upon 
interdisciplinary perspectives integrating disciplines 
such as linguistics, computer science, psychology, and 
education. While NLP has a history dating back to 
Turing (1950), the majority of current NLP algorithms 
have been developed using a combination of NLP tools 
and data mining. A clear distinction must be made 
from the beginning between the NLP software often 
used by computer or data scientists and the tools 
presented in this chapter. A large majority of NLP 
research has focused on surface-level text process-
ing (e.g., machine translation), and the available tools 
consequently emphasize the central role of accurate 
word- and sentence-level text processing. Our aim 
in this chapter is specifically to focus on NLP within 
the context of learning analytics. Thus, we focus on 
tools developed to calculate linguistic indices that 

move beyond these surface-level tasks and provide 
information that may be more important within ed-
ucational contexts. Notably, we describe a subset of 
NLP techniques that provide information about mul-
tiple levels of text. These tools begin from the words 
in the discourse, extract specific word features, and 
then go beyond the lexicon by considering semantics, 
as well as discourse structure. Our goal is to provide 
examples of a few common techniques, rather than 
an overview of all available methods. We group these 
methods into those that focus on the words directly as 
the units of analysis, and those that focus on features 
of the words. 

The Words
One approach to NLP is to analyze the words used in 
the language directly. For example, calculating the 
incidence of specific types of words within a text can 
reveal a good deal about the nature and purpose of 
the language used in various contexts. This is often 
referred to as a "bag-of-words" approach. One tool 
that employs this approach is the Linguistic Inquiry 
Word Count (LIWC) system developed by Pennebaker 
and colleagues (Pennebaker, Booth, & Francis, 2007; 
Pennebaker, Boyd, Jordan, & Blackburn, 2015; see 
http://liwc.wpengine.com/). The 2007 version of LIWC 
provides roughly 80 word categories, but also groups 
these word categories into broader dimensions. Ex-
amples of the broader dimensions are linguistic forms 
(e.g., pronouns, words in past tense, negations), social 
processes, affective processes, and cognitive processes. 
For example, cognitive processes include subcategories 
such as insight (e.g., think, know, consider), causation 
(e.g., because, effect, hence), and certainty (e.g., always, 
never). LIWC counts the number of words that belong 
to each word category and provides a proportion score 
that divides the number of words in the category by 
the total number of words in the text. 

A similar approach is to identify n-grams, such as 
groups of characters or words, where n refers to the 
number of grams included in the group (e.g., bi-grams 
refer to groups of two words). N-gram analyses cal-
culate probability distributions of word sequences 
in text and can provide information about the words 
common to a group of texts, or distinctive for a specific 
text or sets of texts (e.g., Jarvis et al., 2012). Several 
advantages of n-gram analyses include their simplicity 
and the potential for providing information about the 
specific content of a text, the linguistic and syntactic 
features of a text, and relationships between those 
features (Crossley & Louwerse, 2007).

The Features of the Words
Calculating the occurrence of words and groups of 
words considers the explicit content of the text. An 
alternative approach involves the calculation of the 

NATURAL LANGUAGE PROCESSING
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features of the words and sentences in a text. One such 
technique is to derive the latent meaning behind the 
words (McNamara, 2011). There are numerous algorithms 
for doing so, but the most well known and perhaps the 
first was Latent Semantic Analysis (LSA; Landauer & 
Dumais, 1997; Landauer, McNamara, Dennis, & Kintsch, 
2007; see lsa.colorado.edu). LSA emerged in the mid-
1990s, providing a means to extract semantic meaning 
from large bodies of text, and to compare large and 
small text samples for semantic similarities. Such an 
approach provided a unique potential to revolution-
ize NLP. LSA is a mathematical, statistical technique 
that uses singular value decomposition to compress 
(i.e., factorize) a matrix representing the occurrence 
of words across a large set of documents. A principal 
assumption driving LSA is that the meanings of words 
are captured by the company they keep. For example, 
the word "data" will be highly associated with words of 
the same functional context, such as "computations", 
"mining", "computer", and "mathematics". These words 
do not mean the same thing as data. Rather, these 
words are related to data because they typically occur 
in similar contexts. By affording the computation of 
the semantic similarities between words, sentences, 
and paragraphs, LSA opened the doors to the simu-
lation of meaning in text (McNamara, 2011). LSA can 
be considered the first word-based approach to suc-
cessfully address the question of relevance (i.e., the 
degree to which a text is relevant to another text or 
to a core concept), a problem for which simple mea-
sures of word overlap are not sufficient. While there 
are multiple approaches that have gone beyond LSA 
(see McNamara, 2011, for an overview), LSA remains 
a common approach used across multiple contexts to 
model word meaning and to provide insights in terms 
of semantics and text cohesion (e.g., Landauer et al., 
2007; McNamara, Graesser, McCarthy, & Cai, 2014). 

One obvious feature of language is the meaning, but 
many other features can be derived from linguistic 
analyses, such as the parts of speech (e.g., verb, noun), 
syntax, psychological aspects (e.g., concreteness, 
meaningfulness), and the relations between ideas in 
the text (e.g., cohesion). Coh-Metrix is an example of 
an automated language analysis tool, first launched 
in 2003, that uses multiple sources of information 
about language to extract linguistic, psychological, 
and semantic features of text (McNamara et al., 2014; 
cohmetrix.com). Coh-Metrix adapts and integrates 
information about the English language from a variety 
of sources including LSA, the MRC Psycholinguistic 
Database, WordNet, and word frequency indices such 
as CELEX, as well as syntactic parsers. For example, 
the MRC Psycholinguistic Database provides psycho-
linguistic information about words (Wilson, 1988) and 
WordNet provides linguistic and semantic features of 

words, as well as semantic relations between words 
(Miller, Beckwith, Fellbaum, Gross, & Miller, 1990). 
Coh-Metrix also calculates linguistic indices related 
to various aspects of language through simple features 
of text quality, such as word frequency and sentence 
length, as well as more complex features such as co-
herence and syntactic complexity, in order to produce 
a multi-dimensional analysis of written or spoken text 
(McNamara, Ozuru, Graesser, & Louwerse, 2006). 
Coh-Metrix can provide a relatively simple charac-
terization of a text through descriptive indices (i.e., 
length of words, sentences, paragraphs). In addition, 
it offers various complex indices that describe a text's 
quality and readability. Among these indices are the 
five Coh-Metrix Text Easability Components, including 
narrativity, referential cohesion, syntactic simplicity, 
word concreteness, and deep cohesion (Graesser, 
McNamara, & Kulikowich, 2011; Jackson, Allen, & Mc-
Namara, 2016; see coh-metrix.commoncoretera.com).

Coh-Metrix has had a large impact on our understand-
ing of language and discourse by making automated 
language analysis publicly available. While Coh-Metrix 
provides multiple measures of language, the primary, 
unique focus of Coh-Metrix has been on providing 
measures of cohesion in text. Cohesion is the overlap 
in features, words, and meaning between sentences 
(i.e., local cohesion) and larger sections of the text 
such as paragraphs (i.e., global cohesion) and the text 
overall (e.g., lexical diversity). While extremely useful, 
Coh-Metrix has had several shortcomings regarding 
facile and broad measurement of cohesion indices. 
First, it does not allow for the batch processing of 
text, and it is not housed on a user's hard drive (and 
thus it depends on an internet connection and an 
external server). Second, Coh-Metrix cohesion indices 
generally focus on local and overall text cohesion (i.e., 
average sentence overlap, lexical diversity), rather 
than global cohesion (e.g., semantic overlap between 
various sections of a text). Hence, the Tool for the 
Automatic Analysis of Text Cohesion (TAACO) and 
the Simple Natural Language Processing Tool (SiNLP) 
were developed to address these gaps (Crossley, Allen, 
Kyle, & McNamara, 2014; Crossley, Kyle, & McNamara, 
in press; http://www.kristopherkyle.com/taaco.
html). TAACO is locally installed (as compared to an 
internet interface), allows for batch processing of text 
files, and includes over 150 indices related to local, 
global, and overall text cohesion. Similarly, SiNLP is 
locally installed and allows for batch text processing. 
However, SiNLP differs from TAACO in that it takes 
the "bag-of-words" approach to calculate information 
about multiple aspects of texts. Additionally, the tool 
is flexible and allows researchers to add their own 
categories of words to inform additional analyses.

Another example of a freely available NLP tool is the 
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Tool for the Automatic Analysis of LExical Sophisti-
cation (TAALES; Kyle & Crossley, 2015; http://www.
kristopherkyle.com/taales.html). TAALES focuses on 
providing extensive information about the level of 
lexical sophistication present in a text. This type of 
analysis is important because it provides information 
on the lexical demands of a text, as well as potential 
information related to the lexical knowledge of the 
author of the text (Kyle & Crossley, 2015). TAALES 
calculates over 130 classic and newly developed lexi-
cal indices to assess the breadth and depth of lexical 
knowledge used in a text. This tool is fast, reliable, 
and freely available for download. The measures for 
TAALES include word frequency, word and word family 
range, n-grams, academic lists, and word information 
indices that consider psycholinguistic components 
(Kyle & Crossley, 2015). These indices collectively 
provide extensive information on the complexity of 
word choices in text.

Dascalu, McNamara, Crossley, and Trausan-Matu 
(2016) also introduced Age of Exposure (AoE), a compu-
tational model to estimate word complexity in which 
the learning rate of individual words is calculated as 
a function of a learner's experience with language. 
In contrast to Pearson's calculation of word matu-
rity (Landauer, Kireyev, & Panaccione, 2011), AoE is a 
reproducible and scalable model that simulates word 
learning in terms of potential associations that can 
be created with it across time or, more specifically, 
across incremental latent Dirichlet allocation (Blei, Ng, 
& Jordan, 2003) topic models. AoE indices yield strong 
associations (exceeding the reported performance of 
word maturity) with estimates of word frequency and 

entropy, as well as human ratings of age of acquisition 
and lexical response latencies.

Natural Language Processing and Learn-
ing Algorithms
NLP can be used to describe multiple facets of language 
from simple descriptive statistics, such as the number 
of words, n-grams, and paragraphs, to the features of 
words, sentences, and text (Crossley, Allen, Kyle, & 
McNamara, 2014). As depicted in Figure 8.1, multiple 
characteristics of language can be gleaned from the 
words (including n-grams and bags of words) and 
captured using both techniques for analyzing observ-
able features (e.g., word frequencies, word-document 
distributions) and latent meaning from the text (Mc-
Namara, 2011). Information is provided by the features 
of the words, the sentences, and the text as a whole. 
This information can be analyzed using machine 
learning techniques such as linear regression, dis-
criminant function classifiers, Naïve-Bayes classifiers, 
support vector machines, logistic regression classi-
fiers, and decision tree classifiers. When these tech-
niques are used to predict learning outcomes, algorithms 
can be derived that can then be used within educa-
tional technologies or applications. We discuss a 
number of these applications in the following sections.

The most common example of the use of NLP in the 
realm of education is for the development of automated 
essay scoring (AES) algorithms (Allen, Jacovina, & Mc-
Namara, 2016; Dikli, 2006; Weigle, 2013; Xi, 2010). AES 

WRITING ASSESSMENT

Figure 8.1. Developing algorithms using NLP requires machine-learning techniques applied to various sources 
of information on the text, including information from the words, sentences, and the entire text.
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systems assess essays using a variety of approaches. 
For example, the Intelligent Essay Assessor (Landauer, 
Laham, & Foltz, 2003) primarily relies on LSA to assess 
the similarity of an essay to benchmark essays. By 
contrast, systems such as the e-rater developed at 
Educational Testing Service (Burstein, Chodorow, & 
Leacock, 2004), IntelliMetric Essay Scoring System 
developed by Vantage Learning (Rudner, Garcia, & 
Welch, 2006), and the Writing Pal (McNamara, Crossley, 
& Roscoe, 2013) rely on combinations of NLP tech-
niques and artificial intelligence. AES systems process 
writing samples such as essays, and assess the degree 
to which the writer has met the demands of the task 
by assessing the quality of essays and their accuracy 
relative to the content. AES technologies are highly 
successful, reporting levels of accuracy generally as 
accurate as expert human raters (Attali & Burstein, 
2006; Shermis, Burstein, Higgins, & Zechner, 2010; 
Valenti, Neri, & Cucchiarelli, 2003; Crossley, Kyle, & 
McNamara, 2015).

Tutoring Systems
Another use of NLP has been in the context of auto-
mated, intelligent tutoring technologies. NLP has been 
incorporated into a number of intelligent tutoring 
systems (ITSs), particularly those that interact with 
the student via dialogue (e.g., AutoTutor: Graesser 
et al., 2004) and those that prompt the student to 
generate verbal responses (e.g., iSTART: McNamara, 
Levinstein, & Boonthum, 2004; Writing Pal: McNamara 
et al., 2012; Roscoe & McNamara, 2013). When a student 
enters natural language into a system and expects 
useful feedback or a reasonable response, NLP can be 
used to interpret that input and provide appropriate 
feedback (McNamara et al., 2013). For tutoring systems 
that accept natural language as input (e.g., verbal ex-
planations of text, problems, or scientific processes), 
student responses can be open-ended and potentially 
ambiguous. For example, the student might be asked 
which phase of cell mitosis involves the lengthening of 
the microtubules. This type of question (e.g., what or 
when questions) can be answered using short answers 
or multiple-choice responses, requiring little to no 
NLP. By contrast, a question to describe the process 
of Anaphase would elicit answers likely to differ widely 
between students. Thus, automatically detecting the 
accuracy and quality of the student's answer requires 
the use of NLP.

Why not just use multiple-choice? Many tutorial 
systems do just that. However, students are more 
likely to construct a deep understanding of a con-
struct or phenomenon by answering how and why 
questions (e.g., Johnson-Glenberg, 2007; McKeown, 
Beck, & Blake, 2009; Wong, 1985). Moreover, students' 
answers to these types of questions are more likely 

to unveil the depth of their understanding (Graesser 
& Person, 1994; Graesser, McNamara, & VanLehn, 
2005; McNamara & Kintsch, 1996). AutoTutor is an ITS 
that focuses on providing instruction on challenging 
topics (e.g., physics, biology, computer programing) 
by prompting students to answer deep level how 
and why questions. AutoTutor engages the student 
via an animated agent in a dialogue that moves the 
student toward constructing the correct answers. It 
does so by using a variety of dialogue moves, such as 
hints, prompts, assertions, corrections, and answers 
to student questions. These moves are driven by a 
combination of NLP techniques. For example, Auto-
Tutor uses frozen expressions to detect phrases that 
students are likely to produce in certain situations 
(e.g., I don't know; I don't understand) as well as key 
parts of the correct answer. AutoTutor also uses LSA 
to detect the similarity between the answer provided 
by the student and the ideal answer. The combination 
of frozen expressions, regular expressions or patterns, 
inverse-frequency weighted word overlaps between 
student verbal responses and expectations, and LSA, 
allows AutoTutor to simulate the understanding of 
the student's answer, and in turn, this simulated un-
derstanding drives an appropriate response to the 
student (Graesser, in press).

iSTART (Interactive Strategy Training for Active Reading 
and Thinking) is another ITS that relies on a combi-
nation of NLP techniques to respond to open-ended 
responses. iSTART was among the first automated 
systems to address the paraphrase problem in student's 
self-explanations, a difficult challenge in the both 
NLP and computational linguistics literature. iSTART 
enhances students' comprehension of challenging 
science texts by providing instruction and practice 
to use self-explanation (i.e., the process of explaining 
text to oneself) in combination with comprehension 
strategies such as generating bridging and elabora-
tive inferences. During the practice phase of iSTART 
instruction, students generate self-explanations for 
challenging texts. Students' self-explanations in iS-
TART are scored using an algorithm that combines 
information from the words in the self-explanation 
and the text, using a combination of observable and 
latent semantic information about the words (Mc-
Namara, Boonthum, Levinstein, & Millis, 2007). The 
algorithm automatically assigns a score between 0 and 
3 to each self-explanation. Higher scores are assigned 
to self-explanations that include information related 
to the text content (both the target sentence and 
previously read sentences), whereas lower scores are 
assigned to unrelated or short responses. The scoring 
algorithm is designed to reflect the extent to which 
students construct connections between the target 
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sentence, prior text content, and world knowledge. 
The system successfully matches human scores of the 
explanations across a wide variety of texts (Jackson, 
Guess, & McNamara, 2010; McNamara et al., 2007).

Computer Supported Collaborative Learn-
ing (CSCL)
NLP techniques have also been applied to discourse 
generated in collaborative learning environments, 
and in particular Computer Supported Collaborative 
Learning (CSCL) systems (Stahl, 2006). A subset of 
these systems model CSCL conversations based on 
dialogism, a concept introduced by Bakhtin (1981) that 
later on emerged as a paradigm for CSCL (Koschmann, 
1999). The most representative approaches are Dong's 
(2005) design of team communication, Polyphony 
(Trausan-Matu, Rebedea, Dragan, & Alexandru, 2007), 
the Knowledge Space Visualizer (Teplovs, 2008), and 
ReaderBench (Dascalu, Stavarache et al., 2015; Dascalu, 
Trausan-Matu, McNamara, & Dessus, 2015). Reader-
Bench leverages the power of text mining techniques, 
advanced NLP, and social network analysis to achieve 
multiple objectives related to language comprehen-
sion as well as collaborative learning (Dascalu, 2014). 
ReaderBench models participation and collaboration 
from a Cohesion Network Analysis perspective in 
which the information communicated among par-
ticipants is computed via semantic textual cohesion 
(Dascalu, Trausan-Matu, Dessus, & McNamara, 2015a). 
Moreover, ReaderBench has introduced an automated 
dialogic model for assessing collaboration based on 
the polyphonic model of discourse (Trausan-Matu, 
Stahl, & Sarmiento, 2007). Grounded in theories of 
dialogism (Bakhtin, 1981), the system automatically 
identifies voices or participant's points of view as 
semantic chains that include tightly cohesive or se-
mantically related concepts spanning throughout the 
entire conversation (Dascalu, Trausan-Matu, Dessus, & 
McNamara, 2015b). Thus, collaboration emerges from 
the inter-animation of different participant voices, 
which is computationally captured in the co-occur-
rence patterns used to highlight the exchange of ideas 
between different participants.

Massive Open Online Courses (MOOCs)
Another use of NLP has been in the context of online 
courses, particularly massive open online courses 
(MOOCs). MOOCs use online platforms to make cours-
es available to thousands of students without cost to 
the student. MOOCs are lauded for their potential to 
increase accessibility to distance and lifelong learners 
(Koller, Ng, Do, & Chen, 2013). These platforms can 
provide a tremendous amount of data via click-stream 
logs, assignments, course performance, as well as 
language generated by the students within discus-
sion forums and emails. These data can be mined to 

examine student attitudes, completion, and learning 
(Seaton, Bergner, Chuang, Mitros, & Pritchard, 2014; 
Wen, Yang, & Rosé, 2014a, 2014b).

The most common NLP approach to analyzing student 
language in MOOCS has been through tools that analyze 
emotions. Sentiment analysis examines language for 
positive or negative emotion words or words related 
to motivation, agreement, cognitive mechanisms, or 
engagement (Chaturvedi, Goldwasser, & Daumé, 2014; 
Elouazizi, 2014; Moon, Potdar, & Martin, 2014; Wen 
et al., 2014a, 2014b). For example, Moon et al. (2014) 
used emotion terms and semantic similarity among 
participants to identify student leaders. Elouazizi 
(2014) showed that linguistic indices related to point 
of view (e.g., think, believe, presumably, probably) 
were correlated with low levels of engagement in the 
course. Wen and colleagues (2014a, 2014b) found that 
students' use of personal pronouns and words related 
to motivation within discussion forums was predictive 
of a lower risk of dropping out of the course.

Similarly, Crossley, McNamara et al. (2015) used mul-
tiple levels of linguistic features to examine students' 
language in a MOOC discussion forum within a course 
covering the topic of educational data mining (Bak-
er et al., in press). Crossley, McNamara et al. (2015) 
successfully predicted the completion rates (with an 
accuracy of 70%) of 320 students who participated 
within the MOOC discussion forums (i.e., posted > 
49 words). Students who were more likely to receive a 
certificate of completion in the course generally used 
more sophisticated language. For example, their posts 
were more concise and cohesive, used less frequent 
and specific words, and had greater overall writing 
quality. Interestingly, indices related to affect were 
not predictive of completion rates.

Collectively, this research provides promising evidence 
that NLP can be a powerful predictor of success in 
the context of MOOCs. Communication between the 
instructor and the students as well as between the 
students is crucial, particularly for distance courses. 
Further, this communication can then be used as 
forms of assessment of student performance. There-
fore, it seems apparent that MOOCs should include 
discussion forums in order to better monitor student 
participation and potential success. The language that 
students use can also be utilized to identify students 
who are less likely to complete the course, and tar-
get those students for interventions such as sending 
emails, suggesting content, or recommending tutoring. 
Automating language understanding, and thereby 
providing information about the language and social 
interactions within these courses, will help to enhance 
both learning and engagement in MOOCs.
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NLP is extremely powerful, primarily because lan-
guage is ubiquitous and also because tools to analyze 
language automatically provide indices related to 
virtually any aspect of language (Crossley, 2013). NLP 
can detect the specific words used, groups of words, 
and the strength of the relations between words and 
between larger bodies of text. It can also detect the 
features of the text, such as the frequency, concrete-
ness, or meaningfulness of the words, the complexity 
of the sentences, and various aspects of the text such 
as cohesion and genre. The words and their features 
serve as proxies to various constructs. For example, 
the frequency of the words in a text serves as a proxy 
to estimate the knowledge that might be required to 
understand the text. The cohesion of a text affords 
an estimate of the knowledge necessary to fill in the 
gaps in a text.

NLP has been used to identify a wide variety of other 
constructs. For example, Crossley and McNamara 
(2012) demonstrated that the linguistic features of 
second language (L2) writers' essays could predict 
the native language of those writers. Varner, Roscoe, 
and McNamara (2013) used indices provided by both 
Coh-Metrix and LIWC to examine differences in stu-
dents' and teachers' ratings of essay quality. Louwerse, 
McCarthy, McNamara, and Graesser (2004) used NLP 
techniques to identify differences between spoken 
and written samples of English. McCarthy, Briner, 
Rus, and McNamara (2007) showed that Coh-Metrix 
could differentiate sections in typical science texts, 
such as introductions, methods, results, and discus-
sions. Additionally, Crossley, Louwerse, McCarthy, and 
McNamara's (2007) investigations of second language 
learner texts, revealed a wide variety of structural and 
lexical differences between texts that were adopted 

(or authentic) versus adapted (or simplified) for second 
language learning purposes. Finally, NLP has also been 
used to detect deception. Duran, Hall, McCarthy, and 
McNamara (2010) examined the extent to which features 
of language discriminated between conversational 
dialogues in which a person was being deceptive and 
those in which the person was being truthful.

It is important to note that there are potential drawbacks 
to using NLP. For example, certain NLP techniques 
rely on simplified representations of dialogue that use 
word counts or "bag-of-words" approaches. The most 
notable and widely used NLP word representations, 
including LSA vector-spaces, latent Dirichlet alloca-
tion topic distributions (LDA; Blei et al., 2003), and 
word2vec models based on neural networks (Mikolov, 
Chen, Corrado, & Dean, 2013), are all subject to the 
"bag-of-words" assumption in which word order is 
disregarded. In addition, many NLP analyses ignore 
context, such as the intentions or pragmatic aspects 
of the speaker. Similarly, NLP analyses are often lim-
ited to particular corpora and situations, and fail to 
generalize to other contexts. Even with these (and 
other) caveats, NLP is extremely powerful. Because 
of the vast sources of information now available from 
NLP tools, and because the language we use can be an 
extension or externalization that represents thoughts 
and intentions, NLP can provide information about 
the individuals, their abilities, their emotions, their 
intentions, and social interactions. In the context of 
learning analytics, it is a means toward the automated 
understanding of learning processes and the learner.

The Big Picture
NLP provides techniques that automate the analysis 
of language, which allows researchers to establish 
a better understanding of language and of the roles 
that language potentially plays in various aspects of 
our lives. NLP informs feedback systems within tu-

THE POWER OF NLP

Figure 8.2. Predicting educational outcomes will require the integration of multiple sources of data.
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toring systems that prompt the student to generate 
language within answers to questions, explanations, 
and essays. NLP provides a means of simulating intel-
ligence within language-based tutoring systems. NLP 
is also informative in the context of online discussion 
forums. It provides information on student attitudes, 
motivation, and the quality of the language, which in 
turn is predictive of students' likelihood of performing 
well or completing the course.

One goal of learning analytics is to model the char-
acteristics and skills of students in order to provide 
more effective instruction (Allen & McNamara, 2015). 
Specifically, we can use this data for various purposes: 
provide automated feedback on performance, inter-
vene during learning, provide scaffolding or support, 
recommend tutoring, personalize learning, and so on, 
with the assumption that information gleaned from 
analytics will ultimately enhance learning. For this 
purpose, researchers are increasingly turning to large, 
complex data sources (i.e., big data) and using various 
combinations of data types and analytic techniques. 
NLP is crucial to this endeavour because the proposed 
techniques help to improve student learning through 
the prediction and assessment of comprehension 
across a variety of contexts. However, NLP is only one 
piece of the puzzle.

As depicted in Figure 8.2, developing a complete and 

highly predictive understanding of student outcomes 
requires multiple sources of information and a variety 
of approaches to data analysis. Learning is a complex 
process with multiple layers and multiple time scales. 
Relying on any single source or type of data to under-
stand the learning process is myopic, particularly 
when so many automated sources of information are 
currently available. NLP is simply one source of data 
increasingly recognized as an integral piece of the big 
picture that ultimately we seek. Developing a complete 
understanding of learning will require an integration 
of multiple sources of data.
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Discourse analytics (DA) is one area within the field 
of learning analytics (LA; Buckingham Shum, 2013; 
Buckingham Shum, de Laat, de Liddo, Ferguson, 
& Whitelock, 2014). It includes processing of open 
response questions in educational contexts, and a 
large proportion of research in the area focuses on 
assessment of writing, but it encompasses more than 
that, including analysis of discussions occurring in 
discussion forums, chat rooms, microblogs, blogs, 
and even wikis. We consider LA broadly as learning 
about learning by listening to learners learn, with our 
listening normally assisted by data mining and machine 
learning technologies, though the published work in 
the area may precede but not yet include automation 
in all cases (Knight & Littleton, 2015; Milligan, 2015). 
Furthermore, we consider that what makes this area 
distinct is that the listening focuses on natural lan-
guage data in all of the streams in which that data is 
produced.

This chapter offers a very brief introduction to this 
area situated within the field of LA broadly. DA is an 
area that has alternately suffered from two dangerous 

misconceptions. The first is an extreme over-expec-
tation fuelled by the desire of many to have an off-
the-shelf solution that will do their analysis work for 
them at the click of a button. Those falling prey to this 
misconception are almost certainly doomed to dis-
appointment. Making effective use of either the most 
simple or the most powerful modelling technologies 
requires a lot of preparation, effort, and expertise. 
The second misconception is an extreme skepticism, 
sometimes resulting from disappointments arising 
from starting with the first misconception, or other 
times coming from a deep enough understanding of 
the complexities of discourse that it is difficult to get 
past the understanding that no computer could ever 
fully grasp the nuances that are there. While it is true 
that discourse is incredibly complex, it is still true 
that there are meaningful patterns that state-of-the-
art modelling approaches are able to identify. Much 
published work from recent Learning Analytics and 
Knowledge and related conferences that illustrate the 
state-of-the-art are cited throughout this chapter. A 
recent survey on computational sociolinguistics tells 
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This chapter introduces the area of discourse analytics (DA). Discourse analytics has its 
impact in multiple areas, including offering analytic lenses to support research, enabling 
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the story from the perspective of the field of language 
technologies (Nguyen, Dogruöz, Rosé, & de Jong, in 
press), and might be of interest to dedicated readers.

The hope of this chapter is that it provides helpful 
pointers to readers who want to dig a little further. 
Two previous workshops on the topic of DA survey 
the foundational work within the LA community 
(Buckingham Shum, 2013; Buckingham Shum et al., 
2014). An extensive overview of issues and methods 
situated more narrowly within the field of comput-
er-supported collaborative learning can be found in 
three earlier published journal articles (Rosé et al., 
2008; Mu, Stegman, Mayfield, Rosé, & Fischer, 2012; 
Gweon, Jain, McDonough, Raj, & Rosé, 2013). A short 
course in the area can be found in the text-mining unit 
of the Fall 2014 Data, Analytics, and Learning1 MOOC 
offered on the edX platform. Other resources will be 
presented at the end of this chapter.

In this chapter, we are interested in the natural lan-
guage uttered during episodes of learning. We seek 
to be theoretically and methodologically inclusive. 
Much of the existing work on discourse analytics 
views learning and its connection with language from 
a cognitive lens, in other words, seeking categories of 
language behaviour whose presence in a discourse 
makes predictions about learning gains because of 
the connection between the associated discourse 
processes and cognitive processes associated with 
learning. In this chapter, we seek to view learning and 
its connection with language through a social lens in 
order to leverage the important interplay between the 
cognitive and social factors in learning (Hmelo-Silver, 
Chinn, Chan, & O’Donnell, 2013; O’Donnell & King, 1999). 
For example, we seek to identify discourse processes 
that reveal underlying dispositions, attitudes, and 
relationships that play a supporting (or sometimes 
interfering) role in the learning interactions. Regardless 
of the situation in which it is uttered, natural language 
is deeply personal and deeply cultural. Embedded 
within it are artifacts of our personal experiences and 
those of generations that came before us. The details 
of language choices provide clues about the identities 
we purposefully project as well as sometimes those 
we seek to hide or even those of which we are not 
consciously aware. They project assumptions about 
and attitudes towards our audience and our posi-
tioning with respect to our audience, or sometimes 
just assumptions we want our audience to think we 
are making. We use these choices as currency in an 
economy of relationships in which we seek to achieve 
goals that we have adopted (Ribeiro, 2006).

With this understanding, as we use computation as 

1 https://www.edx.org/course/data-analytics-learning-utarling-
tonx-link5-10x 

a lens to aid in our listening to learners, we must ac-
knowledge that we are always abdicating some of the 
responsibility for interpretation to the technologies 
that sit between us and the learning process, including 
whatever was lost or transformed in the recording 
into some digital form, and the further reduction and 
transformation that occurred during the application 
of the analytic technology (Morrow & Brown, 1994). 
With that caveat in mind, in this chapter we will fo-
cus heavily on questions of model interpretation and 
assessment of validity.

When one initially thinks about analytics, algorithms 
immediately pop to mind (Witten, Frank, & Hall, 2011). 
However, it is important to take a lesson from applied 
statistics and instead think about representation first. 
At the heart of DA work is a focus on representation of 
the data. Machine learning models cannot be applied 
directly to texts. Rather, the predictor features must 
be extracted from the text. These predictor features 
can be conceived of as questions: “Is __ found in the 
text?” or “How many times is __ found in the text?” If 
each feature is one of these questions, then for each 
instance, the feature value is the answer to the question. 
Interested readers can get a good feel for the breadth 
of simple features that can readily be extracted from 
text and what impact they have on predictive accuracy 
of classification models by experimenting with the 
publically available LightSIDE tool bench2 (Mayfield & 
Rosé, 2013; Gianfortoni, Adamson, & Rosé, 2011), a freely 
available, off-the-shelf workbench with an extensive 
user’s manual, example data sets, instructions about 
process, and contact information for researchers who 
are willing to offer help.

The key to success with modelling technologies applied 
to text is to ask the right questions, which produce 
meaningful clues. Thinking about this question begins 
by considering how language is structured. Though 
on the surface language may appear to the naked eye 
as a monolithic, unstructured whole, the fact is that 
it is composed of multiple layers of structure, each 
described within a separate area of linguistics. An 
introductory survey of a linguistics textbook (O’Grady, 
Archibald, Aronoff, & Rees-Miller, 2009) would be a 
valuable resource for researchers desiring to get into 
this area of LA. At the finest grain is the sound structure 
level, referred to as phonology and phonetics. Here 
the basic sound units of a language and how they fit 
together into the syllabic structure of a language are 
described. A basic alphabet of sounds comprise the 
set of phonemes, but within dialects these may be 

2 http://lightsidelabs.com/research/ 
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pronounced in particular ways, which carry social 
significance because of their association with a host 
of socially relevant variables such as ethnicity, so-
cioeconomic status, and region. Just above that level, 
the inner structure of words is described in a layer 
referred to as morphology. This is where systems of 
affixes we learn in our grammar classes come into the 
picture, which change the tenses on verbs or number 
on nouns, among other things. Above that is the level 
of syntax, where the grammatical structure of whole 
sentences is described. Also at the level of a sentence 
is the area of semantics, which describes how meaning 
is composed through fixed expressions, by convention, 
or by composing smaller units, guided through syntax, 
and referencing low level semantic units at the level 
of lexical semantics. Above the sentence level is the 
level of discourse, where we find rhetorical strategies 
among other aspects of structure. While these technical 
terms might be unfamiliar to many readers, they may 
provide useful search terms for readers who desire to 
find relevant resources for further reading.

If one traces the history of several areas in which nat-
ural language data has been the target of automated 
analysis, we hear the same refrain, namely the key to 
valid modelling is design of meaningful representations. 
The hope in including this example in this chapter is 
that readers can be spared from learning the same 
lesson the hard way. Taking one of the earliest cases 
where this lesson about DA was well learned was that 
of automated essay scoring (Page, 1966; Shermis & 
Hammer, 2012). The earliest approaches used simple 
models, like regression, and simple features, such as 
counting average sentence length, number of long 
words, and length of essay. These approaches were 
highly successful in terms of reliability of assignment 
of numeric scores (Shermis & Burstein, 2013); however, 
they were criticized for lack of validity in their usage 
of evidence for assessment. In later work, the focus 
shifted to identification of features more like what 
instructors included in their own rubrics for scoring 
writing. This investigation led to inclusion of content 
focused features, including techniques akin to factor 
analysis such as latent semantic analysis (LSA: Foltz, 
1996) or latent Dirichlet allocation (LDA; Blei, Ng, & 
Jordan, 2003; Griffiths & Steyvers, 2004) to aid in 
content based assessments, though these still fall prey 
to problems with unigram features since they are also 
usually grounded in a unigram language representation. 
Other factor analytic language analysis approaches 
such as CohMetrix (McNamara & Graesser, 2012) have 
recently been used for assessment of student writing 
along multiple dimensions, including such factors as 
cognitive complexity. In highly causal domains that build 
in some level of syntactic structural analysis, CohMetrix 
has shown benefits (Rosé & VanLehn, 2005). In science 

education, success with assessment of open-ended 
responses has been achieved with LightSIDE (Nehm, 
Ha, & Mayfield, 2012; Mayfield & Rosé, 2013).

At this point, it is useful to return to the tension be-
tween the over- and under-expectation of DA. If we 
think about the challenges in identifying appropriate, 
meaningful features, we must come to terms with 
the limitations of the lenses we construct through 
modelling tools. The analytic technologies applied in 
DA may serve as a lens in the hands of researchers or 
practitioners that sits between them and the episodes 
of learning that occur within the world, or they may 
be a filter that mediates the interaction between 
learners and instructors, between learners, or be-
tween learners and learning technologies. Lenses are 
useful precisely because they do not simply transfer 
the exact details of the world viewed through them. 
Instead they accentuate aspects of those images that 
would not as effectively been seen without them. That 
is what we need them to do. At the same time, they 
obscure other details that are deemed less interesting 
by design. Lenses always distort. But in order to use 
them in a valid way, we must understand what each 
accentuates and obscures so that we can select an 
appropriate lens, and so we can interpret what we 
see in a valid way, always questioning how the picture 
would be different without it or with a different lens. 
Thus, from the beginning, we would caution those 
who consume the research in this area, develop these 
lenses, or actively apply them in research or practice, 
to be wary of what is inevitably lost or transformed in 
the process of application. Now this chapter will turn 
its attention to specific areas within the scope of DA.

Key decisions that strongly influence how the data 
will appear through the analytic lens are made at the 
representation stage. At this stage, text is transformed 
from a seemingly monolithic whole to a set of features 
that are said to be extracted from it. Each feature 
extractor asks a question of the text, and the answer 
that the text gives is the value of the corresponding 
feature within the representation. Imagine that all 
you knew about a person was the set of answers to 
questions posed during a game of twenty questions, 
and now your task is to classify that person into a 
number of social categories of interest. If the ques-
tions are carefully constructed, you may be able to 
make an accurate prediction; nevertheless, you must 
acknowledge that much information and insight into 
that person as an individual will have been lost in the 
process. Once information is lost at this important 
stage in the process, it cannot be recovered through 
application of an algorithm, no matter how advanced 
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and generally effective that algorithm is. Thus, we 
emphasize throughout this chapter the importance of 
careful decision making about representation, careful 
reflection about interpretation, and careful questioning 
of the validity of inferences made. While readers new 
to this area may find these caveats somewhat illusive, 
they will become clearer with experience.

Overview
Unigram features are the most typical feature extractors 
used in text mining problems. In the case of a unigram 
feature space, for each word appearing within the set of 
texts in the training data, there will be a corresponding 
feature that asks about the presence of that word within 
each text. While unigram feature spaces frequently 
achieve reasonably high performance, the models 
often fail to generalize beyond data collected under 
very similar circumstances to that of the training data. 
The reason for the lack of generalization is that these 
unigram models essentially memorize for each class 
value label in a superficial fashion what kinds of things 
people talk about in the set of instances associated 
with that label in the training data. If there is some 
consistency in that, then it can be learned by these 
models, but that consistency rarely generalizes very 
far. Generalization comes when the features extracted 
come from a relevant layer of structure.

The purpose of the feature-based representation of 
text is frequently to enable predictive modelling for 
classification or numerical assessment, where the 
objective is to achieve this predictive modelling with 
the highest possible accuracy (Rosé et al., 2008; Mc-
Laren et al., 2007; Allen, Snow, McNamera, 2015). This 
orientation will be the focus of this section. However, 
it is important to note that in some work within the 
broad area of DA, the representation work is the fo-
cus, and meaning is made of the identified predictive 
features, and thus the predictive modelling, if any, 
serves mainly as a validation of the meaningfulness of 
the identified features (Simsek, Sandor, & Buckingham 
Shum, 2015; Dascalu, Dessus, McNamera, 2015; Snow, 
Allen, Jacovina, Perret, McNamera, 2015).

With respect to predictive modelling for classifica-
tion, in this vector-based comparison, the chosen 
features should make instances that are of different 
categories look far apart within the vector space, and 
instances that are of the same category look close 
within the vector space. This principle can also be 
used to troubleshoot a text representation. Features 
that either make instances that should be classified 
the same way look different or make instances that 
should be classified differently look similar are very 
likely to cause confusion in the classifications made 
by models trained using representations that include 
those features. The problem is often either ambiguous 

features (i.e., features that mean different things in 
different contexts, but the representation does not 
enable leveraging that context in order to disambig-
uate) or fragmentation (i.e., the same abstract feature 
is being represented by several more specific features, 
some of which are missing or too sparse in your data). 
It may also be that the most meaningful features are 
simply missing from your feature space, and other 
features, which may correlate with the meaningful 
ones within the specific data used as training data, 
will often “steal the weight,” which ends up being 
counter-productive when the model is applied to 
new data where the spurious correlations between 
the meaningful features and less meaningful features 
may not exist or may be different.

Case Study
In order to illustrate the thinking that goes into repre-
sentation of text for DA, we will start with a common 
example, namely analysis of affect in text, otherwise 
known as sentiment analysis (Pang & Lee, 2008). It is 
one of the most heavily marketed applications of text 
mining, and it is frequently the first thing researchers 
think to apply to their text data when faced with an-
alyzing it. We will begin by introducing some issues 
in this area of text analytics and conclude with an 
investigation of what these analytics do or do not 
offer in terms of explaining patterns of attrition in 
MOOCs, where one might reasonably expect to see 
more expressions of negative affect from students who 
are struggling and ultimately drop out. We will see 
that the picture is far more complex than that (Wen, 
Yang, & Rosé, 2014a). In leading the reader through this 
case study, the hope is that the reader will see how 
one might progress through cycles of data analysis 
from pre-conceptions that start out overly simplistic, 
but become more informed through iteration. The 
most interesting work in the area of DA, or any area 
of analytics applied to rich, relatively unstructured 
data, will follow a similar storyline.

Simplistic treatments of sentiment identify texts as 
exhibiting either a positive or negative sentiment, 
and rely on an association between words and this 
affective judgment. Thus, much work has gone into 
the construction of sentiment lexicons, which asso-
ciate words with a positivity or negativity score. The 
area of sentiment analysis is well developed, gaining 
substantial representation in industry, providing 
services to businesses related to marketing issues. 
Nevertheless, the limitations of the technology are 
clear. Furthermore, what is learned from examination 
of the linguistic literature is that much about attitude 
is not conveyed in text through words that are specif-
ically positive or negative (Martin & White, 2005). This 
can be illustrated with the following example related 
to the weather. A statement such as “The weather is 
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beautiful today” contains the required positive word; 
however, “The sun is shining” is only obviously positive 
if one knows that typically sunny days are preferred 
over rainy days. “It’s a great day for staying indoors,” 
indicates that the weather is not so good, despite 
the presence of a positive word. “My rain boots are 
feeling neglected,” could easily be taken as a positive 
comment about the weather despite the presence of 
a negative word.

Now we will investigate situations more close to 
home where the approach may fall short. Because 
sentiment analysis is one of the most widely known 
and widely used language technologies by researchers 
and practitioners in other fields who are interested 
in text, it is not surprising that analysis of forum data 
from MOOCs is one area where we find applications 
of this technology, and thus that work will be a con-
venient case study. The rationale for its application 
was that discussion forum data may be useful for 
understanding better how, why, and when students 
drop out of MOOCs, with the idea that students may 
drop out because they are dissatisfied with a course, 
and that dissatisfaction should be visible using sen-
timent analysis as a lens. In an early such investiga-
tion, however, Ramesh, Goldwasser, Huang, Daumé, 
and Getoor (2013) found no relation between overall 
sentiment expressed by students (as assessed using a 
completely automated method) and their associated 
probability of course completion. Adamopoulos (2013) 
developed a sentiment related assessment method to 
measure sentiment associated with different course 
affordances in order to understand what students ex-
press their attitudes about in course discussion forums. 
They used a combination of automatically identified 
sentiment expressions paired with a grounded theory 
approach to identify themes in the course aspects 
mentioned in connection with attitudes. With this 
more detailed view, they were able to identify that not 
attitude in general, but attitude towards the professor, 
the assignments, and other course materials had the 
strongest association with dropout. In more recent 
work (Wen et al., 2014a), we pushed the automated 
analysis further, increasing the accuracy of sentiment 
measurement, and contrasting sentiment expressed 
by a student versus sentiment they were exposed to 
as well as contrasting sentiment at the student level 
with sentiment at the course level. In this work, the 
exact connection between sentiment-related variables 
and dropout depended upon the nature of the course.

With more probing, it became clear that a far more 
nuanced way of characterizing affect in posts was 
needed. For example, negative affect expressed in 
purely social exchanges might be disclosure, leading 
to enhanced emotional connection. Problem talk in a 
problem-solving course might just indicate engagement 

with the material. Negative affect words, expressions, 
and images may come up in a literature course where 
stories about unfortunate or stressful events are 
discussed, and yet that expressed sentiment might 
have nothing to do with a student’s feeling about the 
experience of reading that material or even discussing 
that material. We conclude that sentiment analysis is 
not as simple as counting positive and negative words. 
Individual words are not enough evidence of attitude, 
context matters. Some rhetorical strategies combine 
negative and positive comments in the same review, and 
sometimes sentiment is expressed indirectly. Nuances 
like this observed through qualitative analysis must 
be taken into account when representing your data.

A variety of factor analytic (Garson, 2013; Loehlin, 2004) 
and latent variable analysis techniques (Skrondal & 
Rabe-Hesketh, 2004; Collins & Lanza, 2010) have been 
popular in the area. These may be unsupervised (i.e., 
not requiring pre-assigned labels), supervised (i.e., re-
quiring examples to have pre-defined labels), or lightly 
supervised (i.e., requiring some external guidance to 
learning algorithms, but not requiring a pre-assigned 
label for every example). In this section, we focus on 
unsupervised methods. The most popular such tech-
niques in the education space include factor analytics 
approaches like latent semantic analysis (LSA: Foltz, 
1996) or structured latent variable models like latent 
Dirichlet allocation or LDA (Blei et al., 2003) mentioned 
briefly above. Thus, here we delve slightly deeper into 
the details and discuss strengths and limitations. In 
recent work in LA, unsupervised approaches have been 
used for exploratory data analysis (Joksimović et al., 
2015; Sekiya, Marsuda, & Yamaguchi, 2015; Chen, Chen, 
& Xing, 2015), sometimes paired with visualization 
techniques (Hsiao & Awasthi, 2015), or alternating 
with or building on hand analysis (Molenaar & Chiu, 
2015; Ezen-Can, Boyer, Kellog, & Booth, 2015). These 
modelling technologies have widely been used because 
researchers think of them as approximating an analysis 
of textual meaning. The reality is that they are much 
less apt at doing so than the prevailing view would 
have one believe. These tools do indeed have their 
place in the arsenal of DA tools. However, the hope 
of this chapter is to raise the curiosity of the reader 
to dig a little deeper in order to foster an appropriate 
scepticism, as described above.

Topic modelling approaches have become very popular 
for modelling a variety of characteristics of unlabelled 
data. A well-known and widely used approach is LDA 
(Blei et al., 2003), which is a generative model effective 
for uncovering the thematic structure of a document 
collection. Hidden Markov modelling (HMM) and other 
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sequence modelling approaches are becoming popular 
for capturing progressions in student experiences 
(Molenaar & Chiu, 2015). Sometimes these approach-
es are combined in order to identify how language 
expression changes in predictable ways over time in 
terms of the representations of thematic content (Jo 
& Rosé, 2015). Statistical approaches such as these are 
meant to capture regularities. They are most valuable 
as tools in methodologies that value data reduction 
and simplification. Because they dismiss as noise the 
unusual occurrences within the data, they are less 
valuable in methodologies that seek unusual happenings 
that challenge assumptions. Though one might adopt 
an anomaly detection approach to identify instances 
that violate assumptions as a way of identifying such 
examples, in practice the examples found are more 
likely to be unusual in ways that are not necessarily 
interesting from the standpoint of challenging as-
sumptions of theoretical import.

LDA works by associating words together within a 
latent word class that frequently occur together within 
the same document. The learned structure is more 
complex than traditional latent class models, where 
the latent structure is a probabilistic assignment of 
each whole data point (which is a document) to a single 
latent class (Collins & Lanza, 2010). An additional layer 
of structure is included in an LDA model such that 
words within documents are probabilistically assigned 
to latent classes in such a way that data points can 
be viewed as mixtures of latent classes. This struc-
ture is important for topic analysis. By allowing the 
representation of documents as arbitrary mixtures 
of latent word classes, it is possible then to keep the 
number of latent classes down to a manageable size 
while still capturing the flexible way themes can be 
blended within individual documents. Each latent word 
class is represented as a distribution of words. The 
words that rank most highly in the distribution are 
those treated as most characteristic of the associated 
latent class, or topic.

Because LDA is an unsupervised language processing 
technique, it would not be reasonable to expect that 
the identified themes would exactly match human 
intuition about organization of topic themes, and yet 
as a technique that models word co-occurrence as-
sociations, it can be expected to identify some things 
that would be expected to be associated. At heart, 
LDA is a data reduction technique. Its strengths lie 
in identification of word associations that are very 
common in a corpus, which frequently correspond to 
common themes. However, the common themes do 
not necessarily have a one-to-one correspondence 
with the themes of interest. Unfortunately, that means 
within the resulting representation, there will not be 
a distinct representation for those themes of interest 

that are not common. Similarly, unusual phrasings 
of common ideas will also typically fail to map to an 
intuitive representation within the LDA space. Rep-
resentation of the textual data is also an important 
consideration. Typically, LDA models are computed 
over feature spaces composed of individual word 
features. Thus, whatever is not captured by individual 
words will not be accessible to the model.

At the other end of the spectrum are supervised 
methods. Taking a somewhat overly simplistic view, 
supervised machine learning methods are typically 
algorithms that operate over sets of vectors that as-
sociate a collection of predictor features, often referred 
to as attributes, with an outcome feature, often referred 
to as a class value. Recently, applications of supervised 
machine learning have been applied to the problem 
of assessment of learning processes in discussion. 
This problem is referred to as automatic collabora-
tive-learning process analysis. Automatic analysis of 
collaborative processes has value for real-time as-
sessment during collaborative learning, for dynami-
cally triggering supportive interventions in the midst 
of collaborative-learning sessions, and for facilitating 
efficient analysis of collaborative-learning processes 
at a grand scale. This dynamic approach has been 
demonstrated to be more effective than an otherwise 
equivalent static approach to support (Kumar, Rosé, 
Wang, Joshi, & Robinson, 2007). Early work in auto-
mated collaborative learning process analysis focused 
on text-based interactions and click stream data (Soller 
& Lesgold, 2007; Erkens & Janssen, 2008; Rosé et al., 
2008; McLaren et al., 2007; Mu et al., 2012). Early work 
towards analysis of collaborative processes from 
speech has begun to emerge as well (Gweon et al., 
2013; Gweon, Agarwal, Udani, Raj, & Rosé, 2011). A 
consistent finding is that representations motivated 
by theoretical frameworks from linguistics and psy-
chology show particular promise (Rosé & Tovares, in 
press; Wen, Yang, & Rosé, 2014b; Gweon et al., 2013; 
Rosé & VanLehn, 2005). We have already mentioned 
the LightSIDE tool bench as a good place to start 
getting experience in this area.

Readers who are interested in getting more familiar 
with the area of DA would benefit from digging first 
into some foundational literature. It is grounded in 
the fields of linguistics (Levinson, 1983; O’Grady et al., 
2009), discourse analysis (Martin & Rose, 2003; Martin 
& White, 2005; Biber & Conrad, 2011), and language 
technologies (Manning & Schuetze, 1999; Jurafsky & 
Martin, 2009; Jackson & Moulinier, 2007).

SUPERVISED METHODS

MOVING AHEAD
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At the "recommendation" of a reviewer of one of my 
papers (D'Mello, 2016), I recently sought to learn a 
new (for me) statistical method called generalized 
additive mixed models (GAMMs; McKeown & Sneddon, 
2014). GAMMs aim to model a response variable with 
an additive combination of parametric and nonpara-
metric smooth functions of predictor variables, while 
addressing autocorrelations among residuals (for 
time series data). At first, I was mildly displeased at 
the thought of having to do more work on this paper. 
Anxiety resulted from the thought that I might not 
have the time to learn and implement a new method 
to meet the revision deadline. So I did nothing. The 
anxiety transitioned into mild panic as the deadline 
approached. I finally decided to look into GAMMs by 
downloading a recommended paper. The paper had 
some eye-catching graphics, which piqued my curiosity 
and motivated me to explore further. The curiosity 
quickly turned into interest as I read more about the 
method, and eventually into excitement when I real-
ized the power of the approach. This motivated me to 
slog through the technical details, which led to some 
intense emotions - confusion and frustration when 
things did not make sense, despair when I almost gave 
up, hope when I thought I was making progress, and 
eventually, delight and happiness when I actually did 
make progress. I then attempted to apply the method 
to my data by modifying some R-syntax. More confu-
sion, frustration, and despair interspersed with hope, 
delight, and happiness. I eventually got it all working 
and wrote up the results. Some more emotions oc-
curred during the writing and revision cycles. Finally, 

I was done. I felt contentment, relief, and a bit of pride. 

As this example illustrates, there is an undercurrent 
of emotion throughout the learning process. This 
is not unique to learning as all "cognition" is tinged 
with "emotion". The emotions may not always be 
consciously experienced (Ohman & Soares, 1994), but 
they exist and influence cognition nonetheless. Also, 
emotions do not occur in a vacuum; they are deeply 
intertwined within the social fabric of learning. It 
does not take much to imagine the range of emotions 
experienced by the typical student whose principle 
occupation is learning. Pekrun and Stephens (2011) 
call these "academic emotions" and group them into 
four categories. Achievement emotions (contentment, 
anxiety, and frustration) are linked to learning activi-
ties (homework, taking a test) and outcomes (success, 
failure). Topic emotions are aligned with the learning 
content (empathy for a protagonist while reading clas-
sic literature). Social emotions such as pride, shame, 
and jealousy occur because education is situated in 
social contexts. Finally, epistemic emotions arise from 
cognitive processing, such as surprise when novelty 
is encountered or confusion in the face of an impasse.

Emotions are not merely incidental; they are func-
tional or they would not have evolved (Darwin, 1872; 
Tracy, 2014). Emotions perform signalling functions 
(Schwarz, 2012) by highlighting problems with knowl-
edge (confusion), problems with stimulation (boredom), 
concerns with impending performance (anxiety), and 
challenges that cannot be easily surpassed (frustra-
tion). They perform evaluative functions by serving 
as the currency by which people appraise an event in 
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terms of its value, goal relevance, and goal congruence 
(Izard, 2010). Emotions perform modulation functions 
by constraining or expanding cognitive focus with 
negative emotions engendering narrow, bottom-up, 
and focused modes of processing (constrained focus) 
(Barth & Funke, 2010; Schwarz, 2012) in comparison to 
positive emotions, which facilitate broader, top-down, 
generative processing (expanded focus) (Fredrickson 
& Branigan, 2005; Isen, 2008). Indeed, emotions per-
vade thought as is evident by their effects on memory, 
problem solving, decision making, and other facets of 
cognition (see Clore & Huntsinger, 2007, for a review).

So what exactly is an "emotion"? Truth be told, we do 
not really know or at least we do not fully agree (Iz-
ard, 2010). This can be readily inferred from the most 
recent debates on the psychological underpinnings 
of emotion - a debate sometimes referred to as the 
"100 year old emotion war" (Lench, Bench, & Flores, 
2013; Lindquist, Siegel, Quigley, & Barrett, 2013). For-
tunately, there is general agreement on the following 
key points. Emotions are conceptual entities that arise 
from brain–body–environment interactions. But you 
will not find them by looking in the brain, the body, 
or the environment. Instead, emotions emerge (Lewis, 
2005) when organism–environment interactions trigger 
changes across multiple time scales and at multiple 
levels - neurobiological, physiological, behaviourally 
expressive, action-oriented, and cognitive/metacog-
nitive/subjective. The "emotion" is reflected in these 
changes in a manner modulated by the ongoing sit-
uational context. The same emotional category (e.g., 
anxiety) will manifest differently based on a triggering 
event (Tracy, 2014), the specific biological/cogni-
tive/metacognitive processes involved (Gross, 2008; 
Moors, 2014), and sociocultural influences (Mesquita 
& Boiger, 2014; Parkinson, Fischer, & Manstead, 2004). 
For example, an anxiety-inducing event will trigger 
distinct "episodes" of anxiety depending on the spe-
cific circumstance (public speaking, test taking), the 
temporal context (one day vs. one minute before the 
speech), the neurobiological system (baseline arousal), 
and the social context (speaking in front of colleagues 
vs. strangers). This level of variability and ambiguity 
is expected because humans and their emotions are 
dynamic and adaptive. Rigid emotions have little 
evolutionary value.

Where do learning analytics (LA) and educational data 
mining (EDM) fit in? On one hand, given the central 
role of emotions in learning, attempts to analyze (or 
data mine) learning without considering emotion 
will be incomplete. On the other hand, giving the 
ambiguity and complexity of emotional phenomena, 
attempts to study emotions during learning without 
the methods of LA and EDM will only yield shallow 
insights. Fortunately, there is a body of work that 

adopts a data-driven analytic approach to study the 
incidence and influence of emotions on the processes 
and products of learning. In this chapter, I highlight 
some of the core, emerging, and future themes in this 
interdisciplinary research area.

Let us begin with a note on terminology. Emotion is 
related, but not equivalent to motivation, attitudes, 
preferences, physiology, arousal, and a host of other 
constructs often used to refer to it. Emotions are also 
distinct from moods and affective traits (Rosenberg, 
1998). Emotion is not the same as a feeling. Hunger is a 
feeling but is not an emotion. Neither is pain. There is 
also some contention as to what constitutes an emotion. 
Anger is certainly an emotion, but what about con-
fusion? Confusion has affective components (feelings 
of being confused, characteristic facial expressions; 
D'Mello & Graesser, 2014b), but there is some debate 
as to whether it is an emotion (Hess, 2003; Rozin & 
Cohen, 2003). Thus, in the remainder of this chapter, 
I use the more inclusive term "affective state" rather 
than the more restrictive term "emotion".

I selected the following four themes to highlight the use 
of LA/EDM methods to study affect during learning. I 
also review one or two exemplary studies within each 
theme in some depth rather than cursorily reviewing 
many studies. This means that many excellent studies 
go unmentioned, but I leave it to the reader to explore 
the body of work within each theme. I recommend 
review papers, when available, to facilitate this process. 

Affect Analysis from Click-Stream Data
One of the most basic uses of LA/EDM techniques 
is to use the rich stream of data generated during 
interactions with learning technologies in order to 
understand learners' cognitive processes (Corbett 
& Anderson, 1995; Sinha, Jermann, Li, & Dillenbourg, 
2014). A complementary set of insights can be gleaned 
when affect is included in the mix, as illustrated in 
the study below. 

Bosch and D'Mello (in press) conducted a lab study 
on the affective experience of students during their 
first programming session. Novice students (N = 99) 
were asked to learn the fundamentals of computer 
programming in the Python language using a self-
paced computerized learning environment involving a 
25-minute scaffolded learning phase and a 10-minute 
non-scaffolded fadeout phase. All instructional activities 
(coding, reading text, testing code, receiving errors, 
etc.) were logged and videos of students' faces and 
computer screens were recorded. Students provided 
affect judgments at approximately 100 points (every 15 
seconds) over the course of viewing these videos im-
mediately after the learning session via a retrospective 

CORE THEMES
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affect judgment protocol (Porayska-Pomsta, Mavrikis, 
D'Mello, Conati, & Baker, 2013). The affective states 
of interest were anger, anxiety, boredom, confusion, 
curiosity, disgust, fear, frustration, flow/engagement, 
happiness, sadness, and surprise. Only engagement, 
confusion, frustration, boredom, and curiosity occurred 
with sufficient frequency to warrant further analysis.

The authors examined how interaction events give rise 
to affective states, and how affective states trigger 
various behaviours. They constructed time series that 
interspersed interaction events (from clickstream data) 
and affective states (self-reports) for each student 
during the scaffolded learning phase. Time series 
modelling techniques (D'Mello, Taylor, & Graesser, 
2007) were used to identify significant transitions 
between affective states and interaction events. The 
resultant model is shown as a directed graph in Figure 
10.1. There were some transitions between interaction 
events that did not include an affective state (dashed 
lines). This was due to the infrequency of affect sam-
pling (every 15 seconds) relative to other interaction 
events (as frequent as 1 second).

The more interesting transitions include affective 
states. In particular, confusion and frustration were 
both preceded by an incorrect solution submission 
(SubmitError); these affective states were then fol-
lowed by a hint request (ShowHint), or by constructing 
code (Coding), which itself triggered confusion and 
frustration. Reading instructional texts (including 
problem descriptions) was a precursor of engagement, 
curiosity, boredom, and confusion but not frustration. 
In other words, all the key affective states were related 
to knowledge assimilation (reading) and construc-
tion (coding) activities. However, only confusion and 
frustration accompanied failure (Submit Error) and 
subsequent help-seeking behaviours (ShowHint), 
which are presumably learning opportunities. Taken 
together, the transition model emphasizes the key 
role of impasses and the resultant negative activating 
states of confusion and frustration to learning (D'Mello 
& Graesser, 2012b; VanLehn, Siler, Murray, Yamauchi, 
& Baggett, 2003). It also illustrates how affect is inter-
spersed throughout the learning process.

Figure 10.1. Significant transitions between affective states and interaction events during scaffolded learning 
of computer programming. Solid lines indicate transitions including affect. Dashed lines indicate transitions 
not involving affective states. ShowProblem: starting a new exercise; Reading: viewing the instructions and/
or problem statement; Coding: editing or viewing the current code; ShowHint: viewing a hint; TestRunEr-
ror: code was run and encountered a syntax or runtime error; TestRunSuccess: code run without syntax or 
runtime errors (but was not checked for correctness); SubmitError: code submitted and produced an error or 
incorrect answer; SubmitSuccess: code submitted and was correct.
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Affect Detection from Interaction 
Patterns
Affective states cannot be directly measured because 
they are conceptual entities (constructs). However, 
they emerge from environment–person interactions 
(context) and influence action by modulating cognition. 
Therefore, it should be possible to "infer" affect by 
analyzing the unfolding context and learner actions. 
This line of work, referred to as "interaction-based", 
"log-file based", or "sensor-free" affect detection was 
started more than a decade ago (Ai et al., 2006; D'Mel-
lo, Craig, Sullins, & Graesser, 2006) and was recently 
reviewed by Baker and Ocumpaugh (2015). 

As an example, consider Pardos, Baker, San Pedro, 
and Gowda (2013), who developed affect detectors 
for ASSISTments, an intelligent tutoring system (ITS) 
for middle- and high-school mathematics, used by 
approximately 50,000 students in the US as part of 
their regular mathematics instruction (Razzaq et al., 
2005). The authors adopted a supervised learning 
approach to build automated affect detectors. They 
collected training data from 229 students while they 
used ASSISTments in school computer labs. Human 
observers provided online observations (annotations) 
of affect as students interacted with ASSISTments 
using the Baker-Rodrigo Observation Method Protocol 
(BROMP) (Ocumpaugh, Baker, & Rodrigo, 2012). Ac-
cording to this protocol, trained observers provide live 
annotations of affect based on observable behaviour, 
including explicit actions towards the interface, in-
teractions with peers and teachers, body movements, 
gestures, and facial expressions. The observers coded 
four affective states (boredom, frustration, engaged 
concentration, and confusion) and two behaviours 
(going off-task and gaming the system). Supervised 
learning techniques were used to discriminate each 
affective state from other states (e.g., bored vs. others) 
using features extracted from ASSISTments log files 
(performance on problems, hint requests, response 
times, etc.). Affect detection accuracies ranged from 
.632 to .678 (measured with the A-prime metric [similar 
to area under the receiver operating characteristic 
curve – AUC or AUROC]) for affect and .802 to .819 for 
behaviours. The classifier was validated in a manner 
that ensured generalizability to new students from 
the same population by enforcing strict independence 
among training and testing data.

Pardos et al. (2013) also provided preliminary evidence 
on the predictive validity of their detectors. This was 
done by applying the detectors on log files from a 
different set of 1,393 students who interacted with 
ASSISTments during the 2004–2006 school years - 
several years before the measure was developed. Au-
tomatically measured affect and behaviour moderately 
correlated with standardized test scores. Further, San 

Pedro, Baker, Bowers, and Heffernan (2013) attempted 
to predict college enrollment based on the automatic 
detectors. They applied the detectors to existing log 
files from 3,707 students who interacted with AS-
SISTments from 2004 to 2009. College enrollment 
information for these students was obtained from 
the National Student Clearinghouse. Automatically 
measured affective states were significant predictors 
of college enrollment several years later, which is a 
rather impressive finding.

Affect Detection from Bodily Signals
Affect is an embodied phenomenon in that it activates 
bodily response systems for action. This should make 
it possible to infer learner affect (a latent variable) 
from machine-readable bodily signals (observables). 
There is a rich body of work on the use of bodily 
signals to detect affect as discussed in a number of 
reviews (Calvo & D'Mello, 2010; D'Mello & Kory, 2015; 
Zeng, Pantic, Roisman, & Huang, 2009). The research 
has historically focused on interactions in controlled 
environments, but researchers have begun to take this 
work into the real world, notably computer-enabled 
classrooms. The study reviewed below reflects one 
such effort by our research group and collaborators, 
but the reader is directed to Arroyo et al. (2009) for 
their pioneering work on affect detection in comput-
er-enabled classrooms. 

Bosch, D'Mello, Baker, Ocumpaugh, and Shute (2016) 
studied automated detection of affect from facial 
features in a noisy real-world setting of a comput-
er-enabled classroom. In this study, 137 middle and 
high school students played a conceptual physics 
educational game called Physics Playground (Shute, 
Ventura, & Kim, 2013) in small groups for 1.5 to 2 hours 
across two days as part of their regular physics/
physical science classes. Trained observers performed 
live annotations of boredom, confusion, frustration, 
engaged-concentration, and delight using the BROMP 
field observation protocol as in the ASSISTments study 
discussed above (Pardos et al., 2013). The observers 
also noted when students went off-task.

Videos of students' faces and upper bodies were re-
corded during game-play and synchronized with the 
affect annotations. The videos were processed using 
the FACET computer-vision program (Emotient, 2014), 
which provides estimates of the likelihood of 19 facial 
action units (Ekman & Friesen, 1978) (e.g., raised brow, 
tightened lips), head pose (orientation), and position 
(see Figure 10.2 for screenshot). Body movement was 
also estimated from the videos using motion filtering 
algorithms (Kory, D'Mello, & Olney, 2015) (see Figure  
10.3). Supervised learning methods were used to build 
detectors of each affective state (e.g., bored vs. other 
states) using both facial expressions and bodily move-
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ments. The detectors were moderately successful with 
accuracies (quantified with the AUC metric as noted 
above) ranging from .610 to .867 for affect and .816 for 
off-task behaviours. Follow-up analyses confirmed that 
the affect detectors generalized across students, mul-
tiple days, class periods, and across different genders 
and ethnicities (as perceived by humans).

One limitation of the face-based affect detectors is 
that they are only applicable when the face can be 
automatically detected in the video stream. This is 
not always the case due to excessive movement, oc-
clusion, poor lighting, and other factors. In fact, the 
face-based affect detectors were only applicable to 
65% of the cases. To address this, Bosch, Chen, Bak-
er, Shute, and D'Mello (2015) used multimodal fusion 
techniques to combine interaction-based (similar 
to previous section) and face-based detection. The 

interaction-based detectors were less accurate than 
the face-based detectors (Kai et al., 2015), but were 
applicable to almost all of the cases. By combining the 
two, the applicability of detectors increased to 98% of 
the cases, with only a small reduction (<5% difference) 
in accuracy compared to face-based detection. 

Integrating Affect Models in Affect-Aware 
Learning Technologies 
The interaction- and bodily-based affect detectors 
discussed above are tangible artifacts that can be 
instrumented to provide real-time assessments of 
student affect during interactions with a learning 
technology. This affords the exciting possibility of 
closing the loop by dynamically responding to the 
sensed affect. The aim of such affect-aware learning 
technologies is to expand the bandwidth of adaptiv-
ity of current learning technologies by responding 

Figure 10.2. Automatic tracking of facial features using the Computer Expression Recognition Toolbox. The 
graphs on the right show likelihoods of activation of various facial features (e.g., brow lowered, eyelids tight-
ening). 

Figure 10.3. Automatic tracking of body movement from video using motion silhouettes. The image on the 
right displays the areas of movement from the video playing on the left. The graph on the bottom shows the 

amount of movement over time.
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to what students feel in addition to what they think 
and do (see D'Mello, Blanchard, Baker, Ocumpaugh, & 
Brawner, 2014, for a review). Here, I highlight two such 
systems, the Affective AutoTutor (D'Mello & Graesser, 
2012a) and UNC-ITSPOKE (Forbes-Riley & Litman, 2011). 

Affective AutoTutor (see Figure 10.4) is a modified 
version of AutoTutor - a conversational ITS that 
helps students develop mastery on difficult topics in 
Newtonian physics, computer literacy, and scientific 
reasoning by holding a mixed-initiative dialog in nat-
ural language (Graesser, Chipman, Haynes, & Olney, 
2005). The original AutoTutor system has a set of fuzzy 
production rules that are sensitive to the cognitive 
states of the learner. The Affective AutoTutor augments 
these rules to be sensitive to dynamic assessments of 
learners' affective states, specifically boredom, confu-
sion, and frustration. The affective states are sensed 
by automatically monitoring interaction patterns, 
gross body movements, and facial features (D'Mello 
& Graesser, 2012a). The Affective AutoTutor responds 
with empathetic, encouraging, and motivational dia-
log-moves along with emotional displays. For example, 
the tutor might respond to mild boredom with, "This 
stuff can be kind of dull sometimes, so I'm gonna try 
and help you get through it. Let's go". The affective 
responses are accompanied by appropriate emotional 
facial expressions and emotionally modulated speech 
(e.g., synthesized empathy or encouragement). 

The effectiveness of Affective AutoTutor over the 
original non-affective AutoTutor was tested in a 
between-subjects experiment where 84 learners 
were randomly assigned to two 30-minute learning 
sessions with either tutor (D'Mello, Lehman, Sullins et 
al., 2010). The results indicated that the affective tutor 

helped learning for low-domain knowledge learners 
during the second 30-minute learning session. The 
affective tutor was less effective at promoting learning 
for high-domain knowledge learners during the first 
30-minute session. Importantly, learning gains increased 
from Session 1 to Session 2 with the affective tutor 
whereas they plateaued with the non-affective tutor. 
Learners who interacted with the affective tutor also 
demonstrated improved performance on a subsequent 
transfer test. A follow-up analysis indicated that learn-
ers' perceptions of how closely the computer tutors 
resembled human tutors increased across learning 
sessions, was related to the quality of tutor feedback, 
and was a powerful predictor of learning (D'Mello & 
Graesser, 2012c). The positive change in perceptions 
was greater for the affective tutor.

As a second example, consider UNC-ITSPOKE (Forbes-Ri-
ley & Litman, 2011), a speech-enabled ITS for physics 
with the capability to automatically detect and respond 
to learners' certainty/uncertainty in addition to the 
correctness/incorrectness of their spoken responses. 
Uncertainty detection was performed by extracting and 
analyzing the acoustic-prosodic features in learners' 
spoken responses along with lexical and dialog-based 
features. UNC-ITSPOKE responded to uncertainty 
when the learner was correct but uncertain about the 
response. This was taken to signal an impasse because 
the learner is unsure about the state of their knowledge, 
despite being correct. The actual response strategy 
involved launching explanation-based sub-dialogs 
that provided added instruction to remediate the 
uncertainty. This could involve additional follow-up 
questions (for more difficult content) or simply the 
assertion of the correct information with elaborated 

Figure 10.4. Affective AutoTutor: an intelligent tutoring system (ITS) with conversational dialogs that auto-
matically detects and responds to learners’ boredom, confusion, and frustration.



HANDBOOK OF LEARNING ANALYTICSPG 120 CHAPTER 10 EMOTIONAL LEARNING ANALYTICS PG 121

explanations (for easier content). 

Forbes-Riley and Litman (2011) compared learning 
outcomes of 72 learners who were randomly assigned 
to receive adaptive responses to uncertainty (adaptive 
condition), no responses to uncertainty (non-adaptive 
control condition), or random responses to uncertainty 
(random control condition). In this later condition, 
the added tutorial content from the sub-dialogs was 
given for a random set of turns in order to control for 
the additional tutoring. The results indicated that the 
adaptive condition achieved slightly (but not signifi-
cantly) higher learning outcomes than the random 
and non-adaptive control conditions. The findings 
revealed that it was perhaps not the presence or ab-
sence of adaptive responses to uncertainty, but the 
number of adaptive responses that correlated with 
learning outcomes.

Research at the intersection of emotions, learning, 
LA, and EDM, has typically focused on one-on-one 
learning with intelligent tutoring systems (Forbes-Riley 
& Litman, 2011; Woolf et al., 2009), educational games 
(Conati & Maclaren, 2009; Sabourin, Mott, & Lester, 
2011), or interfaces that support basic competencies 
like reading, writing, text-diagram integration, and 
problem solving (D'Mello & Graesser, 2014a; D'Mello, 
Lehman, & Person, 2010; D'Mello & Mills, 2014). Al-
though these basic lines of research are quite active, 
recent work has focused on analyzing affect across 
more expansive interaction contexts that more closely 
capture the broader sociocultural context surrounding 
learning. I briefly describe four themes of research to 
illustrate a few of the exciting developments.

Affect-Based Predictors of Attrition and 
Dropout
Early indicators of risk and early intervention systems 
are some of the "killer apps" of LA and EDM (Jay-
aprakash, Moody, Lauría, Regan, & Baron, 2014). Most 
fielded systems focus on academic performance data, 
demographics, and availability of financial assistance. 
These factors are undoubtedly important, but there 
are likely alternate factors that come into play. With 
this in mind, Aguiar, Ambrose, Chawla, Goodrich, and 
Brockman (2014) compared the predictive power of 
traditional academic and demographic features with 
features indicative of behavioural engagement in pre-
dicting dropout from an Introduction to Engineering 
Course. Their key finding was that behaviourally 
engaging with e-portfolios, measured by number of 
logins, number of artifacts submitted, and number 
of page hits, was a better predictor of dropout than 
models constructed from academic performance and 
demographics alone. Although affect was not directly 

measured in this study, behaviourally engaging with 
e-portfolios can be considered a sign of interest, which 
is a powerful motivating emotion.

Sentiment Analysis of Discussion Forums
Language communicates feelings. Hence, sentiment 
analysis and opinion mining techniques (Pang & Lee, 
2008) have considerable potential to study how stu-
dents' thoughts (expressed in written language) about 
a learning experience predicts relevant behaviours 
(most importantly attrition). In line with this, Wen, 
Yang, and Rosé (2014) applied sentiment analysis 
techniques on student posts on three Massive Open 
Online Courses (MOOCs). They observed a negative 
correlation between the ratio of positive to negative 
terms and dropout across time. More recently, Yang, 
Wen, Howley, Kraut, and Rosé (2015) developed meth-
ods to automatically identify discussion posts that 
were indicative of student confusion. They showed 
that confusion reduced the likelihood of retention, 
but this could be mitigated with confusion resolution 
and other supportive interventions.

Classroom Learning Analytics
Recent advances in sensing and signal processing 
technologies have made it possible to automatically 
model aspects of students' classroom experience that 
could previously only be obtained from self-reports 
and cumbersome human observations. For example, 
second-generation Kinects can detect whether the 
eyes or mouth are open, if a person is looking away, 
and if the mouth has moved, for up to six people at a 
time (Microsoft, 2015). In one pioneering study, Raca, 
Kidzinski, and Dillenbourg (2015) tracked students in a 
classroom using multiple cameras affixed around the 
blackboard area. Computer vision techniques were used 
for head detection and head-pose estimation, which 
were then used to train a detector of student atten-
tion (validated via self-reports). This emerging area, 
related to the field of multimodal learning analytics 
(Blikstein, 2013), is poised for considerable progress 
in years to come.

Teacher Analytics
Teachers should not be left out of the loop since teach-
er practices are known to influence student affect 
and engagement. Unfortunately, quantifying teacher 
instructional practices relies on live observations in 
classrooms (e.g., Nystrand, 1997), which makes the 
research difficult to scale. To address this, researchers 
have begun to develop methods for automatic analysis 
of teacher instructional practices. In a pioneering 
study, Wang, Miller, and Cortina (2013) recorded 
classroom audio in 1st to 3rd grade math classes and 
developed automatic methods to predict the level of 
discussions in these classes. This work was recently 
expanded to analyze several additional instructional 

EMERGING THEMES
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activities (lecturing, small group work, supervised 
seatwork, question/answer, and procedures and di-
rections) in larger samples of middle-school literature 
and language-arts classes using teacher audio alone 
(Donnelly et al., 2016a) or a combination of teacher and 
classroom audio (Donnelly et al., 2016b). Blanchard et 
al. (2016) used teacher audio to automatically detect 
teacher questions, achieving a .85 correlation with 
the proportion of human-coded questions. The next 
step in this line of work is to use information on what 
teachers are doing to contextualize how students are 
feeling, which in turn influences what they think, do, 
and learn.

Let me end by briefly highlighting some potential 
future themes of research. One promising area of 
research involves a detailed analysis of the emotional 
experience of learners and communities of learners 
across the extended time scale of a traditional course, 
a flipped-course, or a MOOC (Dillon et al., 2016). 
A second involves the study of emotion regulation 
during learning, especially how LA/EDM methods 
can be used to identify different regulatory strategies 
(Gross, 2008), so that the more beneficial ones can 
be engendered (e.g., Strain & D'Mello, 2014). A third 
would jointly consider emotion alongside attentional 
states of mindfulness, mind wandering, and how 
emotion-attention blends like the "flow experience" 
(Csikszentmihalyi, 1990) emerge and manifest in the 
body and in behaviour. A fourth addresses how the 
so-called "non-cognitive" (Farrington et al., 2012) traits 
like grit, self-control, and diligence modulate learner 
emotions and efforts to regulate them (e.g., Galla et 
al., 2014). A fifth would monitor emotions of groups of 
learners during collaborative learning and collabora-
tive problem solving (Ringeval, Sonderegger, Sauer, & 
Lalanne, 2013) given the importance of collaboration 
as a critical 21st century skill (OECD, 2015).

Finally, quoting William James's classic 1884 treatise 
on emotion: "The most important part of my envi-

ronment is my fellow-man. The consciousness of his 
attitude towards me is the perception that normally 
unlocks most of my shames and indignations and fears" 
(p. 195). Research to date has mainly focused on the 
achievement, epistemic, and topic emotions. However, 
an analysis of learning in the sociocultural context 
in which it is situated must adequately address the 
social emotions of pride, shame, guilt, jealousy, envy, 
and so on. This is both a future theme and a grand 
research challenge. 

Learning is not a cold intellectual activity; it is punc-
tuated with emotion. The emotions are not merely 
decorative, they have agency. But emotion is a complex 
phenomenon with multiple components that dynamically 
unfold across multiple time scales. And despite great 
strides in the fields of affective sciences and affective 
neuroscience, we know little about emotions, and even 
less on emotions during learning. This is certainly not 
to imply that we should refrain from modelling emo-
tion until there is more theoretical clarity. Quite the 
opposite. It simply means that we need to be mindful of 
what we are modelling when we say we are modelling 
emotion. We also need to embrace, rather than dilute, 
the complexity and ambiguity inherent in emotion. If 
anything, the discovery-oriented, data-driven, analytic 
methods of LA and EDM, along with an emphasis on 
real-world data collection, has the unique potential to 
advance both the science of learning and the science 
of emotion. It all begins by incorporating emotion into 
the analysis of learning.
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In its origins, the focus of the field of learning analytics 
(LA) was the study of the actions that students perform 
while using some sort of digital tool. These digital tools 
being learning management systems (LMSs; Arnold 
& Pistilli, 2012), intelligent tutoring systems (ITSs; 
Crossley, Roscoe, & McNamara, 2013), massive open 
online courses (MOOCs; Kizilcec, Piech, & Schneider, 
2013), educational video games (Serrano-Laguna & 
Fernández-Manjón, 2014), or other types of systems 
that use a computer as an active component in the 
learning process. On the other hand, comparatively 
less LA research or practice has been conducted in 
other learning contexts, such as face-to-face lectures 
or study groups, where computers are not present 
or have only an auxiliary, not-defined role. This bias 
towards computer-based learning contexts is well 
explained by the basic requirement of any type of 
LA study or system: the existence of learning traces 
(Siemens, 2013).

Computer-based learning systems, even if not initial-
ly designed with analytics in mind, tend to capture 
automatically, in fine-grained detail, the interactions 
with their users. The data describing these interac-
tions is stored in many forms; for example, log-files or 
word-processor documents that can be later mined to 
extract the traces to be analyzed. The relative abun-
dance of readily available data and the low technical 
barriers to process it make computer-based learning 
systems the ideal place to conduct R&D for LA. On the 
contrary, in learning contexts where computers are 

not used, the actions of learners are not automatically 
captured. Even if some learning artifacts exist, such as 
student-produced physical documents, they need to 
be converted before they can be processed. Without 
traces to analyze, computational models and tools 
used traditionally in LA are not applicable.

The existence of this bias towards computer-based 
learning contexts could produce a streetlight effect 
(Freedman, 2010) in LA. This effect takes its name from 
a joke in which a man loses his house keys and searches 
for them under a streetlight even though he lost them in 
the park. A police officer watching the scene asks why 
he is searching on the street then, to which the man 
responds, “because the light is better over here.” The 
streetlight effect means looking for solutions where it 
is easy to search, not where the real solutions might 
be. The case can be made for early LA research trying 
to understand and optimize the learning process by 
looking only at computer-based contexts but ignoring 
real-world environments where a large part of the 
process still happens. Even learners’ actions that can-
not be logged  in computer-based systems are usually 
ignored. For example, the information about a student 
looking confused when presented with a problem in an 
ITS or yawning while watching an online lecture is not 
considered in traditional LA research. To diminish the 
streetlight effect, researchers are now focusing on how 
to collect fine-grained learning traces from real-world 
learning contexts automatically, making the analysis 
of a face-to-face lecture as feasible as the analysis of 
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a MOOC session. More contemporary works on LA 
explore the new sources of data apart from traditional 
log-files: student-generated texts (Simsek et al., 2015), 
eye-tracking information (Vatrapu, Reimann, Bull, & 
Johnson, 2013) and classroom configuration (Almeda, 
Scupelli, Baker, Weber, & Fisher, 2014) to name a few. 
The combination of these different sources of learning 
traces into a single analysis is the main objective of 
multimodal learning analytics (MLA).

MLA is a subfield that attempts to incorporate differ-
ent sources of learning traces into LA research and 
practice by focusing on understanding and optimizing 
learning in digital and real-world scenarios where the 
interactions are not necessarily mediated through a 
computer or digital device (Blikstein, 2013). In MLA, 
learning traces are combined from not only extracted 
from log-files or digital documents but from recorded 
video and audio, pen strokes, position tracking de-
vices, biosensors, and any other modality that could 
be useful to understand or measure the learning 
process. Moreover, in MLA, the traces extracted from 
different modalities are combined to provide a more 
comprehensive view of the actions and the internal 
state of the learner.

The idea of using different modalities to study learn-
ing, while new in the context of LA, is common in 
traditional experimental educational research. Adding 
a human observer, which is by nature a multimodal 
sensor, into a real-world learning context is the usual 
way in which learning in-the-wild has been studied 
(Gall, Borg, & Gall, 1996). Technologies such as video 
and audio recording and tagging tools have made 
this observation less intrusive and more quantifiable 
(Cobb et al., 2003; Lund, 2007). The main problem 
with the traditional educational research approach 
is that the data collection and analysis, due to their 
manual nature, are very costly and do not scale. The 
data collection needs to be limited in both size and 
time and data analysis results are not available fast 
enough to be useful for the learners being studied. If 
different modalities could be recorded and learning 
traces could be automatically extracted from them, LA 
tools could be used to provide a continuous real-time 
feedback loop to improve learning as it is happening.

As would be expected, extracting learning traces from 
raw multimodal recordings is not trivial. Techniques 
developed in computer vision, speech processing, 
sketch recognition and other computer science fields 
must be guided by the current learning theories pro-
vided by learning science, educational research, and 
behavioural science. Given its complexity, the MLA 
subfield is relatively young and unexplored. However, 
initial studies and early interdisciplinary co-operation 
between researchers have produced positive results 

(Scherer, Worsley, & Morency, 2012; Morency, Oviatt, 
Scherer, Weibel, & Worsley, 2013; Ochoa, Worsley, 
Chiluiza, & Luz, 2014, Markaki, Lund, & Sanchez, 
2015). This chapter is an initial guide for researchers 
and practitioners who want to explore this subfield. 
First, the main modalities used in MLA research will 
be presented, analyzed, and exemplified. Second, the 
real-world settings where MLA has been applied are 
studied and classified according to their main modal-
ities. Finally, several unresolved issues important for 
MLA research and practice are discussed.

In its communication theory definition, multimodality 
refers to the use of diverse modes of communication 
(textual, aural, linguistic, spatial, visual, et cetera) 
to interchange information and meaning between 
individuals (Kress & Van Leeuwen, 2001). The media 
— movies, books, web pages, or even air — are the 
physical or digital substrate where a communication 
mode can be encoded. Each mode can be expressed 
through one or several media. For example, speech 
can be encoded as variations of pressure in the air 
(in a face-to-face dialog), as variations of magnetic 
orientation on a tape (in a cassette recording), or as 
variations of digital numbers (in an MP3 file). As well, 
the same medium can be used to transmit several 
modes. For example, a video recording can contain 
information about body language (posture), emotions 
(face expression), and tools used (actions).

By its own nature, learning is often multimodal (Jewitt, 
2006). A human being can learn by reading a book, 
listening to a professor, watching a procedure, using 
physical or digital tools, and any other mode of human 
communication where relatively complex information 
can be encoded. The learning process also uses several 
feedback loops — for example, a student nodding when 
the instructor asks if the lesson was understood, or the 
emphasis of the instructor’s voice while explaining a 
topic. These feedback modes usually encode simpler 
information but are critical for the process. If learning 
is to be analyzed, understood, and optimized, traces 
of the interactions occurring in each of the relevant 
modes should be obtained. MLA focuses on extracting 
these traces from the different modes of communica-
tion while being agnostic of the medium where those 
modes are encoded or recorded.

The following subsections present the state-of-the-
art on the capture and trace-extraction for the most 
common modalities used in MLA research. For each 
modality, a brief definition is presented, together with 
a discussion of its importance to understanding the 
learning process, a list of most common methods of 
capture and recording, and examples of where they 

MODALITIES AND MEDIA
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have been used. This is not a comprehensive list of 
all the modes relevant for learning, only those used 
successfully in MLA studies.

Gaze
Humans tend to look directly at what draws their 
attention. As such, the direction of the gaze of an 
individual is a proxy indicator of the direction of his 
or her attention (Frischen, Bayliss, & Tipper, 2007). 
Attention is an indispensable requirement for learning 
(Kruschke, 2003). Paying attention to a signal helps 
the individual to capture its information and store 
the relevant parts in long-term memory. While gaze 
is not the only proxy to estimate attention and is not 
error-free, it is commonly used in educational prac-
tice. For example, a trained instructor can assess the 
level of attention of a whole classroom by surveying 
the gaze of the students; an observer can determine 
a participant’s level of attention in a discussion by 
tracking the re-direction of the gaze from speaker 
to speaker.

The importance of gaze has been long identified by 
marketers, behavioural, and human–computer inter-
action researchers. Eye-tracking studies are common 
to determine the effectiveness of advertising (Krug-
man, Fox, Fletcher, Fischer, & Rojas, 1994), help with 
the early diagnosis of autism (Boraston & Blakemore, 
2007), and the effectiveness of computer interfaces 
(Poole & Ball, 2006). However, the main methods for 
recording gaze in these studies, using monitor fixed 
eye-trackers or special eye-tracking glasses, are too 
intrusive and costly to be widely deployed in learning 
settings. The current medium of choice for gaze cap-
turing in MLA is video recordings (Raca & Dillenbourg, 
2013). A camera, or an array of cameras, is positioned 
to record the head and eyes of the subject(s). Then, 
computer vision techniques, such as those presented 
in Lin, Lin, Lin, and Lee (2013), are used to extract the 
gaze direction information from the video recording. 
The main aspects that need to be controlled to obtain 
the relative gaze direction in the recording are face 
resolution and avoiding occlusion from objects or other 
individuals in the setting (Raca & Dillenbourg, 2013). 
Information about the position of the cameras in the 
learning setting must also be recorded to calculate 

the absolute gaze direction.

MLA has several examples of gaze trace extraction. 
Raca and Dillenbourg (2013) estimate gaze direction 
from head orientation in video recordings of students 
sitting in a lecture using a part-based model (Figure 
11.1). In this figure, student faces are automatically 
recognized (rectangle) and their gaze (arrow) is esti-
mated based on a human face model. This information 
is then used to determine the focus of attention of 
individual students and compare it with self-reported 
attention. Raca and Dillenbourg found that the per-
centage of time students have the instructor in their 
field of vision is an important predictor of the level 
of attention reported. In a different learning setting, 
Echeverría, Avendaño, Chiluiza, Vásquez, and Ochoa 
(2014), also estimated gaze direction measuring head 
orientation by calculating the distance between eye 
centre points to nose tip point. This information was 
used to determine if students maintained eye contact 
with the audience during academic presentations.

Posture, Gestures, and Motion 
(Body Language)
Posture, gestures, and motion are three interrelated 
modes, jointly referred as body language, although 
each one could carry different types of information 
(Bull, 2013). Posture refers to the position that the body 
or part of the body adopts at a given moment in time. 
The posture of a learner could provide information 
about their internal state. For example, if a student is 
seated with the head resting on the desk, the instructor 
could infer that the student is tired or not interested 
in the lecture. In special cases, the posture adopted 
is related to the acquisition of skills. For example, 
students training in oral presentations are expected 
to use certain postures (hands and arms slightly open) 
rather than others (hands in the pockets). Gestures 
being learned do not indicate an internal state. Ges-
tures are coordinated movements from different parts 
of the body, especially the head, arms, and hands to 
communicate a specific meaning. This non-verbal form 
of communication is usually conscious. It is used as a 
way to provide short feedback loops and alternative 
emphasizing channels in the learning process. For 
example, the instructor pointing to a specific part of 

Figure 11.1. Gaze estimation in a classroom setting (Raca, Tormey, & Dillenbourg, 2014).
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the blackboard or a student raising his shoulders when 
confronted with a difficult question. Finally, motion is 
any change in body position not necessary to acquire a 
new posture or to perform a given gesture. This motion 
is often the result of unconscious body movements 
that reveal the inner state of the subject during the 
learning process; for example, erratic movements that 
signal nervousness or doubt.

Posture, gestures, and motion have been the modes 
most often studied in MLA due the relative ease in 
capturing video in real-world environments, together 
with the availability of low-cost 2-D and 3-D sensors 
and high-performing computer vision algorithms 
for feature extraction. While body language can be 
captured with high precision using accelerometers 
attached to different body parts (Mitra & Acharya, 
2007) or using specialized tools (for example, a Wii 
Remote; Schlömer, Poppinga, Henze, & Boll, 2008), in 
practice using them is too invasive or foreign in most 
learning activities. The most common solution to 
capture motion is recording video of the subject and 

estimating posture, gestures, and motion. Any type 
of camera can be used as long as it can capture the 
relevant motion with enough resolution. The resolu-
tion needed depends on the type of feature extraction 
conducted with the video. For automatic extraction of 
human motion, the most common device used is the 
Microsoft Kinect (Zhang, 2012). Through a mixture of 
video and depth capture, Kinect is able to provide re-
searchers with a reconstructed skeleton of the subject 
for each captured frame, which is ideal for capturing 
body postures and gestures. Newer versions of the 
Kinect sensor are also able to extract hand gestures 
(Vasquez, Vargas, & Sucar, 2015).

The most salient examples of the capture and pro-
cessing of body language in MLA are the estimation 
of attention through upper-body relative movement 
delay in a classroom setting (Raca, Tormey, & Dillen-
bourg, 2014) and the posture and gesture analysis of 
a novice academic presenter towards the creation of 
an automated presentation tutor (Echeverría et al., 
2014). Figure 11.2 presents the 23 different postures 

Figure 11.3. Actual postures classified according to prototype postures (Echeverría et al., 2014).

Figure 11.2. Clustered upper-body postures of real student presenters (Echeverría, Avendaño, Chiluiza, 
Vásquez, & Ochoa, 2014).
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obtained from the analysis of Kinect data of students 
presenting their work. These 23 postures were classified 
into six body gestures (different colours) that could 
be considered good or bad for a presentation. Figure 
11.3 presents real examples of these body gestures 
during actual presentations. The classification of the 
pose (above the Kinect points on the left) corresponds 
with what a human observer could interpret from the 
photo (on the right).

Other interesting examples in using gestures are 
Boncoddo et al. (2013), Alibali, Nathan, Fujimori, Stein, 
and Raudenbush, (2011), and Mazur-Palandre, Colletta, 
and Lund (2014). In the first, Boncoddo et al. (2013) 
captured the number of relevant gestures performed 
during the explanation of mathematical proofs and 
established the relation with the way students arrive 
at their answers. In the second, Alibali et al. (2011) 
classified the different gestures made by teachers 
during math classes and found relations between them. 
Finally, Mazur-Palandre et al. (2014) presented a study 
on the use of gestures by children when explaining 
procedures and instructions.

Actions
The action mode is very similar to the gesture and 
motion modes. Both are body movements usually 
captured by video recordings in MLA. However, ac-
tions are purposeful movements, usually involving the 
manipulation of a tool, that are usually learned. The 
type, sequence, or correctness of these actions can 
be used as indicators of the level of mastery that the 
learner has achieved in a given skill. For example, the 
order and security in which diverse tools are manip-
ulated by a student in a lab can be used as a proxy to 
determine the understanding that the student has 
about a given procedure.

The main uses of action recording and analysis in 
MLA are in expertise estimation. In an engineering 
building activity, for example, the analysis of hand 
and wrist movement can determine the level of ex-
pertise (Worsley & Blikstein, 2014b). In mathematical 
problem solving, the percentage of time that a learner 
uses a calculator can be measured (Ochoa et al., 2013). 
Ochoa et al. (2013) tracked the position and angle of 
the calculator in problem-solving sessions (Figure 
11.4). This position and angle (line) were then used 
to estimate which student was using the calculator 
during that specific frame in the video (intersection 
with the border of the image).

Facial Expressions
Also highly related to body language modes is the 
information gathered through facial expressions. The 
human face can communicate very complex mental 
states through relatively simple expressions. There 
has been a large body of successful research in the 

area of computer vision, trying to identify emotions 
automatically from facial expressions recorded in 
video (Mishra et al., 2015).

The main examples of using facial expressions in the 
field of LA are the works of Craig, D’Mello, Wither-
spoon, and Graesser (2008), and Worsley and Blikstein 
(2015b). Craig et al. (2008) automatically estimated the 
emotional states of students while using the AutoTutor 
system (Graesser, Chipman, Haynes, & Olney, 2005). 
Worsley and Blikstein (2015b) used similar techniques 
to discover emotional changes when students are 
confronted with different building exercises. Both 
studies discovered that a confused expression is a 
good indicator of the success of the learning process.

Speech
The most common use of audio recordings in MLA is 
to capture traces of what the student is talking about 
or listening to. As the main and most complex form of 
communication among humans, speech is especially 
important in understanding the learning process. In 
the current practice of MLA, two main signals are 
extracted from audio recordings: what is being said 
and how it is being said. In the first approach, usually 
referred as speech recognition, the actual content 
of speech is extracted. The result of this analysis 
is a transcript that can be further processed using 
natural language processing (NLP) tools to establish 
what the subject is talking about. In the second ap-
proach, prosodic characteristics of the speech, such 
as intonation, tone, stress, and rhythm, are extracted. 
These characteristics can shed light on the internal 
state (security, emotional state, et cetera) or intention 
of the speaker (joke, sarcasm, et cetera). Speech rec-
ognition is heavily dependent on the language used, 
while prosodic characteristics are less sensible to 
language variations.

Audio is captured through microphones. While it 

Figure 11.4. Determination of calculator use for 
expertise estimation (Ochoa et al., 2013).
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seems easier to capture than video, the recording 
of audio of high enough quality to be processed is 
actually much more complicated. The type and spa-
tial configuration of the microphones depend on the 
learning environment and what type of analysis will 
be conducted with the recorded signal. For example, 
if automatic speech recognition will be attempted, 
the microphone should be directional and be close 
to the subject’s mouth. On the other hand, if only the 
detection of when somebody is talking is needed, an 
environmental microphone located in the middle of 
the room could be enough. The presence of noise and 
multiple signals not only prevents automatic feature 
extraction but will also degrade manual annotation. The 
most common technique used to improve recordings, 
when individual close-recording is not possible, is the 
use of microphone arrays that can not only reduce the 
noise but also determine the spatial origin of the audio.

Due to its importance, audio is also present in most 
MLA works to date. Different types of speech analy-
sis have been used to establish the level of affinity of 
collaborative learning dialogues (Lubold & Pon-Harry, 
2014), to evaluate the quality of oral presentations 
(Luzardo, Guamán, Chiluiza, Castells, & Ochoa, 2014), 
and to determine expertise in mathematics problem 
solving (Thompson, 2013).

Writing and Sketching
Two closely related modes are writing and sketch-
ing. They both use an instrument, most commonly a 
pen, to communicate complex thoughts. Using a pen 
is perhaps one of the first skills that students learn 
so using it to write and sketch is still a predominant 
activity in learning, especially at early stages. The 
most common information extracted from this mode 
is the transcript of what the student is saying, in the 
case of writing, or a structured representation of the 
sketches where information about their content can 
be inferred. However, capturing the process of writing 
and sketching through technological means opens 

the door to using information that human observers 
cannot easily detect, such as writing speed, rhythm, 
and pressure level. While their value for understanding 
learning is still not clear, there are indications that they 
could be good expertise predictors (Ochoa et al., 2013).

The recording instrument most commonly used to 
capture writing and sketching is a digital pen (Ovi-
att & Cohen, 2015). These pens are able to digitize 
the position, duration, and pressure of the strokes 
done on different surfaces. Once in digital form, this 
information can be used in LA tools. Alternatively, 
the widespread use of tablets in education (Clarke & 
Svanaes, 2014) also offers an opportunity to capture 
these modes easily, especially sketching.

In the realm of MLA, two works based on the math 
data corpus (Oviatt, Cohen, & Weibel, 2013) explored 
the contribution that writing and sketching modes 
could have in the prediction of expertise. Ochoa et 
al. (2013) extracted writing characteristics (stroke 
speed and length) and performed sketch recognition 
to determine the number of simple geometrical figures 
used. The results determined that speed of writing is 
highly correlated with level of expertise. Zhou, Hang, 
Oviatt, Yu, & Chen (2014) used classification systems 
based on writing and sketching characteristics to 
identify the expert in the group with 80% accuracy.

The main goal of MLA research is to extend the ap-
plication of LA tools and methodologies to learning 
contexts that do not readily provide digital traces. One 
characteristic of these contexts is that the capture of 
more than one mode is necessary to understand the 
learning process. Table 11.1 presents a summary of the 
context studied in the current MLA literature with a 
detail of the modes used, the main learning aspects 
being explored in those contexts, and the works where 
those studies are conducted.

CONTEXTS

Contexts Modes Learning Aspects Works

Lectures Movement, Gaze, Gestures, Facial 
Expression, Speech

Attention, Question-Answer 
Interactions

Raca & Dillenbourg, 2013; Raca et al., 2014; 
Dominguez et al., 2015; D’Mello et al., 2015; 
Alibali et al., 2011

Oral Presentations Posture, Movement, Gestures, Gaze, 
Speech, Digital Document

Skill Development, Feed-
back, Mental State

Luzardo et al., 2014; Echeverría et al., 2014; 
Chen et al., 2014; Leong et al., 2015; 
Schneider et al., 2015;
Boncoddo et al., 2013

Problem-Solving Movement, Actions, Speech, Writing, 
Sketching Expertise Estimation

Ochoa et al., 2013; Luz, 2013; Thompson, 
2013; 
Zhou et al., 2014

Construction Exer-
cises

Gestures, Actions, Speech, Facial 
Expressions, Galvanic Skin Response Novice vs. Expert Patterns Worsley & Blikstein, 2013, 2014b, 2015a

Use of Intelligent 
Tutoring Systems

Digital Log Files, Facial Expressions, 
Speech

Relation between Emotions 
and Learning Craig et al., 2008; D’Mello et al., 2008

Table 11.1. Learning Contexts Studied by MLA
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Lectures
Traditionally, lectures are the most common context 
associated with learning. While several aspects of this 
setting deserve study, MLA researchers to date have 
focused on automatically assessing the attention of 
students during the lecture. The seminal works of 
Raca and Dillenbourg (2013) and Raca et al. (2014) have 
explored the recording of video in the classroom and 
the automatic extraction of student movement and 
gaze from that recording. The results of these studies 
suggest that both modes are related to student atten-
tion, but there are other significant contributors, such 
as sitting position. Dominguez, Echeverría, Chiluiza, 
and Ochoa (2015) presented a novel, distributed way 
to capture video-, audio- and pen-based modes using 
a multimodal recording device (MRD). Figure 11.5 pres-
ents the design of such a device. The proximity of the 
device to the students reduces the risk of occlusion 
and increases the video and audio capture quality. 
Finally, D’Mello et al. (2015) produced diverse audio 
recordings in a lecture setting in order to evaluate 
question–answer interactions between instructor 
and students.

Oral Presentations
The skill of presenting an academic topic in front of an 
audience is frequently regarded as one of the soft-skills 
that higher-education students should acquire (Deb-
nath et al., 2012). Several independent groups around 
the globe have recently started to build MLA systems 
able to help novice students correct bad-practices 
and gain mastery in oral presentations. Echeverría 
et al. (2014) and Luzardo et al. (2014) present different 
aspects of the same system that uses gesture, posture, 
movement, gaze, speech, and an analysis of the digital 
presentation files and is able to predict the grade that 
a human evaluator will give the student. Chen, Leong, 
Feng, and Lee (2014), analyzing the same data, were 
able to combine the different modalities in composite 
variables also used to predict the score. Schneider, 

Börner, van Rosmalen, and Specht (2015) also created 
a virtual presentation skill trainer utilizing Kinect to 
recognize postures and provide feedback in real-time.

Problem-Solving
Learning, especially in STEM subjects, frequently oc-
curs at individual and group problem-solving sessions 
(Silver, 2013). The existence of the math data corpus 
(Oviatt et al. 2013), a set of multimodal recordings of 
groups of three high-school students solving math 
and geometry problems, catalyzed MLA research in 
this setting. The media provided in the dataset in-
clude frontal video recordings of each student, video 
recordings of the working table, audio recordings of 
each student, and general audio of the room. Addi-
tionally, students were equipped with digital pens. 
Ground truth is provided about the level of expertise 
of the students. Luz (2013), Thompson (2013), Ochoa et 
al. (2013), and Zhou et al. (2014) have all analyzed this 
dataset using diverse modes, concluding that all the 
modalities contributed to the determination of the 
level of expertise with a high level of accuracy (>70%).

Construction Exercises
The knowledge and skills required for engineering 
design and construction can be tested through small 
construction challenges (Householder & Hailey, 2012). 
The seminal works of Worsley and Blikstein (2013, 
2014b, 2015a) explore, through multimodal analysis, 
the patterns of actions performed by experts and nov-
ices in the design and manual assembly of structures. 
The main modes used for the analysis were gestures, 
actions, speech, facial expression, and galvanic skin 
response. The combination of traces extracted from 
these modes reveals differences in the construction 
process that are helpful to identify the level of mastery 
in engineering design.

Use of Intelligent Tutoring Systems
ITSs are usually studied by traditional LA using log-
files. However, video and audio of the learner have 

Figure 11.5. Design of a multimodal recording device (MRD) to be used in lecture settings. MRD in the class-
room (left) and MRD from student's point of view (right) 
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been captured to add new modes that complement 
the interaction data. The main modes extracted from 
the video are facial expression (Craig et al., 2008) and 
speech (D’Mello et al., 2008), which act as proxies for 
the learner’s internal emotional state. Both are able to 
successfully detect emotional states such as boredom, 
confusion, and frustration in using the ITS.

Once extracted, using multimodal traces in LA models 
and applications is similar to using different traces 
extracted from the same mode. However, MLA research 
and practice raise several specific issues when certain 
modalities are captured, processed, and analyzed. 
These issues remain open research areas, parallel to 
the technical extraction of traces from several mo-
dalities, but as important for the effective deployment 
of MLA solutions in the real-world.

Recording
Capturing interaction information in a digital tool is 
as easy and inexpensive as adding log statements in 
relevant parts of the code. These statements perform 
automatically, without requiring any involvement from 
the learner, in a transparent and generally reliable and 
error-free way. On the other hand, capturing media in 
the real-world requires the acquisition, installation, 
and use of recorders (cameras, microphones, digital 
pens, et cetera), turning the system on and off and 
monitoring it, and avoiding the degradation of the 
recording through occlusions, interference, or noise. 
Developing recording systems that work as effortlessly 
and efficiently as digital logging is one of the main 
barriers to the development of MLA. While this is an 
engineering problem, researchers should be aware of 
the feasibility and scalability of their solutions. One of 
the main proposals is to decentralize the recordings 
using inexpensive sensors that are always left on. If 
one or more recordings present problems, the general 
information could be reconstructed from the remaining 
working sensors.

Privacy
Capturing interaction information with digital tools 
already raises privacy concerns among students and 
instructors (Pardo & Siemens, 2014). The installation 
and use of recording systems that mimic “1984” levels 
of surveillance is bound to meet strong resistance. 
Informed consent forms could work for early research 
stages, but adopting MLA systems in the real-world would 
require a different, more creative approach. One of the 
most promising solutions in this area is transferring 
data ownership to the learner. Even if highly personal 
information is captured, privacy concerns are defused 
if the decision of what and when to share it remain 
in the control of the learner. This approach is similar 

to several quantified-self applications (Swan, 2013).

Integration
One question concerning the availability of large 
amounts of raw learning traces is how to combine them 
in order to produce useful information to understand 
and optimize the learning process. Traces extracted 
from different modes using different processes are 
bound to have very different characteristics. For exam-
ple, the time granularity of the traces extracted from 
different modes can vary widely. Traces extracted from 
prosodic aspects of speech could change in tenths of a 
second while postures change more slowly. The level of 
certainty of the extracted traces can also be different. 
Speech recognition with high-quality recordings could 
reach 90% accuracy while emotional state detection 
from webcam sources could be in the low 70s. These 
difference do not prevent successful analysis, howev-
er, thoughtful design is required in order to prevent 
spurious results. Pioneering this line of research in 
MLA, Worsley and Blikstein (2014a) propose several 
fusion strategies based on the “bands of cognition” 
framework proposed by Newell (1994) and Anderson 
(2002) as an explanation for human cognition. The 
development of integration frameworks will benefit 
not only MLA but the whole LA community.

Impact on Learning
While the end-user tools and interventions based on 
multimodal learning analytics are similar to those 
based on monomodal analysis, the required usefulness 
of multimodal ones should be higher to justify the 
additional complexity of data acquisition. For example, 
a dashboard application based on data automatically 
captured by the LMS will be easier to accept than a 
similar dashboard that requires all classrooms be 
equipped with video cameras. The increased com-
plexity should be accompanied by a larger positive 
impact on the learning process. The requirement of 
using multiple real-world signals to analyze learning 
should also come with the promise to provide more 
useful insights on the process and more measurable 
impacts on learners.

LA has revolutionized the approaches used to under-
stand and optimize the learning process. However, 
its current bias towards studies and tools involving 
only computer-based learning contexts jeopardizes 
its applicability to learning in general. MLA is a sub-
field that seeks to integrate non-computer mediated 
learning contexts into the mainstream research and 
practice of LA.

This chapter presented the current-state-of-art in MLA. 
Modes as diverse as posture, speech, and sketching, 

SPECIFIC ISSUES

CONCLUSION
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alongside the more traditional modes of clickstream 
information and textual content, has been used to an-
swer research questions and to build feedback systems 
in learning contexts. A mixture of computer science 
techniques and insights provided by educational and 
behavioural scientists enable the automatic evaluation 
of very diverse learning contexts, such as classrooms, 
study groups, and oral presentations.

As can be inferred from the list of research presented 
in this chapter, MLA is still a nascent field with a small 
but very active and open community of researchers. 
The existence of regular challenges and workshops, 
where multimodal datasets are freely shared and jointly 
analyzed with new designs ideas openly discussed, 
creates a research environment where new knowledge 
is generated rapidly.

While several issues still prevent MLA from becoming 
a mainstream practice, active research projects are 
exploring solutions to those issues, making the capture 
of multimodal learning traces cheaper, less invasive, 
and more automatic. Novel solutions born from the 
MLA community to handle privacy concerns, such 
as providing distributed recording and resting the 
ownership of the data with the learner, could one day 
be the norm for general LA practices.

Finally, the author wishes to invite LA researchers and 
practitioners to explore the use of multiple modalities 
in their own studies and tools. The MLA communi-
ty will openly share its knowledge, data, code, and 
frameworks. Only the embrace of these different 
modalities will allow LA to have an impact in all the 
contexts where learning takes place.

Alibali, M. W., Nathan, M. J., Fujimori, Y., Stein, N., & Raudenbush, S. (2011). Gestures in the mathematics class-
room: What’s the point? In N. Stein & S. Raudenbush (Eds.), Developmental cognitive science goes to school 
(pp. 219–234). New York: Routledge, Taylor & Francis.

Almeda, M. V., Scupelli, P., Baker, R. S., Weber, M., & Fisher, A. (2014). Clustering of design decisions in class-
room visual displays. Proceedings of the 4th International Conference on Learning Analytics and Knowledge 
(LAK ’14), 24–28 March 2014, Indianapolis, IN, USA (pp. 44–48). New York: ACM.

Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cognitive modeling. Cognitive 
Science, 26(1), 85–112.

Arnold, K. E., & Pistilli, M. D. (2012). Course Signals at Purdue: Using learning analytics to increase student 
success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ’12), 29 
April–2 May 2012, Vancouver, BC, Canada (pp. 267–270). New York: ACM.

Blikstein, P. (2013). Multimodal learning analytics. Proceedings of the 3rd International Conference on Learning 
Analytics and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 102–106). New York: ACM.

Boraston, Z., & Blakemore, S.-J. (2007). The application of eye-tracking technology in the study of autism. The 
Journal of Physiology, 581(3), 893–898.

Bull, P. E. (2013). Posture & Gesture. Elsevier.

Boncoddo, R., Williams, C., Pier, E., Walkington, C., Alibali, M., Nathan, M., Dogan, M. & Waala, J. (2013). Ges-
ture as a window to justification and proof. In M. V. Martinez & A. C. Superfine (Eds.), Proceedings of the 35th 
annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics 
Education (PME-NA 35) 14–17 November 2013, Chicago, IL, USA (pp. 229–236). http://www.pmena.org/pro-
ceedings/

Chen, L., Leong, C. W., Feng, G., & Lee, C. M. (2014). Using multimodal cues to analyze MLA ’14 oral presen-
tation quality corpus: Presentation delivery and slides quality. Proceedings of the 2014 ACM workshop on 
Multimodal Learning Analytics Workshop and Grand Challenge (MLA ’14), 12–16 November 2014, Istanbul, 
Turkey (pp. 45–52). New York: ACM.

Clarke, B., & Svanaes, S. (2014, April 9). An updated literature review on the use of tablets in education. Family 
Kids and Youth. https://smartfuse.s3.amazonaws.com/mysandstorm.org/uploads/2014/05/T4S-Use-of-
Tablets-in-Education.pdf

Cobb, P., Confrey, J., Lehrer, R., Schauble, L., & others. (2003). Design experiments in educational research. 
Educational Researcher, 32(1), 9–13.

REFERENCES



HANDBOOK OF LEARNING ANALYTICSPG 138 CHAPTER 11 MULTIMODAL LEARNING ANALYTICS PG 139

Craig, S. D., D’Mello, S., Witherspoon, A., & Graesser, A. (2008). Emote aloud during learning with AutoTutor: 
Applying the facial action coding system to cognitive–affective states during learning. Cognition and Emo-
tion, 22(5), 777–788.

Crossley, S. A., Roscoe, R. D., & McNamara, D. S. (2013). Using automatic scoring models to detect changes 
in student writing in an intelligent tutoring system. Proceedings of the 26th Annual Florida Artificial Intel-
ligence Research Society Conference (FLAIRS-13), 20–22 May 2013, St. Pete Beach, FL, USA (pp. 208–213). 
Menlo Park, CA: The AAAI Press.

Debnath, M., Pandey, M., Chaplot, N., Gottimukkula, M. R., Tiwari, P. K., & Gupta, S. N. (2012). Role of soft skills 
in engineering education: Students’ perceptions and feedback. In C. S. Nair, A. Patil, & P. Mertova (Eds.), 
Enhancing learning and teaching through student feedback in engineering (pp. 61–82). ScienceDirect. http://
www.sciencedirect.com/science/book/9781843346456

D’Mello, S. K., Jackson, G. T., Craig, S. D., Morgan, B., Chipman, P., White, H., Person, N., Kort, B., el Kaliouby, 
R., Picard, R., & Graesser, A. C. (2008). AutoTutor detects and responds to learners’ affective and cognitive 
states. Workshop on Emotional and Cognitive Issues in ITS, held in conjunction with the 9th International 
Conference on Intelligent Tutoring Systems (ITS 2008), 23–27 June 2008, Montreal, PQ, Canada. https://
www.researchgate.net/publication/228673992_AutoTutor_detects_and_responds_to_learners_affec-
tive_and_cognitive_states

D’Mello, S., Olney, A., Blanchard, N., Samei, B., Sun, X., Ward, B., & Kelly, S. (2015). Multimodal capture of 
teacher–student interactions for automated dialogic analysis in live classrooms. Proceedings of the 17th ACM 
International Conference on Multimodal Interaction (ICMI ’15), 9–13 November 2015, Seattle, WA, USA (pp. 
557–566). New York: ACM.

Dominguez, F., Echeverría, V., Chiluiza, K., & Ochoa, X. (2015). Multimodal selfies: Designing a multimodal re-
cording device for students in traditional classrooms. Proceedings of the 17th ACM International Conference 
on Multimodal Interaction (ICMI ’15), 9–13 November 2015, Seattle, WA, USA (pp. 567–574). New York: ACM.

Echeverría, V., Avendaño, A., Chiluiza, K., Vásquez, A., & Ochoa, X. (2014). Presentation skills estimation based 
on video and Kinect data analysis. Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics 
Workshop and Grand Challenge (MLA ’14), 12–16 November 2014, Istanbul, Turkey (pp. 53–60). New York: 
ACM.

Freedman, D. H. (2010, December 10). Why scientific studies are so often wrong: The streetlight effect. Dis-
cover Magazine, 26. http://discovermagazine.com/2010/jul-aug/29-why-scientific-studies-often-wrong-
streetlight-effect

Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, 
and individual differences. Psychological Bulletin, 133(4), 694–724.

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction. Longman Publishing.

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent tutoring system with 
mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612–618.

Householder, D. L., & Hailey, C. E. (2012). Incorporating engineering design challenges into STEM courses. Na-
tional Center for Engineering and Technology Education. http://ncete.org/flash/pdfs/NCETECaucusRe-
port.pdf

Jewitt, C. (2006). Technology, literacy and learning: A multimodal approach. Psychology Press.

Kizilcec, R. F., Piech, C., & Schneider, E. (2013). Deconstructing disengagement: Analyzing learner subpopula-
tions in massive open online courses. Proceedings of the 3rd International Conference on Learning Analytics 
and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 170–179). New York: ACM.

Kress, G., & Van Leeuwen, T. (2001). Multimodal discourse: The modes and media of contemporary communica-
tion. Edward Arnold.

Krugman, D. M., Fox, R. J., Fletcher, J. E., Fischer, P. M., & Rojas, T. H. (1994). Do adolescents attend to warnings 
in cigarette advertising? An eye-tracking approach. Journal of Advertising Research, 34, 39–51.

Kruschke, J. K. (2003). Attention in learning. Current Directions in Psychological Science, 12(5), 171–175.



HANDBOOK OF LEARNING ANALYTICSPG 138 CHAPTER 11 MULTIMODAL LEARNING ANALYTICS PG 139

Leong, C. W., Chen, L., Feng, G., Lee, C. M., & Mulholland, M. (2015). Utilizing depth sensors for analyzing mul-
timodal presentations: Hardware, software and toolkits. Proceedings of the 17th ACM International Confer-
ence on Multimodal Interaction (ICMI ’15), 9–13 November 2015, Seattle, WA, USA (pp. 547–556). New York: 
ACM.

Lin, Y.-T., Lin, R.-Y., Lin, Y.-C., & Lee, G. C. (2013). Real-time eye-gaze estimation using a low-resolution web-
cam. Multimedia Tools and Applications, 65(3), 543–568.

Lubold, N., & Pon-Barry, H. (2014). Acoustic-prosodic entrainment and rapport in collaborative learning 
dialogues. Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand 
Challenge (MLA ’14), 12–16 November 2014, Istanbul, Turkey (pp. 5–12). New York: ACM.

Lund, K. (2007). The importance of gaze and gesture in interactive multimodal explanation. Language Resourc-
es and Evaluation, 41(3–4), 289–303.

Luzardo, G., Guamán, B., Chiluiza, K., Castells, J., & Ochoa, X. (2014). Estimation of presentations skills based on 
slides and audio features. Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Work-
shop and Grand Challenge (MLA ’14), 12–16 November 2014, Istanbul, Turkey (pp. 37–44). New York: ACM.

Luz, S. (2013). Automatic identification of experts and performance prediction in the multimodal math data 
corpus through analysis of speech interaction. Proceedings of the 15th ACM International Conference on 
Multimodal Interaction (ICMI ’13), 9–13 December 2013, Sydney, Australia (pp. 575–582). New York: ACM.

Markaki, V., Lund, K., & Sanchez, E. (2015). Design digital epistemic games: A longitudinal multimodal analysis. 
Paper presented at the conference Revisiting Participation: Language and Bodies in Interaction, 24–27 June 
2015, Basel, Switzerland.

Mazur-Palandre, A., Colletta, J. M., & Lund, K. (2014). Context sensitive “how” explanation in children’s multi-
modal behavior, Journal of Multimodal Communication Studies, 2, 1–17.

Mishra, B., Fernandes, S. L., Abhishek, K., Alva, A., Shetty, C., Ajila, C. V., … Shetty, P. (2015). Facial expression 
recognition using feature based techniques and model based techniques: A survey. Proceedings of the 2nd 
International Conference on Electronics and Communication Systems (ICECS 2015), 26–27 February 2015, 
Coimbatore, India (pp. 589–594). IEEE.

Mitra, S., & Acharya, T. (2007). Gesture recognition: A survey. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 37(3), 311–324.

Morency, L.-P., Oviatt, S., Scherer, S., Weibel, N., & Worsley, M. (2013). ICMI 2013 grand challenge workshop on 
multimodal learning analytics. Proceedings of the 15th ACM International Conference on Multimodal Interac-
tion (ICMI ’13), 9–13 December 2013, Sydney, Australia (pp. 373–378). New York: ACM.

Newell, A. (1994). Unified theories of cognition. Harvard University Press.

Ochoa, X., Chiluiza, K., Méndez, G., Luzardo, G., Guamán, B., & Castells, J. (2013). Expertise estimation based on 
simple multimodal features. Proceedings of the 15th ACM International Conference on Multimodal Interaction 
(ICMI ’13), 9–13 December 2013, Sydney, Australia (pp. 583–590). New York: ACM.

Ochoa, X., Worsley, M., Chiluiza, K., & Luz, S. (2014). MLA ’14: Third multimodal learning analytics workshop 
and grand challenges. Proceedings of the 16th ACM International Conference on Multimodal Interaction (ICMI 
’14), 12–16 November 2014, Istanbul, Turkey (pp. 531–532). New York: ACM.

Oviatt, S., Cohen, A., & Weibel, N. (2013). Multimodal learning analytics: Description of math data corpus for 
ICMI grand challenge workshop. Proceedings of the 15th ACM International Conference on Multimodal Inter-
action (ICMI ’13), 9–13 December 2013, Sydney, Australia (pp. 583–590). New York: ACM.

Oviatt, S., & Cohen, P. R. (2015). The paradigm shift to multimodality in contemporary computer interfaces. San 
Rafael, CA: Morgan & Claypool Publishers.

Pardo, A., & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educa-
tional Technology, 45(3), 438–450.

Poole, A., & Ball, L. J. (2006). Eye tracking in HCI and usability research. Encyclopedia of Human Computer 
Interaction, 1, 211–219.



HANDBOOK OF LEARNING ANALYTICSPG 140 CHAPTER 11 MULTIMODAL LEARNING ANALYTICS PG 141

Raca, M., & Dillenbourg, P. (2013). System for assessing classroom attention. Proceedings of the 3rd International 
Conference on Learning Analytics and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 265–269). 
New York: ACM.

Raca, M., Tormey, R., & Dillenbourg, P. (2014). Sleepers’ lag: Study on motion and attention. Proceedings of the 
4th International Conference on Learning Analytics and Knowledge (LAK ’14), 24–28 March 2014, Indianapolis, 
IN, USA (pp. 36–43). New York: ACM.

Scherer, S., Worsley, M., & Morency, L.-P. (2012). 1st international workshop on multimodal learning analytics. 
Proceedings of the 14th ACM International Conference on Multimodal Interaction (ICMI ’12), 22–26 October 
2012, Santa Monica, CA, USA (pp. 609–610). New York: ACM.

Schlömer, T., Poppinga, B., Henze, N., & Boll, S. (2008). Gesture recognition with a Wii controller. Proceedings 
of the 2nd International Conference on Tangible and Embedded Interaction (TEI ’08), 18–21 February 2008, 
Bonn, Germany (pp. 11–14). New York: ACM.

Schneider, J., Börner, D., van Rosmalen, P., & Specht, M. (2015). Presentation trainer, your public speaking mul-
timodal coach. Proceedings of the 17th ACM International Conference on Multimodal Interaction (ICMI ’15), 
9–13 November 2015, Seattle, WA, USA (pp. 539–546). New York: ACM.

Serrano-Laguna, A., & Fernández-Manjón, B. (2014). Applying learning analytics to simplify serious games 
deployment in the classroom. Proceedings of the 2014 IEEE Global Engineering Education Conference (EDU-
CON 2014), 3–5 April 2014, Istanbul, Turkey (pp. 872–877). IEEE.

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 9, 51–60. 
doi:0002764213498851.

Silver, E. A. (2013). Teaching and learning mathematical problem solving: Multiple research perspectives. Rout-
ledge.

Simsek, D., Sándor, Á., Buckingham Shum, S., Ferguson, R., De Liddo, A., & Whitelock, D. (2015). Correlations 
between automated rhetorical analysis and tutors’ grades on student essays. Proceedings of the 5th Interna-
tional Conference on Learning Analytics and Knowledge (LAK ’15), 16–20 March 2015, Poughkeepsie, NY, USA 
(pp. 355–359). New York: ACM.

Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. Big 
Data, 1(2), 85–99.

Thompson, K. (2013). Using micro-patterns of speech to predict the correctness of answers to mathematics 
problems: An exercise in multimodal learning analytics. Proceedings of the 15th ACM International Confer-
ence on Multimodal Interaction (ICMI ’13), 9–13 December 2013, Sydney, Australia (pp. 591–598). New York: 
ACM.

Vasquez, H. A., Vargas, H. S., & Sucar, L. E. (2015). Using gestures to interact with a service robot using Kinect 
2. Advances in Computer Vision and Pattern Recognition, 85. Springer.

Vatrapu, R., Reimann, P., Bull, S., & Johnson, M. (2013). An eye-tracking study of notational, informational, and 
emotional aspects of learning analytics representations. Proceedings of the 3rd International Conference on 
Learning Analytics and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 125–134). New York: ACM.

Worsley, M., & Blikstein, P. (2013). Towards the development of multimodal action based assessment. Pro-
ceedings of the 3rd International Conference on Learning Analytics and Knowledge (LAK ’13), 8–12 April 2013, 
Leuven, Belgium (pp. 94–101). New York: ACM.

Worsley, M., & Blikstein, P. (2014a). Deciphering the practices and affordances of different reasoning strate-
gies through multimodal learning analytics. Proceedings of the 2014 ACM workshop on Multimodal Learning 
Analytics Workshop and Grand Challenge (MLA ’14), 12–16 November 2014, Istanbul, Turkey (pp. 21–27). New 
York: ACM.

Worsley, M., & Blikstein, P. (2014b). Using multimodal learning analytics to study learning mechanisms. In J. 
Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on 
Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 431–432). International Educational Data 
Mining Society.



HANDBOOK OF LEARNING ANALYTICSPG 140 CHAPTER 11 MULTIMODAL LEARNING ANALYTICS PG 141

Worsley, M., & Blikstein, P. (2015a). Leveraging multimodal learning analytics to differentiate student learning 
strategies. Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ’15), 
16–20 March 2015, Poughkeepsie, NY, USA (pp. 360–367). New York: ACM.

Worsley, M., & Blikstein, P. (2015b). Using learning analytics to study cognitive disequilibrium in a complex 
learning environment. Proceedings of the 5th International Conference on Learning Analytics and Knowledge 
(LAK ’15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 426–427). New York: ACM.

Zhang, Z. (2012). Microsoft Kinect sensor and its effect. IEEE MultiMedia, 19(2), 4–10.

Zhou, J., Hang, K., Oviatt, S., Yu, K., & Chen, F. (2014). Combining empirical and machine learning techniques 
to predict math expertise using pen signal features. Proceedings of the 2014 ACM workshop on Multimodal 
Learning Analytics Workshop and Grand Challenge (MLA ’14), 12–16 November 2014, Istanbul, Turkey (pp. 
29–36). New York: ACM.



HANDBOOK OF LEARNING ANALYTICSPG 142 CHAPTER 12 LEARNING ANALYTICS DASHBOARDS PG 143



HANDBOOK OF LEARNING ANALYTICSPG 142 CHAPTER 12 LEARNING ANALYTICS DASHBOARDS PG 143

In recent years, many learning analytics dashboards 
have been deployed to support insight into learning 
data. The objectives of these dashboards include 
providing feedback on learning activities, supporting 
reflection and decision making, increasing engagement 
and motivation, and reducing dropout. These learning 
analytics dashboards apply information visualization 
techniques to help teachers, learners, and other stake-
holders explore and understand relevant user traces 
collected in various (online) environments. The overall 
objective is to improve (human) learning.

The goal of this chapter is to provide a guide to practi-
tioners and researchers who want to get started with 
the development and evaluation of learning analytics 
dashboards. We provide guidance, and several exam-
ples, to address the following items:

1. What kind of data can be visualized?

2. For whom are the visualizations intended (learner, 
teacher, manager, researcher, other)?

3. Why: what is the goal of the visualization?

4. How can the data be visualized? Which interaction 
techniques can be applied? What tools, libraries, 
data formats, et cetera can be used for the technical 
implementations? What workflow and recipe can 
be used to develop the visualization?

In addition to these four questions, we elaborate on 
evaluation aspects that assess the usefulness and 
potential impact of the approach

To Augment the Human Intellect
There is a strong contrast between intelligent systems 
that try to make decisions on behalf of people, such 
as intelligent tutoring systems (Brusilovsky, 2000) 
and educational data mining systems (Santos et al., 
2015), and systems that try to empower people to 
make better-informed decisions. For instance, visual 
analytics systems (Shneiderman & Bederson, 2003) 
provide a clear overview of the context, the decisions 
that can be made, and the potential implications of 
those decisions.

Data mining plays to the strength of computers to do 
number crunching, while visualization techniques play 
to the remarkable perceptual abilities that humans 
possess. The difference between the two approaches 
is like the difference between a self-driving car and 
a car with a human driver. Data mining uses auto-
matic pattern matching for remote control while the 
dashboard provides visual communication to assist a 
human driver who remains in control of the vehicle.

There is a certain philosophical or ethical side to this 
notion of two approaches as well: if learners are always 
told what to do next, how can they develop the typical 
21st-century skills of collaboration, communication, 
critical thinking, and creativity? Or, at a more funda-
mental level, how can they become citizens equipped 
with the knowledge, skills, and attitudes to participate 
fully in society? In this chapter, we focus on methods 
that augment the human intellect, through visual 
approaches for learning analytics (Engelbart, 1995).
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Information Visualization
Information visualization is the use of interactive visual 
representations to amplify cognition (Card, Mackinlay, 
& Shneiderman, 1999). It typically focuses on abstract 
data without a straightforward representation in 2-D 
or 3-D space. Visual analytics puts specific emphasis 
on building models and visualizing these in order to 
better understand or refine the models. A very useful 
goal of information visualization is to rely on human 
perceptual abilities for pattern discovery (trends, gaps, 
outliers, clusters). These patterns often become more 
apparent visually than numerically. As Ware (2004) 
explains it:

The human visual system is a pattern seeker of 
enormous power and subtlety. The eye and the 
visual cortex of the brain form a massively parallel 
processor that provides the highest-bandwidth 
channel into human cognitive centers. At higher 
levels of processing, perception and cognition 
are closely interrelated, which is the reason 
why the words “understanding” and “seeing” 
are synonymous. (p. xvi)

As such, visualization has the potential to be more 
precise and revealing than conventional statistical 
computations (Tufte, 2001).

Static visualizations (i.e., an image) typically provide 
answers to a limited number of questions that a user 
might have about a data set. For example, so-called 
infographics are often used for storytelling in jour-
nalism. However, looking at an evocative visualization 
often leads to new questions that can only be answered 
by interacting with the data itself (Few, 2009). Adding 
dynamic interaction techniques to the visualization, 
therefore, is often necessary to design meaningful 
visualization tools that encourage exploratory data 
analysis.

Another advantage of visualization is the ability to 
reveal problems with the data itself; for instance, about 
the way the data has been collected. Especially in the 
case of learning analytics, where (semi-) automated 
trackers often capture traces of learner activities, this 
advantage is valuable for quality control.

What follows is a non-exhaustive overview; it is 
important to recognize the variety of approaches. 
This variety is not surprising given the wide variety 
of learning analytics data that can be visualized, for 
a wide variety of audiences and reasons, in a wide 
variety of ways.

Verbert et al. (2014) present a survey of learning analyt-
ics dashboard applications “ranging from small mobile 

applications to learnscapes on large public displays” 
(p. 1499). Dashboards, they say, “typically capture 
and visualize traces of learning activities, in order to 
promote awareness, reflection, and sense-making, and 
to enable learners to define goals and track progress 
towards these goals” (p. 1499). The paper makes useful 
distinction between various types of dashboards:

1. Dashboards that support traditional face-to-face 
lectures, so as to enable the teacher to adapt the 
teaching, or to engage students during lecture 
sessions.

2. Dashboards that support face-to-face group work 
and classroom orchestration, for instance by 
visualizing activities of both individual learners 
and groups of learners.

3. Dashboards that support online or blended learn-
ing: an early famous example is Course Signals 
that visualizes predicted learning outcomes as 
a traffic light, based on grades in the course so 
far, time on task and past performance (Arnold 
& Pistilli, 2012).

More sophisticated and complex visualizations 
for detailed analysis of course activity by teach-
ers are the focus of the Student Activity Meter 
(Govaerts, Verbert, Duval, & Pardo, 2012). SNAPP 
focuses on the visualization of social activity of 
learners (Bakharia & Dawson, 2011).

In terms of what is being tracked, the possibilities 
continue to expand, as new online trackers become 
available, capturing more detail of what learners and 
teachers do. As well, new sensors proliferate that 
can likewise capture what people do in the analog 
world. This second data source is evolving especially 
rapidly, with mobile devices that now include sensors 
to report physiological, emotional, and other kinds of 
learner characteristics that have so far mostly eluded 
automated capturing. Besides tracking, self-reporting 
can also be a valuable source of data. Although more 
error-prone and difficult to sustain systematically, 
self-reporting offers an opportunity for awareness, 
reflection, and self-analysis.

As for what can be incorporated into a dashboard, 
Verbert et al. (2014) lists the following kinds of data:

1. Artefacts produced by learners, including blog 
posts, shared documents, software, and other 
artefacts that would often end up in a student 
project portfolio.

2. Social interaction, including speech in face-to-face 
group work, blog comments, Twitter or discussion 
forum interactions.

3. Resource use can include consultation of documents 
(manuals, web pages, slides), views of videos, et 

WHAT FOR, WHOM, WHY, HOW?
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cetera. Techniques like software trackers and 
eye-tracking can provide detailed information 
about what parts of resources exactly are being 
used and how.

4. Time spent can be useful for teachers to identify 
students at risk and for students to compare their 
own efforts with those of their peers.

5. Test and self-assessment results can provide an 
indication of learning progress.

Figure 12.1 presents one of our more recent dashboards 
(Charleer, Klerkx, Odriozola, Luis, & Duval, 2013). The 
dashboard tracks social data from blogs and Twitter. 
Such data, categorized as artefacts produced, is then 
visualized for students. The goal is to support aware-
ness about learning progress and to enable discussion 
in class. To support such awareness and discussion, 
social interactions of students are abstracted in the 
form of learning badges for students to earn. Students 
can then explore which badges they have earned (Fig-
ure 12.1, top) through the visualization of icons and 
colour cues. Gray badges have not yet been earned. 
The bottom part of Figure 12.1 shows a visualization, 
developed for collaborative use on a tabletop that uses 

a node link diagram to enable further exploration of 
these badges. Among other things, students can explore 
which other students have earned specific badges as 
a means to compare and discuss learning progress.

Figure 12.2 shows a dashboard that uses grades to 
predict a student’s chances of failing a particular 
course (Ochoa, Verbert, Chiluiza, & Duval, 2016) be-
fore she starts. The dashboard is intended to support 
teachers in giving advice to students on their learning 
trajectories. More specifically, the dashboard presents 
the likelihood (68%) of this particular student failing a 
course in which she is interested. The dashboard uses 
colour cues to indicate whether the risk of failure, 
based on past performance, is low (green), medium 
(yellow), or high (red). Depending on the outcome, the 
teacher can advise the student to take the course or to 
discuss alternatives, such as first taking a prerequisite 
course. The dashboard also supports several interaction 
techniques that enable the teacher to indicate which 
data should be taken into account to generate this 
prediction, including sliders at the bottom that enable 
the teacher to specify the range of data in terms of 
years. For example, if a student did poorly in Biology 
in Grade 10 but worked harder and did well in Grade 

Figure 12.1. (Top) Navi Badgeboard — Personal Badge Overview: A student’s badge overview for a given period; 
(bottom) Navi Surface: students actively using the tabletop display application during a face-to-face session 

(Charleer et al., 2013).

Figure 12.2. Muva dashboard that represents the likelihood of failing a specific course (Ochoa et al., 2016).
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12, the Grade 10 mark can be disregarded.

To leverage the advanced perceptual abilities of humans 
to help them explore and discover patterns, a designer 
must create a visual representation or encoding of the 
data (Card et al., 1999). Several steps, outlined below, 
can be distinguished in this design process.

Understand Your Goals
The first step is getting to know the problem domain, 
the data set, the intended end-users of the tool, the 
typical tasks they should be able to perform, and so 
on. The following questions need to be answered at 
this stage:

1. Why: What is the goal of the visualization? What 
questions about the data should it answer?

2. For whom: For whom is the visualization intended? 
Are the people involved specialists in the domain, 
or in visualization?

3. What: What data will the visualization display? Do 
these data exhibit a specific internal structure, 
like time, a hierarchy, or a network?

4. How: How will the visualization support the goal? 
How will people be able to interact with the vi-
sualization? What is the intended output device?

By carefully examining and understanding the data set, 
a variety of questions about the data can be formed. 
Having these questions in mind can be useful when 
acquiring and filtering data for the dashboard. For ex-
ample, consider a data set that contains the following 
learner traces:

• access to learning resources

• time on page in digital textbooks

• contributions to discussion fora

• time spent on assignments

From these traces, we can define several relevant 
questions as a starting point in the design process. A 
teacher might ask questions like these:

• When did students start looking at the course 
material?

• What is the average time that a student spends 
reading the textbook?

• How many hours did Peter work on his assignment?

• How often did Peter ask a question on the dis-
cussion forum?

A student will probably ask similar questions:

• How much time do I spend on an assignment, 

compared to other students?

• How much do I contribute to the discussion forum, 
compared to other students?

In both cases, we deliberately only list questions that 
start with “what,” “when,” “how much,” and “how of-
ten.” These specific, direct questions can be directly 
mapped in a data set. Questions like, “Why did this 
student have to enroll twice in this course?” the answer 
is more exploratory in nature. Indicators may be that 
he did not spend enough time on the course material, 
did not interact with fellow students on the discussion 
forum, started to study the course material too late, 
and so on. Another difficult question to answer would 
be, “Are students more eager to work on assignment 
1 or assignment 2?” Even if much data is captured, it 
is difficult to answer questions involving human mo-
tivations based on a plurality of (un)known variables. 
Especially in the early phase of design, it is therefore 
often advisable and easier to focus on direct, specific 
questions.

Acquire and (Pre-)Process Your Data
Building a visual dashboard typically entails a data-gath-
ering and preprocessing step. Visualization experts 
suggest that this step takes 80% of the time and effort 
versus all other steps. McDonnel and Elmqvist (2009) 
identify the following intermediary steps:

1. Acquiring raw data: It is important to have a clear 
idea of where the data will come from (e.g., the log 
files of the LMS, assessment results, other), and 
when the data will be updated (continuously, not at 
all, at specific intervals). Will the data be available 
through an Application Programming Interface 
(API), an export file, or some other source?

2. Analyzing raw data: Data may need to be cleaned 
if some values are missing or erroneous, or 
pre-processed to compute aggregate values (mean, 
minimum, maximum, et cetera). In data analysis, 
distribution can also be an issue: are there apparent 
outliers, clusters, et cetera?

3. Preparing and filtering data: Using the initial 
questions from step 1, choose the relevant data 
from the pool of analyzed raw data.

Mapping Design
Important in the visual mapping design is to choose 
a representation that best answers the questions you 
want users to be able to answer, i.e., that serve your 
visualization goal for the intended target audience. 
There exists a multitude of alternatives. One way to 
start is to look at the measurement or scale of each 
data characteristic. Nominal or qualitative scales 
differentiate objects based on discrete input domains, 
such as categories or other qualitative classifications 
to which they belong. Quantitative scales have con-

HOW TO GET STARTED
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tinuous input domains (e.g., [0, 100]). Ordinal scales 
have discrete input domains where the order of the 
elements matters but the exact difference between the 
values does not. Depending on the scale of the data 
characteristic, one can choose how to encode this 
data visually. Figure 12.3 depicts Mackinlay’s (1986) 
ranking of visual properties to encode quantitative, 
ordered, and categorical scales. For instance, the 
spatial position of an element is useful for encoding 
quantitative, ordered, and categorical differences. 
This is why scatterplots have been used so often to 
convey a variety of information. Length, on the other 
hand, can encode quantitative differences, but is of 
less value for encoding ordered and categorical dif-
ferences. Shape is at the bottom of the ranking for 
visualizing quantitative and ordered differences, but 
is more often used to depict categorical data.

Low-fidelity prototypes such as paper sketches are 
often helpful during the design-mapping step. Figure 
12.4 depicts an exercise given to the participants of 
the “Bring Your Own Data: Visual Learning Analytics” 
tutorial organized at the Learning Analytics Summer 
Institute (LASI) 2014. Participants included researchers 
with good knowledge in learning analytics, but limited 
knowledge about visualization. They were asked to take 
15 minutes to sketch all possible ways to visualize a 
simple data set of two numbers {75, 37}. The exercise 
illustrated to participants that from the moment they 
start sketching, it is not difficult to brainstorm visual 
encodings of data. This is reflected in the number of 
sketches that two teams of two persons each were able 
to generate in 15 minutes (see Figure 12.4a and 12.4b).

By sketching, more ideas and questions about the data 
set are often raised, which in turn leads to new ideas 
for visualization. For example:

• Figure 12.4c: participants represented the difference 

between the numbers quite originally by relating 
them to age, where a person of 37 can easily lift 
weights, while a person of 73 might already need 
a walking stick.

• Figure 12.4d: adds muscle size.

• Figure 12.4e: uses shading of an equally sized circle 
with 75 versus 37 stripes.

• Figure 12.4f: uses a position in a Cartesian coor-
dinate system.

• Figure 12.4g: visualizes a part-to-whole relationship 
between the numbers.

• Figure 12.4h: assumes a time-based relationship 
between both numbers, which leads to a negative 
trend line.

• Figure 12.4i: uses point clouds.

• Figure 12.4j: visualizes an unbalanced scale to 
represent a difference in weight.

• Figure 12.4k: correlates the size of the figure with 
the size of the number.

After selecting a visual encoding, high-fidelity prototypes 
can be built using visualization tools (like Tableau, or 
even Microsoft Excel) or existing visualization libraries 
(like Processing or D3.js).

Clearly some alternatives work better than others, 
depending on the contextualization (e.g., weight and 
age) and the ability to be interpreted by users (e.g., the 
mental model of a balanced scale). There is, therefore, 
no best way to visualize a data set, but some tech-
niques have been proven to work better than others, 
for example:

• Pie charts are usually a bad idea (Few, 2009).

• Bar charts can be quite powerful.

• Coordinated graphs enable rich exploration.

Figure 12.3. Mackinlay’s (1986) ranking of visual properties for data characteristics on quantitative, ordered, 
and categorical scales.
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• 3-D graphics often do not convey any additional 
information and force the reader to deal with 
redundant and extraneous cues (Levy, Zacks, 
Tversky, & Schiano, 1996).

• Scatterplots and parallel coordinates are good 
representations for depicting correlations. In 
addition, Harrison, Yang, Franconeri, & Chang 
(2014) found that among the stacked chart variants, 
the stacked bar significantly outperformed both 
the stacked area and stacked line. Elliot (2016) 
has presented a nice overview of these studies.

Documentation
As with any design exercise, it is important to be 
explicit about:

1. Rationale: Why were certain decisions made, 
what was the intent?

2. Alternatives: Which alternatives were considered 
and why were they not withheld?

3. Evolution: How has the design evolved from early 
sketches to a full-blown implementation? What 
was modified for conceptual reasons and what for 
implementation or other reasons (logistics, lack 
of time, other reasons)?

Add Interaction Techniques
Visual analysis typically progresses in an iterative 
process of view creation, exploration, and refinement 
(Heer & Shneiderman, 2012). Before analyzing which 
interaction techniques are useful for a specific visu-
alization application, it is useful to understand the 
typical analytical tasks performed by teachers who 
want to understand how their students are doing in 
class. Several task taxonomies have been described 
in literature for this purpose. Common tasks include:

• Comparing values and patterns to find similarities 
and differences.

• Sorting items based on a variety of data values 
or metrics.

• Filtering values that satisfy a set of conditions.

• Highlighting data to make specific values stand out 
visually without making all other data disappear, 
as is the case with filtering data.

• Clustering or grouping similar items together; for 
example, by aggregating quantitative data (e.g., 
average, count, et cetera) to view it in a higher 
or lower level of detail.

• Annotating findings and thoughts.

• Bookmarking or recording a specific view on the 
data to enable effective navigation.

Heer and Shneiderman (2012) is essential reading on 
interactive dynamics for visual analytics. The authors 
present a taxonomy of interactive dynamics that con-
tribute to successful visual analytic tools. For each 
task category, various existing visualization systems 
are described with useful interaction techniques that 
support the task at hand, such as brushing and linking, 
histogram sliders, zoomable maps, dynamic query 
filter widgets, small multiple displays or trellis plots, 
multiple coordinated views, visual analysis histories, 
and so on.

Evaluate Continuously
During the design process, the elaboration of concrete 
personas and scenarios can be very rewarding as it 
helps to focus the design, development, and evaluation 
of the visualization on what is relevant. It is very easy 
to get carried away with too much “eye candy” and lose 
track of the what, for whom, and why the visualization 

Figure 12.4. Sketches of a small data set of two numbers {75, 37}.
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is being designed. Generally, a user-centred design 
(UCD) approach proceeds with iterative development 
that keeps the target users in the loop in continuous 
cycles of design–implementation–evaluation. In this 
way, the development can focus on the most relevant 
issues for teachers or learners at all times.

The evaluation of information visualization systems 
is essential. A plethora of techniques can be used, 
including controlled experiments that evaluate dif-
ferent visualization and interaction techniques or 
field studies that assess the impact of a visualization 
on learning (Plaisant, 2004). The latter take place in 
natural environments (classrooms) but are often time 
consuming and difficult to replicate and generalize 
(Nagel et al., 2014). Verbert et al. (2014) suggest the 
following evaluation techniques:

1. Effectiveness, which can refer to engagement, 
higher grades or post-test results, higher reten-
tion rates, improved self-assessment, and overall 
course satisfaction.

2. Efficiency in the use of time of a teacher or learner.

3. Usability and usefulness evaluations often focus 
on teachers being able to identify learners at risk 
or asking learners how well they think they are 
performing in a course.

Typical evaluation instruments include questionnaires 
or controlled experiments where time-to-task, errors 
made, time-to-learn, et cetera are evaluated (Dillen-
bourg et al., 2011).

Information visualization concepts and methodologies 
are key enablers for

• Learners to gain insight into their learning actions 
and the effects these have.

• Teachers to stay aware of the subtle interactions 
in their courses.

• Researchers to discover patterns in large data 
sets of user traces and to communicate these 
data to their peers.

As shown in this chapter, visualization has the unique 
potential to help shape the learning process and 
encourage reflection on its progress and impact by 
creating learning analytics dashboards that give a 
concise overview of relevant metrics in an actionable 
way and that support the exploration of patterns.

Designing and creating an effective information vi-
sualization system for learning analytics is an art, as 
the designer needs both domain expertise on learning 
theories and paradigms as well as techniques rang-
ing from visual design to algorithm design (Nagel, 
2015; Spence, 2001). In this chapter, we have briefly 
introduced the various steps in a visualization design 
process, from raw data analysis to effective dashboards 
evaluated by target users.

CONCLUSION
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Much of the work of learning analytics researchers 
and designers revolves around the challenges of how 
to extract, process, and present data in ways that are 
useful to various educational stakeholders. However, 
after measures have been created and displays designed, 
there is still additional work required for analytics to 
play a constructive role in educational systems. Sys-
tem design alone does not ensure successful uptake 
(Ertmer, 1999; Hall, 2010; Donnelly, McGarr, & O’Reilly, 
2011) as “analytics exist as part of a sociotechnical 
system where human decision making and consequent 
actions are as much a part of any successful analytics 
solution as the technical components” (van Harme-
len & Workman, 2012, p. 4). Thus, learning analytics 
researchers and practitioners need to attend to the 
human activity of working with these tools and develop 
a knowledge base for the design of learning analytics 
implementations (see Figure 13.1).

This chapter focuses on the elements shaping how 
learning analytics are motivated and mobilized for 
productive use by instructors, learning designers, and 
students. The act of introducing learning analytics 
into an educational environment is called a learning 
analytics implementation. While the term “learning 
analytics intervention” has also been used in the past 
(Lonn, Aguilar, & Teasley, 2015; Wise, 2014), it is a more 
narrow label that implies learning analytics use as an 
interruption to regular learning practices that occurs 
at a specific point in time to address a problem. Im-
plementation is preferred as a more general term that 
also includes ongoing learning analytics use as a 
sustained activity incorporated into habitual learning 
practices (Wise, Vytasek, Hausknecht, & Zhao, 2016). 
Learning analytics implementation design is then 
defined globally as the purposeful framing of activity 
surrounding how analytic tools, data, and reports are 
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This chapter addresses the design of learning analytics implementations: the purposeful 
shaping of the human processes involved in taking up and using analytic tools, data, and 
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taken up and used as part of an educational endeavor. 
Specifically, it addresses questions of who should have 
access to particular kinds of analytic data, when the 
analytics should be consulted, for what purposes, and 
how the analytics feed back into the larger education-
al processes taking place.

The process of using learning analytics involves making 
sense of the information presented and taking action 
based on it (Siemens, 2013; Clow, 2012). While analytics 
are often developed for general use across a broad 
range of situations, the answer to questions of meaning 
and action are inherently local. Correspondingly, the 
design of learning analytics implementations needs to 
be more sensitive to the immediate learning context 
than the design of learning analytics tools. This is 
seen in several well-documented challenges in using 
analytics to inform educational decision-making at the 
level of interpretation as well as at subsequent stages 
of taking action (Wise & Vytasek, in preparation; Wise 
et al., 2016).

At the level of interpretation, two important challenges 
are those of context and priorities. The challenge of 
context refers to the fact that analytics are inherently 
abstracted representations of past activity. Interpreting 
these representations to inform future activity requires 
an understanding of the purposes and processes of 
the learning activity in which they were generated 
and a mean by which to connect the analytics to 
these (Lockyer, Heathcote, & Dawson, 2013; Ferguson, 
2012). The challenge of priorities refers to how users 
assign relative value to the variety of analytic feedback 
available. Particular aspects of analytic feedback may 
be more or less important at different points in the 
learning process and different analytics can provide 

information that suggests divergent interpretations 
that must be reconciled (Wise, 2014).

At the stage of taking action, two important concerns 
are those of possible options and enacting change. 
The challenge of possible options refers to the fact 
that analytics provide a retrospective lens to evaluate 
past activity, but this does not always directly indicate 
what actions could be taken in the future to change 
the situation. The challenge of enacting change refers 
to the question of how and on what timeline these ac-
tions (once identified) should occur. Change does not 
occur instantaneously — incremental improvement and 
intermediate stages of progress need to be considered.

Implementation design helps address these challenges 
by providing guidance at the mediating level between 
the analytics presented and the localized course 
context. This both provides the additional support 
required to make the information actionable and al-
lows for tailoring of analytics use to meet the needs 
of particular learning contexts.

Learning analytics implementations operate at the 
interface between the learning activities (the ped-
agogical events that generate data) and the learning 
analytics (the designed representations of this data). 
This relationship can be considered through three 
guiding principles: Coordination, Comparison, and 
Customization (Wise & Vytasek, in preparation) ground-
ed in theories of constructivism, metacognition, and 
self-regulated learning (Duffy & Cunningham, 1996; 
Schunk & Zimmerman, 2012).

The Principle of Coordination
The principle of Coordination is the foundation of 
learning analytics implementation design, stating 
that the surrounding frame of activity through which 

USING IMPLEMENTATION DESIGN 
TO ADDRESS LEARNING ANALYTICS 
CHALLENGES

IMPLEMENTATION DESIGN 
CONSIDERATIONS

Figure 13.1. Visual differentiation of a) a learning analytics system (product) and b) intentional use of the sys-
tem by instructors and students (process). Design of the former addresses issues of measures, algorithms, and 
displays while design of the latter addresses issues of timing, interpretative lens, and action parameters. Source: 
Photo in b) by US Department of Education licensed under Creative Commons Attribution 2.0 License. Cropped from original (www.flickr.com/photos/departmen-

tofed/9610345404)
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analytic tools, data, and reports are taken up should 
position the use of analytics as an integral part of the 
educational experience tied to goals and expectations 
(Wise, 2014). To be coordinated with the learning 
activity, the use of learning analytics needs to be con-
ceived of as a central element of the learning design 
itself (Lockyer et al., 2013; Pardo, Ellis, & Calvo, 2015; 
Persico & Pozzi, 2015) so that it is clear to the user how 
the analytics are meant to play a role in their regular 
engagement in the learning process.

Conceptual Coordination means an advanced consid-
eration on which of the available analytics to focus 
(based on the goals of the educational activity) and 
what productive and unproductive patterns in these 
metrics are expected to look like (Brooks, Greer, & 
Gutwin, 2014; Macfadyen & Dawson, 2010; Persico & 
Pozzi, 2015). To represent the breath of valued actions 
during a learning activity, it is advisable to use diverse 
analytic measures (Suthers & Rosen, 2011; Winne & 
Baker, 2013). It is important to clearly communicate 
the logic of this connection tying pedagogical goals 
with learning actions and data-based feedback to 
the analytics users (Wise, 2014) as initial evidence 
suggests they put more value on metrics when they 
clearly understand the connection to learning (Wise, 
Zhao, & Hausknecht, 2014).

Logistical Coordination means attention to when 
and how it makes sense for users to work with the 
chosen analytics as part of the teaching or learning 
activity. With experienced learning analytics users 
or those with strong self-monitoring skills, it may be 
fine to provide only Conceptual Coordination and 
leave room for individual decisions around when to 
consult the analytics (van Leeuwen, 2015). However, 
in many cases, explicit guidance about when and 
how to work with the analytics as a tool to support 
learning or teaching is necessary (Koh, Shibani, Tan, 
& Hong, 2016). General strategies include suggesting 
a rhythm of analytics use (Wise, Zhao, & Hausknecht, 
2013) or a timescale for checkpoints (Lockyer et al., 
2013); specific approaches for instructor and student 
use are discussed in sections 5 and 6.

The Principle of Comparison
The principle of Comparison addresses the need for 
one or more appropriate reference frames with which 
to evaluate the meaning of an analytic. For example, 
the interpretation of a student receiving a particular 
knowledge assessment (say “25”) varies depending on 
the highest possible score, the performance of the rest 
of the class, and the level of their prior achievement.

Absolute reference frames for learning analytics provide 
a fixed standard for comparison that has been set in 
advance; for example, a set of course expectations 
(Wise, Zhao, & Hausknecht, 2014). Absolute reference 

frames can vary in the specificity of the standard set 
by providing an exact target for a metric or a range 
of desirable values.

Relative reference frames provide a variable standard 
that fluctuates over time. One relative reference frame is 
peer activity. This commonly used reference frame sets 
up comparisons across individuals based on a measure 
of central tendency or distribution (Corrin & de Barba, 
2015; Govaerts, Verbert, Duval, & Pardo, 2012). Another 
relative reference frame is parallel activity, in which 
comparisons are made across learning events within a 
course or across courses (Bakharia et al., 2016). In this 
case, it is critical that the activities being compared 
are indeed parallel in key ways (e.g., duration, intent, 
expectations), otherwise the comparisons made may 
lead to invalid inferences. Finally, a less commonly 
used but powerful reference frame is prior activity, in 
which comparisons are made for the same individual(s) 
across time, allowing for the tracking of progress and 
change (Wise, Zhao, & Hausknecht, 2014).

The Principle of Customization
The principle of Customization emerges from the rec-
ognition that there are multiple, disparate, and equally 
valid needs and paths (and potentially endpoints) for 
different learning analytics users. Customization of 
learning analytics to meet these different needs can 
be thought of in two ways. The first approach is com-
putationally driven and can be thought of as adaptive 
learning analytics (cf. Brusilovsky & Peylo, 2003). As this 
relates to the design of the learning analytics system 
rather than the learning analytics implementation, it 
is not addressed further here. A second approach to 
personalization is user-driven and can be thought of 
as adaptable learning analytics (cf. Brooks et al., 2014). 
In this case, the analytics interface allows for different 
kinds of uses by different individuals who determine 
themselves which analytics they will attend to and in 
what way. There is a danger, however, that users may 
be overwhelmed by the multitude of possible options 
without a clear basis on which to make choices. Thus 
implementation design needs to support user agency 
actively by guiding them in the process of effectively 
making decisions about how to use the learning ana-
lytics provided to meet their own needs and context.

LEARNING ANALYTICS IMPLICATION 
DESIGN FOR INSTRUCTORS

Instructors are a natural audience for learning ana-
lytics as they are often already engaged informally in 
the activity of examining student learning to inform 
their practice. Such teacher-inquiry has traditionally 
depended on qualitative methods of reflection us-
ing journals, interviews, peer-observation, student 
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observations and examination of learning artifacts 
(Lytle & Cochran-Smith, 1990), though interest in the 
use of student data as evidence to inform this process 
has been increasing (Wasson, Hanson, & Mor, 2016). 
Analytics can support instructors in approaching 
this reflective cycle with more detail, using data as 
an aid in assessing the impact of teaching decisions 
on learning activity (Mor, Ferguson, & Wasson, 2015). 
Different bodies of literature have explored specific 
process of instructor use of analytics in relation to 
the practices of learning design, orchestration, and 
assessment.

One perspective focuses on the use of analytics to 
inform learning design. From this perspective, instruc-
tors document their pedagogical intentions through 
the design, which then provides the conceptual frame 
for asking questions and making sense of the infor-
mation provided by the analytics (Dawson, Bakharia, 
Lockyer, & Heathcote, 2011). This can facilitate an 
understanding of the effects of a learning design (or 
specific instructional approach) on student activity 
and learning (Dietz-Uhler & Hurn, 2013), which can 
then feed back into improving the design (Persico & 
Pozzi, 2015; Mor et al., 2015). The process is a cyclical 
one in which the analytics make the learning process-
es undertaken by students visible (Martínez-Monés, 
Harrer, & Dimitriadis, 2011). A specific model for 
aligning learning analytics use with learning design 
was developed by Lockyer et al. (2013) who described 
how instructors can initially map the learning pro-
cess supported by their design, pre-identify activity 
patterns that indicate successful (or unsuccessful) 
student engagement in the pedagogical design, and 
then use analytics to track learner progression towards 
the desired outcomes. An initial example of this cycle 
in action is given in Brooks et al. (2014) who look at 
instructors’ modifications of their discussion forum 
practices based on sociograms created from students’ 
speaking and listening activity. A similar cycle as en-
gaged in by course designers of a MOOC is given in 
Roll, Harris, Paulin, MacFadyen, and Ni (2016). Lockyer 
et al.’s (2013) model represents a strong application of 
the principle of Coordination as it makes clear how 
the use of the analytics is integrally tied to the goals 
and expectations for learning. It also suggests ways 
analytics can be worked into an instructor’s activity 
flow, for example by setting up checkpoints. The prin-
ciple of Comparison is also attended to in the sense 
that the pre-identified activity patterns serve as an 
absolute reference frame to gauge progress towards a 
desired state. Additional comparisons — for example, 
setting incremental stages to target along the way or 
using prior activity to judge progress — could also be 
considered. As this use of learning analytics is directed 
globally at the effects of a learning design, attention 

to the principle of Customization is currently limited. 
However, thinking about how different learning designs 
might work differently and be more or less effective 
for different kinds of learners and learning contexts 
is an exciting area for future consideration.

An alternative conceptualization of instructors’ 
analytics use shifts the focus from looking at data 
patterns for the course as a whole to looking at dif-
ferences between students or student groups. From 
this perspective, the analytics are used in (relatively) 
real-time as a tool to monitor activity, support the 
diagnoses of situations needing attention, and prompt 
instructors to intervene when necessary. This can be 
thought of as a form of orchestration (Rodríguez-Tri-
ana, Martínez-Monés, Asensio-Pérez, & Dimitriadis, 
2015) in which instructors use analytics to support 
their awareness of student activity and adapt their 
teaching to meet student needs (Feldon, 2007). To 
address the inherent challenges in doing this (Dyck-
hoff, Lukarov, Muslim, Chatti, & Schroeder, 2013), van 
Leeuwen (2015) proposes a two-part model of how 
instructors can work with analytics in this capacity. 
First, instructors use the analytics to monitor student 
activity, specifically noticing important differences 
across individuals or groups. This is supported by the 
capabilities of analytics to aggregate information for 
manageable presentation. Second, instructors use the 
information to inform their diagnosis of situations, 
individuals, or groups requiring attention. Working 
in the context of a learning analytics application for 
a computer-supported collaborative learning context, 
van Leeuwen (2015) found initial evidence to support 
the hypothesis that analytics use would increase both 
the specificity of instructor diagnoses and inform 
the actions that they took. This model represents a 
strong application of the principle of Customization 
as the goal of instructors’ analytics use is individual-
ized actions tailored to particular student or group 
needs. With respect to Comparison, in the original 
conceptualization there is strong reliance on the rel-
ative frame of peer activity, though the prior activity 
of a group or individual are also taken into account. 
The addition of an absolute standard with which to 
compare activity could also be considered. An area for 
future development is the Coordination of this kind 
of analytics use with the larger purpose and flow of 
the collaborative learning activity.

A final model for instructor use of learning ana-
lytics that has yet to be fully developed is as a tool 
for assessment. While there is a need for caution in 
such applications, there are exciting possibilities for 
using temporal analytics (which capture time-based 
characteristics of trace data) to move towards a new 
paradigm of assessment that replaces current point-
in-time evaluations of learning states with dynamic 
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evaluations of learning progress (Molenaar & Wise, 2016). 
Such an approach is grounded in Comparison with 
prior activity and offers opportunities for instructors 
to respond to individual and evolving learning needs. 
Using analytics collected during the normal course 
of learning processes to evaluate the development 
of student understanding in situ also presents an 
attractive opportunity for assessment that can both 
meet summative needs and serve formative purposes. 
However, the conceptual and logistical Coordination of 
how learning analytics are used for such assessment 
purposes is critical for adoption, given the importance 
of decisions often attached to assessment activities.

Students are an important audience for analytics 
use for several reasons. First, since student learning 
is the ultimate goal of educational systems, much of 
the data collected in learning analytics systems is 
information generated by or about students. From 
an ethical perspective, students have the right (and 
perhaps the responsibility) to review their own data 
(Pardo & Siemens, 2014; Slade & Prinsloo, 2013). Second, 
similar to instructors, students are also at the “front 
line” of learning and thus potentially well-equipped to 
bring local context to bear in interpreting analytics, as 
well as make immediate adjustments to their learning 
processes based on them. Different from instructors, 
however, students must negotiate between course-
wide goals for learning and analytics use and their own 
personal objectives (Wise, 2014). This explicitly allows 
for Customization as it adds an additional personalized 
reference frame for Comparison.

Student use of analytics has been conceptualized 
primarily in terms of a reflective cycle in which 
students use their own analytic data to inform their 
individual learning processes. Drawing on the theories 
of Schön (1983) and Kolb (1984), Clow (2012) has put 
forward the general idea of analytics use as an ele-
ment of reflective practice in which the information 
provides feedback that students can use to adjust or 
experiment with changes in their learning activities. 
The notion of students using analytics to act as “little 
experimenters” has also been discussed within the 
self-regulated learning literature (Winne, in press). 
Drawing on theories of metacognition, this field has 
a long history of studying and supporting the ways 
students monitor and take action on their learning as 
part of a self-regulative process (Zimmerman & Schunk, 
2011; Schunk 2008; Boekaerts, Pintrich, & Zeidner, 
2000). Students who adopt positive SRL strategies 
tend to have richer learning interactions and perform 
better in their studies (Zimmerman, 2008; Pintrich, 

2004; Pardo, Han, & Ellis, 2016). While such efforts 
have traditionally been limited by the challenges and 
inaccuracies of human memory and recall (Winne, 
2010; Azevedo, Moos, Johnson, & Chauncey, 2010), an-
alytics offer the exciting potential to mirror a learner’s 
activity back to them with greater ease and accuracy 
(Winne & Baker, 2013). From this perspective, learning 
analytics are conceived of as a way to cue students to 
effectively monitor and take action on their learning 
(Roll & Winne, 2015).

Expanding on these ideas, a more specific vision of 
student learning analytics use has been put forth by 
Wise and colleagues (Wise et al., 2016; Wise, 2014; 
Wise, Zhao, & Hausknecht, 2013; 2014). Their Student 
Tuning Model describes student’s learning-analyt-
ics-informed reflective practice as grounded in the 
relationship between the learning activities and the 
learning analytics. Students work with this relationship 
continually as they engage in cycles of goal setting, 
action, reflection, and adjustment. To support this 
descriptive cycle of analytics use, Wise et al. (2016) 
have proposed and presented initial validation evidence 
for a pedagogical framework for designing learning 
analytics implementations for students. The Align 
Design framework utilizes elements of Coordination, 
Comparison, and Customization as described above 
with an emphasis on the interplay between agency 
and dialogue with the situation.

In addition to these overarching models of students’ 
learning analytics use, there are other ongoing research 
efforts proposing targeted pedagogical frameworks 
for specific learning contexts and exploring particular 
aspects of how to design learning analytics implemen-
tations for students. Koh et al. (2016) have developed 
the Team and Self-Diagnostic Learning framework for 
analytics use in the context of collaborative inquiry 
with secondary students. This framework provides 
strong process-based Coordination by integrating in-
structor-guided use of teamwork competency analytics 
into students’ experiential learning cycles. Attention to 
Comparison takes the form of contrasts of similarities 
and difference between self- and peer-ratings on six 
dimensions of teamwork.

Separately, Aguilar (2015) is conducting research at 
the intersection of the Customization and Comparison 
principles, examining whether students’ mastery or 
performance orientation to learning can help deter-
mine when peer activity is a useful reference frame 
for evaluating learning analytics. Similarly, research 
into individual differences has shown that particular 
goal-orientations are associated with the use of dif-
ferent kinds of self-regulatory strategies generally 
(Shirazi, Gašević, & Hatala, 2015) and can specifically 
influence the interpretation and use of different 

LEARNING ANALYTICS IMPLICATION 
DESIGN FOR STUDENTS
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learning analytics visualizations (Beheshitha, Hatala, 
Gašević, & Joksimović, 2016).

Such findings can have implications for system-driven 
adaptive analytics in terms of what measures with 
what references points are helpful (and ethical) to 
show to particular learners. For example, while the 
peer reference frame can be can be motivating in 
showing a student where they stand in relation to 
others in the class for some students (Beheshitha et 
al., 2016; Govaerts, et al., 2012), it can be distracting for 
others (Corrin & de Barba, 2015). Some students find it 
demotivating to find out they are doing substantially 
worse than their classmates (Wise, Hausknecht, & Zhao, 
2014). Especially for students who are struggling, the 
ability to document improvement in comparison to 
their own prior activity may be more powerful than 
comparison to a distal class mean. In addition, there 
are questions of which portion(s) of a peer group are 
most appropriate for comparison in a given situation; 
for example, should students be shown data for the 
whole course, only students who are similar to them 
in some way, or the “top performers” (Beheshitha et al., 
2016). The answer will depend on the kind of activity, 
relevant student characteristics, and the objective 
for analytics use.

Other researchers are probing more deeply into ways 
in which learning analytics implementations can be 
designed to support student Customization in terms 
of adaptable analytics implementations. For example, 
Santos, Govaerts, Verbert, and Duval (2012) describe a 
process in which students articulate individual goals 
and then track their progress. Ferguson, Buckingham 
Shum, and Deakin Crick (2011) have used blogs as a 
tool for creating individually owned reflective spaces 
in which students can work through the sense-mak-
ing of the analytics. The need for students to have 
time to “digest” the meaning of the analytics before 
taking action is also supported by the findings of Koh 
et al. (2016), suggesting that appropriate pacing may 
be a critical aspect in the Coordination of reflective 
learning analytics use with the overarching learning 
activities. In contrast, Holman et al. (2015) found that 
for predictive analytics use focused on course prog-
ress, students tended to use the tools to make plans 
(and follow-through on these plans) mostly in short 
bursts just prior to major course deadlines.

While the models and research discussed above have 
primarily conceptualized student learning analytics 
use as an individual endeavor, there are also intrigu-
ing opportunities for students to work with analyt-
ics collectively. This follows the tradition of “group 
awareness” tools, which have been used to facilitate 
computer-supported collaborative work and learning 
(Buder, 2011; Janssen & Bodemer, 2013). In this case, the 

individuals in a group and the group collectively work 
with analytics to improve their joint learning process 
through socially shared regulation (Järvelä et al., 2015).

The above discussion has described three principles 
for designing learning analytics implementations and 
has presented current research and models of learn-
ing analytics use by instructors and students. This 
framework can also be used to discuss implications for 
learning analytics design and research more generally.

First, from a systems design perspective, we can an-
ticipate and create features to support implementation 
possibilities. For example, a tool that allows instructors 
to associate particular analytics and course goals 
(and annotate these connections with examples of 
productive or unproductive patterns) would support 
the principle of Coordination. Similarly, creating tools 
that help students track and reflect on the changes 
in their analytics over time (for example by being 
able to adjust the time window of the analytics for 
both current and historical data) could support the 
principles of Customization. This latter point is of 
particular importance given the usefulness of prior 
activity as a reference frame for evaluating progress, 
but the predominance of analytic dashboards that 
only provide point-in-time “snapshots.”

Second, from a research perspective, in addition to 
continued work to develop useful analytics systems, 
inquiry is also needed into how activity using such 
analytics is best motivated and mobilized, and the 
factors influencing this process. Practically, this 
suggests that laboratory studies, which ask people 
to perform specific tasks or determine particular 
information with learning analytics tools, can only 
contribute so much to predicting how instructors 
and students will work with analytics “in the wild.” 
Thus field-testing new analytics in real educational 
contexts early on may prove particularly important 
in developing learning analytics systems and imple-
mentations that truly impact teaching and learning. 
One valuable approach to consider is Design-Based 
Intervention Research (Penuel, Fishman, Cheng, & 
Sabelli, 2011), which emphasizes multiple iterations 
of testing and (re)design of learning innovations in 
partnership with practitioners to support on-the-
ground use and sustainability.

Finally, it is critical to consider the use of analytics as a 
radically new technology for instructors and students. 
Careful planning of how the analytics will be intro-
duced, with appropriate up-front guidance, ongoing 
support, diverse examples, and time for instructors and 

IMPLICATIONS FOR LEARNING 
ANALYTICS DESIGNERS AND 
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students to figure out how to integrate this new form 
of feedback into their practice is needed to translate 
the promise of learning analytics into reality. Wide-
spread adoption of learning analytics will not occur 
spontaneously, but initial reports from projects that 
have used implementation design to educate users 
and nurture their analytics use are very promising 
(Koh et al., 2016; Wise et al., 2016).

This chapter reflects the current state of the art of 
learning analytics implementation design. The princi-
ples of Coordination, Comparison, and Customization 
provide a lens to examine the different dimensions of 
design choice that can affect how analytics feedback 
is taken up and acted on in particular educational 
contexts. For instructors, models have been proposed 
for analytics use to examine and adjust course-wide 

learning designs as well as to investigate and respond 
to individual student activity patterns via orchestration. 
The use of learning analytics for assessment is a po-
tentially exciting but undeveloped area for application. 
Student use currently takes the form of a reflective, 
self-regulative cycle, with attention given to particular 
ways to support this process. Further research into the 
impact of students’ and instructors’ individual differ-
ences on analytics use and the generation of designs 
to support their particular needs is a promising area 
for future work. The final message of this chapter is 
to emphasize that intentional implementation design 
is essential, not optional, for learning analytics adop-
tion. If we wish to avoid the fate of too many prom-
ising technologies that never made a real impact on 
education, research into the interplay of human and 
technological elements influencing analytics use is a 
critical area for attention in the field moving forward.

CONCLUSION
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Over the past two decades, education practice has 
significantly changed on numerous fronts. This in-
cludes shifts in educational policy, the emergence of 
technology-rich learning spaces, advances in learning 
theory, and the implementation of quality assurance and 
assessment, to name but a few. These changes have all 
influenced how contemporary teaching practice is now 
enacted and embodied. Despite numerous paradigm 
shifts in the education space, the key role of feedback 
in promoting student learning has remained essential 
to what is viewed as effective teaching. Moreover, with 
the massification of education, the need for providing 
real-time feedback and actionable insights to both 
teachers and learners is becoming increasingly acute. 
As education embraces digital technologies, there is a 
widespread assumption that the incorporation of such 
technologies will further aid and promote student 
learning and address sociocultural and economic 
inequities. This positivist ideal reflects the notion that 
technologies can be adopted to enhance accessibility 
to education while creating more personalized and 
adaptive learning pathways.

In this vein, the fields of learning analytics (LA) and 
educational data mining (EDM) have direct relevance 
for education. LA and EDM aim to better understand 
learning processes in order to develop more effec-
tive teaching practices (Baker & Siemens, 2014). The 
analysis of data evolving from student interactions 
with various technologies to provide feedback on 
the learner’s progression has been central to LA and 
EDM work. In this chapter, we argue that feedback is 
one of the most powerful drivers influencing student 
learning. As such, the overall quality of the learning 
experience is deeply entwined with the relevance and 
salience of the feedback a student receives. Moreover, 
the provision of feedback is closely related to other 
aspects of a learning experience, such as assessment 
approaches (Boud, 2000), the learning design (Lockyer, 
Heathcote, & Dawson, 2013), or strategies to promote 
student self-regulation (Winne, 2014; Winne & Baker, 
2013). Although the majority of the discussion in this 
chapter can be applied across all educational domains, 
the review focuses predominantly on post-secondary 
education and professional development.
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Discussions about feedback frequently take place with-
in a framing of assessment and student achievement 
(Black & Wiliam, 1998; Boud, 2000). In this context, 
the primary role of feedback is to help the student 
address any perceived deficits as identified through 
the completion of an assessment item. Ironically, as-
sessment scores and student achievement data have 
also become tools for driving political priorities and 
agendas, and are also used as indicators in quality 
assurance requirements. Assessment in essence is a 
two-edged sword used to foster learning as well as a 
tool for measuring quality assurance and establishing 
competitive rankings (Wiliam, Lee, Harrison, & Black, 
2004). While acknowledging the importance of as-
sessment for quality assurance, we focus specifically 
on the value of feedback often associated with forma-
tive assessment or simply as a component of student 
completion of set learning tasks. Thus, this chapter 
explores how student trace data can be exploited to 
facilitate the transformation of the essence of assess-
ment practices by focusing on feedback mechanisms. 
With such a purpose, we highlight and discuss current 
approaches to the creation and delivery of data-en-
hanced feedback as exemplified through the vast body 
of research in learning analytics and educational data 
mining (LA/EDM).

Theoretical Models of Feedback
Although there is no unified definition of feedback in 
educational contexts, several comprehensive analy-
ses of its effects on learning have been undertaken 
(e.g., Evans, 2013; Hattie & Timperley, 2007; Kluger 
& DeNisi, 1996). In sum, strong empirical evidence 
indicates that feedback is one of the most powerful 
factors influencing student learning (Hattie, 2008). The 
majority of studies have concluded that the provision 
of feedback has positive impact on academic perfor-
mance. However, the overall effect size varies and, 
in certain cases, a negative impact has been noted. 
For instance, a meta-analysis by Kluger and DeNisi 
(1996) demonstrated that poorly applied feedback, 
characterized by an inadequate level of detail or the 
lack of relevance of the provided information, could 
have a negative effect on student performance. In 
this case, the authors distinguished between three 
levels of the locus of learner’s attention in feedback: 
the task, the motivation, and the meta-task level. All 
three are equally important and can vary gradually in 
focus. Additionally, Shute (2008) classified feedback in 
relation to its complexity, and analyzed factors affect-
ing the provision of feedback such as its potential for 
negative impact, the connection with goal orientation, 
motivation, the presence in scaffolding mechanisms, 

timing, or different learner achievement levels. Shute 
noted that to maximize impact, any feedback provided 
in response to a learner’s action should be non-eval-
uative, supportive, timely, and specific.

Early models relating feedback to learning largely 
aimed to identify the types of information provided 
to the student. Essentially, these studies sought to 
characterize the effect that different types of in-
formation can play on student learning (Kulhavy & 
Stock, 1989). Initial conceptualizations of feedback 
were driven by the differences in learning science 
theorizations of how the gap between the actual and 
desired state of the learner can be bridged (cf. historical 
review Kluger & DeNisi, 1996; Mory, 2004). According 
to Mory (2004), contemporary models build upon 
pre-existing paradigms by viewing feedback in the 
context of self-regulated learning (SRL), i.e., a style of 
engaging with tasks in which students exercise a suite 
of powerful skills (Butler & Winne, 1995). These skills, 
setting goals, thinking about strategies, selecting the 
right strategies, and monitoring the effects of these 
strategies on the progress towards the goals are all 
associated with student achievement (Butler & Winne, 
1995; Pintrich, 1999; Zimmerman, 1990). As part of 
their theoretical synthesis between feedback and 
self-regulated learning, Butler and Winne (1995, p. 248) 
embedded two feedback loops into their model. The 
first loop is contained within the so-called cognitive 
system and refers to the capacity of individuals to 
monitor their internal knowledge and beliefs, goals, 
tactics, and strategies and change them as required by 
the learning scenario. The second loop occurs when 
the product resulting from a student engaging with a 
task is measured, prompting the creation of external 
feedback relayed back to the student; for example, an 
assessment score, or an instructor commenting upon 
the completion of a task.

Hattie and Timperley (2007) have provided one of the 
most influential studies on feedback and its impact on 
achievement. The authors’ conceptual analysis was 
underpinned by a definition of feedback as the infor-
mation provided by an agent regarding the performance 
or understanding of a student. The authors proposed a 
model of feedback articulated around the concept that 
any feedback should aim to reduce the discrepancy 
between a student’s current understanding and their 
desired learning goal. As such, feedback can be framed 
around three questions: where am I going, how am I 
going, and where to next? Hattie and Timperley (2007) 
proposed that each of these questions should be applied 
to four different levels: learning task, learning process, 
self-regulation, and self. The learning task level refers 
to the elements of a simple task; for example, notifying 
the student if an answer is correct or incorrect. The 
learning process refers to general learning objec-
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tives, including various tasks at different times. The 
self-regulation level refers to the capacity of reflecting 
on the learning goals, choosing the right strategy, and 
monitoring the progress towards those goals. Finally, 
the self level refers to abstract personality traits that 
may not be related to the learning experience. The 
process and regulation levels are argued to be the 
most effective in terms of promoting deep learning 
and mastery of tasks. Feedback at the task-level is 
effective only as a supplement to the previous two 
levels; feedback at the self-level has been shown to 
be the least effective. These three questions and four 
levels of feedback provide the right setting to connect 
feedback with other aspects such as timing, positive 
vs. negative messages (also referred to as polarity), 
and the consequences of including feedback as part of 
an assessment instrument. These aspects have been 
shown to have a interdependent effect that can be 
positive or negative (Nicol & Macfarlane-Dick, 2006).

In reviewing established feedback models, Boud and 
Molloy (2013) argued that they are at times based on 
unrealistic assumptions about the students and the 
educational setting. Commonly, due to resource con-
straints, the proposed feedback models or at least the 
mechanism for generating non-evaluative, supportive, 
timely, and specific feedback for each student is im-
practical or at least not sustainable in contemporary 
educational scenarios. At this juncture, LA/EDM work 
can play a significant role in moving feedback from an 
irregular and unidirectional state to an active dialogue 
between agents.

The first initiatives using vast amounts of data to 
improve aspects of learning can be traced to areas 
such as adaptive hypermedia (Brusilovsky, 1996; Kob-
sa, 2007), intelligent tutoring systems (ITSs) (Corbett, 
Koedinger, & Anderson, 1997; Graesser, Conley, & Olney, 
2012), and academic analytics (Baepler & Murdoch, 
2010; Campbell, DeBlois, & Oblinger, 2007; Goldstein 
& Katz, 2005). Much of this research has taken place 
within LA/EDM research communities that share a 
common interest in data-intensive approaches to the 
research of educational setting, with the purpose of 
advancing educational practices (Baker & Inventado, 
2014). While these communities have many similarities, 
there are some acknowledged differences between 
LA and EDM (Baker & Siemens, 2014). For example, 
EDM has a more reductionist focus on automated 
methods for discovery, as opposed to LA’s human-led 
explorations situated within holistic systems. Baker 
and Inventado (2014) noted that the main differences 
between LA and EDM are not so much in the preferred 
methodologies, but in the focus, research questions, 

and eventual use of models.

When considering LA/EDM through the lens of feed-
back, the research approaches differ in relation to the 
direction and recipient of feedback. For instance, LA 
initiatives generally provide feedback aimed towards 
developing the student in the learning process (e.g., 
self-regulation, goal setting, motivation, strategies, 
and tactics). In contrast, EDM initiatives tend to focus 
on the provision of feedback to address changes in the 
learning environment (e.g., providing hints that modify 
a task, recommending heuristics that populate the 
environment with the relevant resources, et cetera). 
It is important to note that these generalizations are 
not a hard categorization between the communities, 
more so an observed trend in LA/EDM works that 
reflects their disciplinary backgrounds and interests. 
The following section further unpacks the work in both 
the EDM and LA communities related to the provision 
of feedback to aid student learning.

Approaches to Feedback in 
Educational Data Mining
Research undertaken in EDM is well connected and 
related to disciplines such as artificial intelligence 
in education (AIED) and intelligent tutoring systems 
(ITSs) (Pinkwart, 2016). Regarding feedback processes, 
a considerable number of EDM research initiatives 
have been concerned with developing and evaluating 
the effect of adapted and personalized feedback or 
recommendations to learners (Hegazi & Abugroon, 
2016). This work is grounded on student modelling 
and/or predictive modelling research. Essentially, the 
focus has been on creating specific systems that can 
adapt the provision of feedback in order to respond 
to a student’s particular needs, thereby facilitating 
improvements in learning, reinforcing (favourable) 
academic performance, or restraining students from 
performing certain behaviours (Romero & Ventura, 2013).

EDM approaches dealing with the provision of feedback 
have generally emphasized task-level feedback, with 
some notable exceptions (e.g., Arroyo, Meheranian, 
& Woolf, 2010; Kinnebrew & Biswas, 2012; Lewkow, 
Zimmerman, Riedesel, & Essa, 2015; Madhyastha & 
Tanimoto, 2009). Early research on EDM (see the EDM 
conference proceedings of 2008 and 2009) showcased 
a wide range of approaches aimed at providing feed-
back to learners through data-driven modelling (e.g., 
Mavrikis, 2008), learning-by-teaching agents (e.g., 
Jeong & Biswas, 2008), the provision of on-demand and 
instant prompts (Lynch, Ashley, Aleven, & Pinkwart, 
2008), elaborated feedback as part of assessment tasks 
(Pechenizkiy, Calders, Vasilyeva, & De Bra, 2008), de-
layed feedback (Feng, Beck, & Heffernan, 2009), and 
process modelling (Pechenizkiy, Trcka, Vasilyeva, van 
der Aalst, & De Bra, 2009). This strand of EDM work 
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includes the forward-oriented efforts for building an 
understanding of how such models can be enhanced 
to instrumentalize feedback mechanisms for inform-
ing future systems. In other words, algorithms could 
potentially provide the know-how to influence the 
design of new systems that provide better feedback. 
For instance, Barker-Plummer, Cox, and Dale (2009) 
suggested a need to move beyond the provision of better 
algorithms and understand how task-level feedback is 
influenced by the epistemic and pedagogical situation. 
In other words, the feedback at the level of learning 
process, or information about self-regulation skills, 
can help frame feedback at the task level.

A large portion of the studies related to adaptive feed-
back have been developed through intelligent tutoring 
systems (ITSs; e.g., Abbas & Sawamura, 2009; Eagle & 
Barnes, 2013; Feng et al., 2009), learning management 
systems (LMS; e.g., Dominguez, Yacef, & Curran, 2010; 
Lynch et al., 2008; Pechenizkiy et al., 2008), or equiva-
lent single-user systems that provide a set of learning 
tasks to students in specific knowledge domains. Most 
of these systems capture student models in different 
ways: from traces of student behaviour, knowledge, 
achievement, cognitive states, or affective states for 
example. Based on these models, the system commonly 
offers various types of task-level feedback, such as 
next-step hints (e.g., Peddycord, Hicks, & Barnes, 
2014); correctness hints, also known as flag feedback 
(Barker-Plummer, Cox, & Dale, 2011); positive or en-
couraging hints (Stefanescu, Rus, & Graesser, 2014); 
recommendations on next steps or tasks (Ben-Naim, 
Bain, & Marcus, 2009); or various combinations of 
the above. Hence, studies into behaviour modelling 
have been integral for developing automated feed-
back processes in EDM research (DeFalco, Baker, & 
D’Mello, 2014).

In recent years, EDM work in student modelling has 
been enriched by the emergence of new methods al-
lowing researchers to generate feedback mechanisms 
for less structured learning tasks. An example includes 
the provision of formative and summative feedback on 
student writing (Allen & McNamara, 2015; Crossley, 
Kyle, McNamara, & Allen, 2014). The emergence of 
more sophisticated sensing devices and predictive 
algorithms has allowed the enhancement of student 
models by including traces of more complex human 
dimensions such as confidence, attitude, personali-
ty, motivation (Ezen-Can & Boyer, 2015), and affect 
(Fancsali, 2014). These more nuanced data aid the 
development of better responsive adaptive feedback 
mechanisms that can be personalized for each student. 
In parallel with the sophistication of student models, 
some researchers explored the notion of open learner 
modelling (OLM; Bull & Kay, 2016). The notion of OLM 

is similar to that of visual data representations but 
applied to the model built by a tool. OLMs originated 
within the AIED community in pursuit of providing 
less prescriptive forms of feedback compared with 
recommendations, corrective actions, or next-step 
hints. OLMs have gained renovated interest, as they 
allow the user (learner, teacher, peers, et cetera) to 
view and reflect on (or even scrutinize) the content of 
the learner model presented in human understandable 
forms. One of the advantages of these models is to help 
learners reflect and encourage self-regulating skills.

Recently, scaling up feedback gained traction in scholarly 
EDM work due to the increasing popularity of massive 
open online courses (MOOCs; Wen, Yang, & Rosé, 2014). 
Besides providing personalized feedback for student 
work in MOOCs (Pardos, Bergner, Seaton, & Pritchard, 
2013), there is an interest in generating mechanisms 
to enable fair access to high-quality feedback in large 
cohorts. Some feedback solutions are addressing com-
plex, open-ended learning tasks, building upon peer 
feedback (Piech et al., 2013) or through the provision 
of video-based feedback (Ostrow & Heffernan, 2014).

Although there has been a major emphasis in EDM to 
provide task-level, real-time feedback to students, 
other approaches have also been explored. For exam-
ple, some efforts have focused on providing delayed 
feedback to avoid interruptions in students’ learning 
processes (Feng et al., 2009; Johnson & Zaïane, 2012). 
There has also been interest in EDM to go beyond 
“corrective” feedback and understand the role that 
the polarity (positive, negative, or combined feedback) 
and the timing of feedback can play in students’ dia-
logue (Ezen-Can & Boyer, 2013), in confidence (Lang, 
Heffernan, Ostrow, & Wang, 2015), or in collaborative 
scenarios (Olsen, Aleven, & Rummel, 2015). Providing 
feedback systematically targeting different levels of 
student activity is yet to receive due attention, though 
some examples have been offered. For instance, in 
Arroyo et al. (2010) digital learning companions acted 
as peers that provided feedback at cognitive (hints), 
affective (e.g., praise), and metacognitive levels (e.g., 
showing progress). The cognitive level, or the provision 
of hints, was offered at the task level. Showing progress 
addressed the capacity of self-reflection (i.e., monitor 
progress towards a goal). Other examples of feedback 
addressing regulation of learning have focused on sup-
porting SRL behaviour and self-assessment (Bouchet, 
Azevedo, Kinnebrew, & Biswas, 2012); scaffolding 
high-level students strategies (Eagle & Barnes, 2014); 
recommending strategies of knowledge construction 
(Kinnebrew & Biswas, 2012); and understanding how 
feedback sits in students’ learning processes (Howard, 
Johnson, & Neitzel, 2010).
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Approaches to Feedback in Learning 
Analytics
Within the research in LA, a focus on feedback is generally 
interpreted as the need to communicate a student’s 
state of learning to various stakeholders, i.e., teachers, 
students, or administrators. Early LA research (e.g., LAK 
2011 and 2012 conference proceedings) did not focus 
on feedback per se, but emphasized LA as a discipline 
that needed to close the loop via scalable feedback 
processes (Clow, 2012; Lonn, Aguilar, & Teasley, 2013) 
to produce “actionable intelligence” (McKay, Miller, & 
Tritz, 2012). LA research recognized that feedback is 
conveyed through a multitude of disciplinary voices 
to humans with varying understandings of the agency 
and nature of learning (Suthers & Verbert, 2013). In line 
with that, Wise (2014) urged the design of data-driven 
learning interventions with awareness of how they are 
situated in their respective sociocultural contexts, and 
with the specific aim of addressing student support. 
Due to the significance of the context, perception 
and interpretation of data-supported feedback has 
been a distinct theme within LA feedback-related re-
search. The LA community has searched for evidence 
and practices to ensure that the dialogue between 
the analytics and the stakeholders is taking place as 
imagined by the researchers. For instance, Corrin and 
de Barba (2015) inquired into student perceptions of 
dashboards; Beheshitha, Hatala, Gašević, and Jok-
simović (2016) examined if students with different 
achievement goal orientations perceived dashboard 
feedback in the same way; and a few studies investigated 
ways of making generated research more meaningful 
by combining qualitative interviews or the work of 
human interpreters with the data-driven analyses 
(Arnold, Lonn, & Pistilli, 2014; Clow, 2014; Mendiburo, 
Sulcer, & Hasselbring, 2014; Pardo, Ellis, & Calvo, 2015). 
The exposure of learners to some form of summary 
or indicators of their activity cannot be connected 
with a concrete level of feedback in the taxonomy 
proposed by Hattie and Timperley (2007). However, 
dashboards usually contain task level information, as 
inferring information about the learning process or 
self-regulation skills is much more challenging.

Similar to EDM, the interest of the LA community is in 
the provision of automated, scaled and real-time feed-
back to learners for self-monitoring and self-regulation 
processes, the third level in the taxonomy proposed 
by Hattie and Timperley (2007). Such direction has 
been well-captured through a steady growth of LA 
applications as tools for visualization, reflection, and 
awareness (e.g.,Verbert, Duval, Klerkx, Govaerts, & 
Santos, 2013; Verbert et al., 2014). Although specific 
task-level feedback is of less prominence than in 
EDM/ITS approaches, LA emphasizes more of the 
human-agency involved in interpreting and acting 

upon feedback. LA tends to promote process-level 
feedback by visualizing traces of learning activities. For 
instance, learning dashboards capture data sources, 
such as time spent, resources used, or social inter-
action, to enable learners to define goals and track 
progress towards these goals (for further review see 
Verbert et al., 2014). Recent applications of learning 
dashboards are shifting from the count of time or use 
of learning-related objects to visualizing progress 
related to a conceptualized process, e.g., table-top 
visualizations for inquiry-based learning (Charleer, 
Klerkx, & Duval, 2015), or visualizations of learning paths 
within competence graphs (Kickmeier-Rust, Steiner, 
& Dietrich, 2015). Visualizations informed by social 
network analysis (Dawson, 2010; Dawson, Bakharia, & 
Heathcote, 2010), as a part of social learning analytics 
(e.g., Ferguson & Buckingham Shum, 2012), remain a 
popular type of feedback on the social interaction 
process. These have been recently extended to help 
learners reflect on who they talk to, or where they 
are positioned in learner networks “in the wild,” i.e., 
in distributed social media, such as Twitter or Face-
book, and beyond the LMS (e.g., Bakharia, Kitto, Pardo, 
Gašević, & Dawson, 2016). Such network visualizations 
have also been offered to groups as representations 
of collective knowledge construction.

Feedback aimed towards developing student self-regu-
lated learning proficiency is in its infancy. A promising 
approach to formative feedback embraces the self and 
various aspects of the learning process to support the 
development of resilient learner agency (Deakin Crick, 
Huang, Ahmed Shafi, & Goldspink, 2015). Another re-
cent development includes the provision of feedback 
to students about their affective states. Grawemeyer 
et al. (2016) noted that students receiving affect-aware 
feedback were less bored and more consistently on-
task than a comparative peer group receiving feedback 
only related to their performance. In essence, the 
authors demonstrate that the automated provision 
of feedback relating to a student’s affective state can 
aid engagement and on-task behaviour. Ruiz et al. 
(2016) developed a visual dashboard providing visual 
feedback about student emotions and their evolution 
throughout the course. In this instance, the authors 
used the provision of self-reported emotional states 
as a source of self-reflection to improve performance 
and course designs. However, these studies also 
demonstrate that any noted success appears to be 
largely dependent on the learners’ competence to 
self-regulate using the feedback from such learning 
analytics applications. Less reliance on the assumed 
level of students’ competence is found when learning 
design or technology affordances prompt learner 
reflection. That is, learner thinking is externalized 
through writing text or annotations (also in-video), 
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and formative feedback to this written text may then 
be offered.

The provision of feedback on written text, beyond 
essay grading, has been tackled by various initiatives 
in the area of discourse-centred analytics (De Liddo, 
Buckingham Shum, & Quinto, 2011). Also referred to 
as writing analytics, this area has a strong presence 
across the LA/EDM communities, with a significant 
overlap between methods for automatic text analysis, 
discourse analysis, and computational linguistics 
used to identify written text indicative of learning or 
knowledge construction (e.g., Simsek, Shum, De Liddo, 
Ferguson, & Sándor, 2014). In short, discourse-centred 
analytics offers feedback regarding the quality of 
cognitive engagement, or specifically assisting with 
aspects of writing as a domain skill, e.g., the quality of 
insight, genre, and so on (e.g., Crossley, Allen, Snow, 
& McNamara, 2015; Snow, Allen, Jacovina, Perret, & 
McNamara, 2015; Whitelock, Twiner, Richardson, Field, 
& Pulman, 2015). A noteworthy emergent trend within 
LA research emphasizes analysis of reflective writing 
(Buckingham Shum et al., 2016; Gibson & Kitto, 2015) 
offering formative feedback on learner’s competency 
to reflect, potentially deepening individual engage-
ment with both the content and process of learning.

This chapter has positioned one of the most influential 
aspects in the quality of the student learning experi-
ence, feedback, within the current research space of 
the EDM and LA communities. Despite the direct link 
between feedback and personalized learning, there 

are still significant gaps to be addressed. A dearth 
of research explores how students interact with and 
are transformed by algorithm-produced feedback. 
Furthermore, the relationship between the type of 
interventions that can be derived from data analysis 
and adequate forms of feedback remains inadequately 
explored. There is substantial literature analyzing the 
effect of feedback in learning experiences, but the 
area needs to be revisited with comprehensive data 
sets derived from technology mediation in learning 
experiences. In conventional face-to-face and blended 
learning scenarios, the increase in workload and limited 
instructor time are affecting the quality of feedback 
received by students. New emerging scenarios such 
as MOOCs pose significant challenges in providing 
high quality feedback to large student cohorts. LA and 
EDM are exploring how to address these limitations 
and propose new paradigms in which feedback is both 
scalable and effective. Although the initiatives in both 
communities have a strong connection with feedback, 
they differ in the areas of focal interest within which 
each discipline is devising its solutions. These foci 
are complementary, and often build upon each other. 
Consequently, both disciplines can benefit from a more 
comprehensive view of the role that feedback plays 
in a generic learning scenario, the elements involved, 
and the ultimate goal of prompting changes in the stu-
dents’ knowledge, beliefs, and attitudes. Practitioners 
from both research communities could well benefit 
from adopting a more comprehensive framework for 
feedback that supports a more effective integration 
across disciplines as well as the combination of humans 
and technology.

CONCLUSION
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In this chapter, we look at the role of theory in learning 
analytics. Researchers who study learning are blessed 
with unprecedented quantities of data, whether infor-
mation about staggeringly large numbers of individuals 
or data showing the microscopic, moment-by-moment 
actions in the learning process. It is a brave new world. 
We can look at second-by-second changes in where 
students focus their attention, or examine what study 
skills are effective by looking at thousands of students 
in a MOOC.

As Wise and Shaffer (2016) argue in a special section 
of the Journal of Learning Analytics, however, it is 
dangerous to think that with enough information, the 
data can speak for themselves — that we can conduct 
analyses of learning without theories of learning. In 
fact, the opposite is true. With larger amounts of data, 
theory plays an even more critical role in analysis. Put 
in simple terms, most extant statistical tools were 
developed for datasets of a particular size and type: 
large enough so that random effects are normally 
distributed, but small enough to be obtained using 
traditional data collection techniques. Applying these 

techniques to datasets that are orders of magnitude 
larger in length and number of variables without a 
strong theoretical foundation is perilous at best.

In what follows, we look at this question not by ana-
lyzing the problems of applying statistics without a 
theoretical framework. What Wise and Shaffer suggest 
— and what the articles and commentaries in the special 
section of the Journal of Learning Analytics show — is 
that conducting theory-based learning analytics is 
challenging. As a result, our approach in what follows 
is to examine the role of theory in learning analytics 
through the use of a worked example: the presentation 
of a problem along with a step-by-step description of 
its solution (Atkinson, Derry, Renkl, & Wortham, 2000).

In doing so, our aim is not to provide an ideal solution 
for others to emulate, nor to suggest that our partic-
ular use of theory in learning analytics is better than 
others. Rather, our goal is to reflect on the importance 
of a theory-based approach — as opposed to an athe-
oretical or data-driven approach — to the analysis of 
large educational datasets. We do so by presenting 
epistemic network analysis (ENA; Andrist, Collier, 

Chapter 15: Epistemic Network Analysis:
A Worked Example of Theory-Based 
Learning Analytics

David Williamson Shaffer and A. R. Ruis

In this article, we provide a worked example of a theory-based approach to learning ana-
lytics in the context of an educational game. We do this not to provide an ideal solution for 
others to emulate, but rather to explore the affordances of a theory-based - rather than 
data-driven - approach. We do so by presenting 1) epistemic frame theory as an approach 
to the conceptualization of learning; 2) data from an epistemic game, an approach to edu-
cational game design based on epistemic frame theory; and 3) epistemic network analysis 
(ENA), a technique for analyzing discourse and other data for evidence of complex thinking 
based on the same theory. We describe ENA through a specific analytic result, but our aim 
is to explore how this result exemplifies what we consider a key "best practice" in the field 
of learning analytics.  
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Gleicher, Mutlu, & Shaffer, 2015; Arastoopour, Shaffer, 
Swiecki, Ruis, & Chesler, 2016; Chesler et al., 2015; Nash 
& Shaffer, 2013; Rupp, Gustha, Mislevy, & Shaffer, 2010; 
Rupp, Sweet, & Choi, 2010; Shaffer et al., 2009; Shaffer, 
Collier, & Ruis, 2016; Svarovsky, 2011), a novel learning 
analytic technique. But importantly, we present ENA 
in the context of epistemic frame theory — the approach 
to learning on which ENA was based — and apply it to 
data from an epistemic game, an approach to educa-
tional game design based on epistemic frame theory. 
We thus describe ENA through a specific analytic 
result to examine how this result exemplifies the 
alignment of theory, data, and analysis as a “best 
practice” in the field.

The data we will use to explore this particular worked 
example come from an epistemic game (Shaffer, 2006, 
2007), a simulation of authentic professional practice 
that helps students learn to think in the way that experts 
do. Specifically, the data come from the epistemic game 
Land Science, an online urban planning simulation in 
which students assume the role of interns at a fictitious 
firm competing for a redevelopment contract from 
the city of Lowell, Massachusetts. They work in small 
teams, communicating via chat and email, to develop a 
rezoning plan for the city that addresses the demands 
of different stakeholder groups. To do this, students 
review research briefs and other resources, conduct 
a survey of stakeholder preferences, and model the 
effects of land-use changes on pollution, revenue, 
housing, and other indicators using a GIS mapping 
tool. Because no rezoning plan can meet all stakeholder 
preferences, students must justify the decisions they 
make in their final proposals.

Land Science has been used with high school students 
and first-year college students more than 30 times. Our 
prior research (Bagley & Shaffer, 2009, 2015b; Nash, 
Bagley, & Shaffer, 2012; Nash & Shaffer, 2012; Shaffer, 
2007) has shown that Land Science helps students 
learn content and practices in urban ecology, urban 
planning, and related fields, and it also helps them 
develop skills, interests, and motivation to improve 
performance in school. 

As with many educational technologies, Land Science 
records all of the things that students do during the 
simulation, including their chats and emails, their 
notebooks and other work products, and every key-
stroke and mouse-click. This makes it possible to 
analyze not only students’ final products but also the 
problem-solving processes they use.

In the worked example presented below, we examine 
the chat conversations from 311 students who used 

the same version of Land Science, including seven 
groups of college students (n = 155), eight groups of 
high school students (n = 110), and three groups of 
gifted and talented high school students (n = 46). In 
its entirety, this dataset contains 44,964 lines of chat.

Our analysis of the chat data from Land Science is 
informed by epistemic frame theory (Shaffer, 2004, 
2006, 2007, 2012). The theory of epistemic frames 
models the ways of thinking, acting, and being in the 
world of some community of practice (Lave & Wenger, 
1991; Rohde & Shaffer, 2004). A community of prac-
tice, or a group of people with a common approach 
to framing, investigating, and solving problems, has a 
repertoire of knowledge and skills, a set of values that 
guides how skills and knowledge should be used, and 
a set of processes for making and justifying decisions. 
A community also has a common identity exhibited 
both through overt markers and through the enact-
ment of skills, values, and decision-making processes 
characteristic of the community.

Becoming part of a community of practice, in other 
words, means acquiring a particular Discourse: a way of 
“talking, listening, writing, reading, acting, interacting, 
believing, valuing, and feeling (and using various objects, 
symbols, images, tools, and technologies)” (Gee, 1999, 
p. 719). A Discourse is the manifestation of a culture 
and, based on Goodwin’s (1994) professional vision, 
an epistemic frame is the grammar of a Discourse: a 
formal description of the configuration of Discourse 
elements exhibited by members of a particular com-
munity of practice.

Importantly, however, it is not mere possession of 
relevant knowledge, skills, values, practices, and other 
attributes that characterizes the epistemic frame of a 
community, but the particular set and configuration 
of them. The concept of a frame comes from Goffman 
(1974) (see also Tannen, 1993). Activity is interpreted 
in terms of a frame: the rules and premises that shape 
perceptions and actions, or the set of norms and 
practices by which experiences are interpreted. An 
epistemic frame is thus revealed by the actions and 
interactions of an individual engaged in authentic 
tasks (or simulations of authentic tasks).

To identify analytically the connections among ele-
ments that make up an epistemic frame, we identify 
co-occurrences of them in student discourse — in this 
case, in the conversations they have in an online chat 
program. Researchers (Chesler et al., 2015; Dorogovt-
sev & Mendes, 2013; i Cancho & Solé, 2001; Landauer, 
McNamara, Dennis, & Kintsch, 2007; Lund & Burgess, 
1996) have shown that co-occurrences of concepts in 

DATA
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a given segment of discourse data are a good indica-
tor of cognitive connections, particularly when the 
co-occurrences are frequent (Newman, 2004). These 
concepts can be identified a priori from a theoretical 
or empirical analysis, or from an ethnographic study 
of the community in action.

ENA operationalizes epistemic frame theory by iden-
tifying co-occurrences in segments of discourse data 
and modelling the weighted structure of co-occur-
rences. ENA represents these patterns of co-occurrence 
in a dynamic network model that quantifies changes 
in the strength and composition of an epistemic frame 
over time — a process we describe in the next section.

ENA models the weighted structure of connections 
in discourse data, or in any kind of stanza-based 
interaction data. In what follows, we describe both 
the general principles of the ENA method and the 
specific process by which the current version of ENA 
software — www.epistemicnetwork.org — implements 
the ENA algorithms.

Stanza-Based Interaction Data
Before we describe how ENA operationalizes epistemic 
frame theory, it is important to understand how data 

is configured for analysis using ENA. Consider the 
simplified data in Table 15.1, which shows excerpts 
from two conversations held by one group of students 
in Land Science. In the five columns to the right are 
the concepts, or codes, whose pattern of association 
we want to model. In this case, the codes represent 
various aspects of professional urban planning prac-
tice — that is, various elements of an urban planning 
epistemic frame.

Note that sometimes we can see relations among the 
codes in a single utterance, as in In Line 3, where 
Jorge references knowledge of both social issues and 
environmental issues. In other cases, relations occur 
across utterances: in Line 10, Depesh talks about the 
trade-off involved in increasing open space, which 
responds to and builds on Natalie’s more general 
comment about trade-offs in Line 8. However, we do 
not necessarily want to look at the relations among 
codes across all turns of talk. For example, two sepa-
rate conversations are represented in Table 15.1. Both 
involve the same group of students (Group 3), but the 
conversations took place on two different days while 
the students were working on two different activities.

To create a network model of these data, we need to 
group the lines into stanzas. The key idea behind a 
stanza is that (a) codes in lines anywhere within the 
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1 VSV Meeting 3 Natalie 02/11/14 10:03 Okay, so what do the stakeholders want? 0 0 0 0 0

2 VSV Meeting 3 Depesh 02/11/14 10:03
talking w/ stakeholders, we learned that there are many issues 
within the city but there are some bariers that prevent these 
issues from being easily solved

0 0 1 0 0

3 VSV Meeting 3 Jorge 02/11/14 10:04 Yeah, the stakeholders care a lot about the environmental impact 
in the area as well as the need for low income housing 0 0 1 0 1

4 VSV Meeting 3 Depesh 02/11/14 10:04 they cared about different issues but they all wanted to create a 
healthy and livable community 0 0 1 0 0

5 VSV Meeting 3 Natalie 02/11/14 10:05 I agree. They are also worried about the quality of the water. 0 0 0 0 1

6 VSV Meeting 3 Jessie 02/11/14 10:06 and they want more housing opportunities for low-income 
residents 0 0 1 0 0

7 iPlan Meeting 3 Jorge 02/13/14 10:21 Quick question, what does the indicator P mean? 0 0 0 0 1

8 iPlan Meeting 3 Natalie 02/13/14 10:21

I found that certain indicators changed when altering the zoning 
designations of specific sites. Each change in zoning category 
came with its benefits and drawbacks. There was usually a 
tradeoff involved.

0 1 0 1 0

9 iPlan Meeting 3 Jessie 02/13/14 10:21 @Jorge: P = phosporous 0 0 0 0 1

10 iPlan Meeting 3 Depesh 02/13/14 10:22 yeah, if you add open space you can help run-off and nesting but 
hurt the job totals 1 0 1 0 1

11 iPlan Meeting 3 Jorge 02/13/14 10:25 Yeah, everything affects something. 0 0 0 0 0

Table 15.1. Edited Excerpt of Discourse Data Coded in ENA Format
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same stanza are related to one another in the model, 
and (b) codes in lines that are not in the same stanza 
are not related to one another in the model. In this case, 
stanzas indicate which co-occurrences of concepts 
represent meaningful cognitive connections among 
the epistemic frame elements of urban planning.

ENA Models
To construct a network model from stanza-based 
interaction data, ENA collapses the stanzas. Usually 
this is done as a binary accumulation: if any line of 
data in the stanza contains code A, then the stanza 
contains code A. For example, the data shown in Table 
1 would be collapsed as shown in Table 15.2 if we choose 
“Activity” to define the stanzas.

ENA then creates an adjacency matrix for each stanza, 
which summarizes the co-occurrence of codes (see 
Table 15.3). The diagonal of the matrix contains all 
zeros because codes in this model, and in general in 
ENA, do not co-occur with themselves. Each adjacency 
matrix, in this case, represents the connections that 
Group 3 made among urban planning epistemic frame 
elements during a particular activity. For example, in 
the VSV Meeting activity, K.social.issues, and K.envi-
ronment both occurred in Group 3’s discourse. The 
adjacency matrix representing that activity in Table 
15.3 (left) thus contains a 1 in the cells that represent 
the co-occurrence of those two codes.

The adjacency matrices representing each stanza are 
then summed into a cumulative adjacency matrix for 
each unit of analysis in the dataset. The simple exam-
ple shown in Table 15.3 would thus be represented by 
the cumulative adjacency matrix shown in Table 15.4. 
At the end of this process of accumulation, each unit 
in the dataset (in this case, each group) is associated 
with a cumulative adjacency matrix that represents 
the weighted pattern of co-occurrence (cognitive 
connections) among the codes (epistemic frame ele-
ments) for that unit.

To understand the structure of connections across 
different units — the relationships among their net-
works of connections, or the differences among their 
cumulative adjacency matrices — ENA represents each 

cumulative adjacency matrix as a vector in a high-di-
mensional space, where each vector is defined by the 
values in the upper diagonal half of the matrix. Note 
that the dimensions of this space correspond to the 
strength of association between every pair of codes.

Table 15.2. Stanzas by Activity for Group 3
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VSV Meeting 3 0 0 0 0 0

VSV Meeting 3 0 0 1 0 0

Table 15.3. Stanzas by Activity for Group 3

Table 15.4. Cumulative Adjacency Matrix for Group 
3, Summing the Two Adjacency Matrices Shown in 

Table 3
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E.social.issues 0 1 1 1 1

S.zoning.codes 1 0 1 1 1

K.social.issues 1 1 0 1 1

K.zoning.codes 1 1 1 0 1

K.environment 1 1 1 1 0

Group 3
VSV Meeting

E.
so

ci
al

.is
su

es

S.
zo

ni
ng

.c
od

es

K.
so

ci
al

.is
su

es

K.
zo

ni
ng

.c
od

es

K.
en

vi
ro

nm
en

t

E.social.issues 0 0 0 0 0

S.zoning.codes 0 0 0 0 0

K.social.issues 0 0 0 0 1

K.zoning.codes 0 0 0 0 0

K.environment 0 0 1 0 0

Group 3

E.
so

ci
al

.is
su

es

S.
zo

ni
ng

.c
od

es

K.
so

ci
al

.is
su

es

K.
zo

ni
ng

.c
od

es

K.
en

vi
ro

nm
en

t

E.social.issues 0 1 1 1 1

S.zoning.codes 1 0 1 1 1

K.social.issues 1 1 0 1 2

K.zoning.codes 1 1 1 0 1

K.environment 1 1 2 1 0



HANDBOOK OF LEARNING ANALYTICSPG 178 CHAPTER 15 EPISTEMIC NETWORK ANALYSIS: A WORKED EXAMPLE OF THEORY-BASED LEARNING ANALYTICS PG 179

Before analyzing the data in ENA space, ENA divides 
each vector by its length to normalize the data. This 
is done because the length of a vector is potentially 
affected by the number of stanzas contained in the 
unit of analysis. More stanzas are likely to produce 
more co-occurrences, which result in longer vectors. 
This is problematic because two vectors may represent 
the same pattern of association, and thus point in the 
same direction, but represent different numbers of 
stanzas, and thus have different lengths.

Once the data are normalized, ENA performs a singular 
value decomposition (SVD), a projection that centres 
the data but does not rescale it. This maximizes the 
variance accounted for in the data (similar to a principal 
components analysis). However, unlike a traditional 
PCA or factor analysis, (a) ENA is performed on the 
co-occurrences from the cumulative adjacency ma-
trices, rather than on the counts or strengths of the 
codes themselves, and (b) ENA performs a sphere or 
cosine norm on the original data and centres it, but 
does not rescale the dimensions individually.

Interpretation of ENA Models
Once an ENA model is created, a suite of tools can be 
used to understand and create a meaningful inter-
pretation. For example, in the Land Science dataset 
described above, the chat utterances of all students 
were coded for 24 urban planning epistemic frame 
elements (see Appendix I) using a previously developed 
and validated automated coding process (Bagley & 
Shaffer, 2015b; Nash & Shaffer, 2011). Codes relevant 
to authentic urban planning practice were developed 
based on an ethnographic study of how urban planners 

are trained (Bagley & Shaffer, 2015a).

ENA models are typically visualized using two-dimensions 
at a time, which facilitates interpretation. Figure 15.1, 
for example, shows the cumulative epistemic network 
of a high school student (Student A) who participated 
in Land Science. The network models the structure 
of connections among the elements of the student’s 
urban planning epistemic frame. In this case, Student 
A’s network shows a number of connections among 
knowledge elements, such as knowledge of social issues 
and knowledge of complex systems; epistemological 
elements, such as compromise; and the skill of using 
urban planning tools (such as a preference survey). The 
network is also weighted: thicker, more saturated lines 
represent stronger connections, whereas thinner, less 
saturated lines represent weaker connections. The 
thickness/saturation of a line is proportional to the 
number of stanzas in which the connection between 
the two epistemic frame elements occurred.

While we can draw some conclusions about this 
student’s network — for example, Student A made 
cognitive connections mostly among basic knowledge 
and skills — in many cases, the salient features of a 
network are easier to identify in comparison with 
other networks. Figure 15.2 shows the urban planning 
epistemic network of a second high school student 
(Student B). Like Student A, Student B made a number 
of connections among basic knowledge elements, but 
Student B’s network exhibits more and stronger con-
nections overall as well as connections to additional 
elements, most notably to more advanced skills, such 
as scientific thinking, and to epistemological attributes. 

Figure 15.1. Epistemic network of a high school stu-
dent (Student A) representing the structure of cog-
nitive connections the student made while solving a 
simulated urban redevelopment problem. Percent-

ages in parentheses indicate the total variance in the 
model accounted for by each dimension.the integra-

tion of multiple sources of data.

Figure 15.2. Epistemic network of a high school 
student (Student B) representing the cognitive con-
nections the student made while solving a simulated 

urban redevelopment problem.
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As discussed above, epistemic frame theory suggests 
that the epistemic frame of urban planning (or any 
community of practice) is defined by how and to what 
extent urban planning knowledge, skills, values, and 
other attributes are interconnected. In this example, 
ENA reveals that Student B’s network is more overtly 
epistemic: she explained and justified her thinking in 
the way that urban planners do, and is thus learning 
to think like an urban planner.

What makes this comparison between Students A 
and B possible is that the nodes in both epistemic 
networks appear in exactly the same places in the 
network projection space — for these two students, 
and for all the students in the dataset. This invariance 
in node placement allows us to compare the network 
projections of different units directly, but this meth-
od of direct comparison only works for very small 
numbers of networks — what if we want to compare 
dozens or even hundreds of networks? For example, 
what if we want to compare all 110 high school students 
in this dataset, or compare the high school students 
with the college students? ENA makes this possible 
by representing each network as a single point in the 
projection space, such that each point is the centroid 
of the corresponding network.

The centroid of a network is similar to the centre of 
mass of an object. Specifically, the centroid of a network 
graph is the arithmetic mean of the edge weights of 
the network model distributed according to the net-
work projection in space. The important point here is 
that the centroid of an ENA network summarizes the 
network as a single point in the projection space that 
accounts for the weighted structure of connections in 
the specific arrangement of the network model.

The locations of the nodes in the network projection 
are determined by an optimization routine to mini-
mize, for any given network, the distance between (a) 
the centroid of the network graph, and (b) the point 
that represents the network under the SVD rotation. 
Choosing fixed node positions to have the centroid of 
a network correspond to the position of the network 
in a projected space allows for characterization of the 
projection space — and thus of the salient differences 
among different networks in the ENA model. In this 
case, we can interpret the projection space in the 
following way: toward the lower left are basic pro-
fessional skills, such as professional communication 
and use of urban planning tools; toward the right are 
knowledge elements related to the specific redevel-
opment problem and to knowledge of more general 
topics, such as data and scientific thinking; and toward 
the upper left are elements of more advanced urban 
planning thinking, especially epistemological elements 
— making and justifying decisions according to urban 

planning conventions — and the use of zoning codes.

We can thus compare a large number of different 
networks simultaneously because centroids located 
in the same part of the projection space represent 
networks with similar patterns of connections, while 
centroids located in different parts of the projection 
space represent networks with different patterns of 
connections1.  This allows us to explore any number 
of research questions about students’ urban planning 
epistemic frames. One question we might ask of the 
Land Science dataset is How do the epistemic networks 
of the different student populations (college, high school, 
and gifted high school) differ? For example, when we 
plot the centroids of the college students and the 
high school students (Figure 15.3), the two groups are 
distributed differently. To determine if the difference 
is statistically significant, we can perform an inde-
pendent samples t test on the mean positions of the 
two populations in the projection space. The college 
students (dark) and high school students (light) are 
significantly different on both dimensions:

 x ̅College= -0.083, x ̅HS= 0.115, t = -7.025, p < 0.001, Cohen's d = -0.428

y ̅College= 0.040, y ̅HS= -0.045, t = 3.199, p = 0.002, Cohen's d = 0.186

When the gifted and talented high school students 
are included in the analysis, in some respects they 
are more similar to the college students, and in others 

1 It is possible, of course, that two networks with very different 
structures of connections will share similar centroids. For example, 
a network with many connections might have a centroid near the 
origin; but the same would be true of a network that had only a few 
connections at the far right and a few at the far left of the network 
space. For obvious reasons, no summary statistic in a dimension-
al reduction can preserve all of the information of the original 
network.

Figure 15.3. Centroids of college students (dark) and 
high school students (light) with the corresponding 
means (squares) and confidence intervals (boxes).
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they are more similar to the high school students. The 
mean position of the gifted high school students in the 
projection space (Figure 15.4) is statistically significantly 
different from both the college students and the high 
school students only on the first (x) dimension:

x ̅GiftedHS= 0.007, x ̅College= -0.083, t = 2.538, p = 0.013, Cohen's d=0.202

x ̅GiftedHS= 0.007, x ̅College= 0.115, t = -2.736, p = 0.007, Cohen's d=-0.223

To determine what factors account for the differences 
among the three groups, we can compare their mean 
epistemic networks. As Figure 15.5 shows, the gifted 
high school students on average made more and 
stronger connections to elements of advanced urban 
planning thinking than the high school students, but 
not to the same extent as the college students. That 
is, they were somewhere between the high school and 
college students with respect to complex thinking in 
the domain. In contrast, the gifted high school students 
seem to be more similar to the high school students in 
that both populations made fewer connections than the 
college students between basic professional skills and 

advanced urban planning thinking. In other words, the 
gifted high school students are somewhere between 
the high school and college students intellectually, but 
they are more similar to the high school students in 
their level of basic professional and interpersonal skills.

Qualitative Triangulation of ENA Network 
Models
A key feature of ENA is the ability to trace connections 
in the model back to the original data — the chats, in 
this case — on which the connections are based. By 
clicking on the line connecting “epistemology of social 
issues” with “knowledge of data,” we can access all the 
utterances that contributed to this connection in the 
network graph. Figure 15.6 shows an excerpt of the 
utterances that contributed to this connection in one 
college student’s epistemic network.

The text is coloured such that stanzas or utterances 
containing only the first code are shown in red, those 
containing only the second code are shown in blue, 
those containing both codes are shown in purple, and 
those containing neither code are shown in black. The 
stanza (i.e., the activity) “Final Proposal Reflection,” 
for example, is coloured purple because it contains 
utterances coded for both E.social.issues and K.data: 
the first (red) utterance justifies a land-use change 
based on a desire to improve the city (epistemology of 
social issues), while the second utterance references 
knowledge about the effects of zoning changes on 
atmospheric carbon dioxide levels (knowledge of data).

This feature of ENA allows us to close the interpretive 
loop (see Figure 15.7). We started with a dataset that was 
coded for urban planning epistemic frame elements; we 
used the coded data to create and visualize network 
models of students’ urban planning thinking based on 
the co-occurrence of frame elements; then, if we want 
to understand the basis for any of the connections in 
the network models, we can return to the original 
utterances. ENA thus enables quantitative analysis 
of qualitative data in such a way that the quantitative 
results can be validated qualitatively. 

Figure 15.4. Mean network positions (squares) and 
confidence intervals (boxes) of the college students 
(left), high school students (right), and gifted high 

school students (center).

Figure 15.5. Mean epistemic networks of college students (red, left), gifted high school students (green, cen-
tre) and high school students (blue, right).
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Figure 15.6. Excerpt of the chat utterances that contributed to the connection between epistemology of social 
issues and knowledge of data in one college student’s epistemic network. In the ENA toolkit, the text of each 

utterance is coloured to indicate whether it contains code A (red), code B (blue), both (purple), or neither 
(black). 

Figure 15.7. Good theory-based learning analytics “closes the interpretive loop” by making it possible to vali-
date the interpretation of a model against the original data.

In working through this analysis, our aim was not to 
provide an ideal example for others to emulate, nor to 
suggest that epistemic frame theory has any particular 
analytic advantages over other learning theories, but 
to provide context for a more general discussion of 
methodology in learning analytics and educational 
data mining. As analyses of large educational data-
sets have become more common, a key application is 
obtaining empirical evidence to “refine and extend 
educational theories and well-known educational 
phenomena, towards gaining deeper understanding 
of the key factors impacting learning” (Baker & Yacef, 
2009, p. 7). In other words, a theoretical framework 
guides the selection of variables and development of 
hypotheses, which can lead to an explanation for why 
observed phenomena are occurring.

In the worked example presented above, we used the 
theory of epistemic frames to guide our analysis of 
student chat data in an urban planning simulation. 
Epistemic frame theory suggests that learning can 
be characterized by the structure of connections that 
students make among elements of authentic practice. 
Our analytic approach, ENA, uses discourse data to 
construct models of student learning that are visualized 
as network graphs, mathematical representations of 
patterns of connections. The analysis is thus an op-
erationalization of a particular theoretical approach 
to understanding learning.

One way to conceptualize the linkage between theory, 
data, and analysis is through evidence centred design 
(Mislevy & Riconscente, 2006; Rupp, Gustha et al., 2010; 
Shaffer et al., 2009). In evidence-centred design, an 
analytic framework is composed of three connected 
models: a student model, an evidence model, and a 
task model (see Figure 8; Mislevy, Steinberg, & Almond, 

DISCUSSION



HANDBOOK OF LEARNING ANALYTICSPG 182 CHAPTER 15 EPISTEMIC NETWORK ANALYSIS: A WORKED EXAMPLE OF THEORY-BASED LEARNING ANALYTICS PG 183

Figure 15.9. Mean network positions (squares) and 
confidence intervals (boxes) of the college students 
(left), high school students (right), and gifted high 

school students (center).

1999; Mislevy, 2006). The student model represents 
the characteristics of the student that we want to 
assess, or more generally the outcome we are trying 
to model or measure. The task model represents the 
activities and the data that will be used to measure 
the outcomes in the student model. The student (out-
come) model and task (data) model are linked by an 
evidence model, which details the analytic tools and 
techniques that will be used to warrant conclusions 
about the outcomes based on the data.

Our worked example illustrates an approach to learning 
analytics in which each of the models (student, evi-
dence, and task) are derived from the same theoretical 
framework — in this case, epistemic frame theory (see 
Figure 15.9).

Figure 15.9.  Models in an ECD Assessment (adapted 
from Mislevy, 2006).

The result is an approach to analyzing expertise in the 
context of (simulated) complex problem solving that is 
guided by a particular theory of expertise and validated 
empirically. But critically, the empirical grounding of 
the results does not rely solely on statistical signifi-
cance: because of the linkages between the different 
models or layers of the evidentiary argument, the 
interpretation of the statistics — the meaning of the 
model — can be verified in the original data.

Despite these advantages of a theory-based approach 
to data analysis, there has been a significant expansion 
in studies that take a radically atheoretical approach 

to discovery. Wired editor-in-chief Chris Anderson 
(2008) has even claimed that theory-based inquiry 
is unnecessary in the age of big data. “Petabytes [of 
data] allow us to say: ‘Correlation is enough,’” An-
derson suggests. “We can analyze the data without 
hypotheses about what it might show. We can throw 
the numbers into the biggest computing clusters the 
world has ever seen and let statistical algorithms find 
patterns where science cannot.” Despite the fact that 
most scientists would be deeply uncomfortable with 
the idea that causation is unimportant, Anderson’s 
approach to the analysis of big data — “to view data 
mathematically first and establish a context for it 
later” — is a commonly applied method in data mining.

Of course, with a sufficiently large dataset and the 
ability to run it through dozens if not hundreds of 
mathematical models, statistically significant patterns 
will be found. But statistical significance does not imply 
conceptual or even practical significance. This does not 
imply that all theory-based approaches to analyzing 
large collections of data are ideal or even worthwhile. 
There is bad theory, just as there is bad empiricism — 
and even good theory badly operationalized or applied. 
Nor are we suggesting that the worked example above, 
or even more generally the theories and methods that 
we chose, are ideal in all circumstances.

Our argument, rather, is that there are distinct advantages 
to taking a theory-based approach to the analysis of 
large educational datasets. The worked example above 
illustrates how in theory-guided learning analytics, an 
explicit theoretical framework guides the search for 
understanding in a corpus of data and the selection of 
appropriate analytic methods. These linkages between 
data, theory, and analysis thus provide the ability to 
interpret the results sensibly and meaningfully.
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APPENDIX I

Code Code Description Example

Epistemology of 
Social Issues

Using social issues to justify a decision or to 
ask for a justification of a decision (e.g., jobs, 
crime, housing)

Because it effects their [the stakehold-
ers’] business

Epistemology of Envi-
ronmental Issues

Using environmental issues to justify a decision 
or to ask for a justification of a decision (e.g., 
runoff, pollution, animal habitats)

except why wouldn’t we think that they’d 
care about social and environmental 
issues?

Epistemology of 
Representing Stake-
holders

Using the representation of stakeholders to 
justify a decision or to ask for a justification of 
a decision (e.g., referring to a specific stake-
holders’ needs by name, referring to the needs 
of the stakeholder group)

Try and understand what the stakehold-
ers want and why. That might help you 
come up with a plan that they’ll support.

Epistemology of Data
Using data to justify a decision or to ask for 
a justification of a decision (e.g., numbers, 
collecting information)

there are three different groups L-EDC, 
L-CAG, and LC-RWC and each group 
have different recommendations. all 
three of the numbers are different so it 
seems impossible to meet all three of 
those numbers at the same time. which 
group are we suppose to follow?

Epistemology of 
Compromise

Using compromise to justify a decision or to 
ask for a justification of a decision (e.g., balanc-
ing stakeholders’ needs, referring explicitly to 
compromise)

You may have to make compromises, 
because the stakeholder groups some-
times disagree.

Value of Represent-
ing Stakeholders

Utterances indicating that players should, 
should not, must, must not, ought to care about 
representing stakeholders

First, let’s make sure we agree on what 
the stakeholders want.

Value of Complex 
Systems

Utterances indicating that players should, 
should not, must, must not, ought to care about 
relationships between parts of a larger system 

Flavian and Natalie both want to protect 
the enviornment in Lowell, whereas Lee 
and Nathanial both want to increase 
housing and economic groth

Value of Compromise
Utterances indicating that players should, 
should not, must, must not, ought to care about 
compromise

however, we may need to make com-
promises so everyone can live with the 
changes.

Skill of Profession-
alism

Utterance indicating that a skill related to 
professionalism was performed (e.g., sending 
an email)

OK. I finished the interview and I read 
the resources.

Skill of Data

Utterance indicating that a skill related to data 
was performed (e.g., entering values into the 
TIM, referring to values of TIM output and 
stakeholder assessment values)

we listened to the feedbacks and chose 
the best numbers according to what 
they wanted so i think 99.9999

Skill of Scientific 
Thinking

Utterance indicating that a skill related to 
scientific thinking was performed (e.g., making 
hypotheses, testing hypotheses, developing 
models)

so we put test numbers into the TIM to 
see how they react?

Skill of Compromise Utterance indicating that a skill related to com-
promise was performed

however, we may need to make com-
promises so everyone can live with the 
changes.

Identity of Urban 
Planners

Utterance indicating that one or one’s group 
identifies as an urban planner

Sure. iPlan is a model, so as a planner, 
when you make changes in iPlan, it 
shows us what might happen if you 
made those changes in the real world.

Identity of Interns Utterance indicating that one or one’s group 
identifies as interns

please remember we are professionals 
and all our chat and work that we hand 
in should reflect that.

Knowledge of Social 
Issues

Utterance referring to social issues (e.g., jobs, 
crime, housing)

I worked with a group that cared about 
nests, housing, phosphorous, and 
runoffs

URBAN PLANNING EPISTEMIC FRAME CODE SET



HANDBOOK OF LEARNING ANALYTICSPG 186 CHAPTER 15 EPISTEMIC NETWORK ANALYSIS: A WORKED EXAMPLE OF THEORY-BASED LEARNING ANALYTICS PG 187

Code Code Description Example

Knowledge of Envi-
ronmental Issues

Utterance referring to environmental issues 
(e.g., runoff, pollution, animal habitats)

I worked with the Connecticut River 
Water council and they cared about the 
environment.

Knowledge of Repre-
senting Stakeholders

Utterance referring to representing stakehold-
ers (e.g., referring to a specific stakeholders’ 
needs by name, referring to the needs of the 
stakeholder group)

You may have to make compromises, 
because the stakeholder groups some-
times disagree

Knowledge of Com-
plex Systems

Utterance referring to relationships between 
parts of a larger system

inorder to reduce co2 levels I had to 
increase the bird populations

Knowledge of Urban 
Planning Tools

Utterance referring to urban planning tools 
(e.g., iPlan, TIM, Preference Survey) so wer making one iplan?

Knowledge of Zoning 
Codes

Utterance referring to zoning codes (e.g., open 
space, industrial space, housing, wetlands)

well if you changed a piece of land from 
open space to industrial, you create 
jobs, but the CO might increase as well

Knowledge of Data
Utterance referring to data (e.g., entering values 
into the TIM, referring to values of TIM output 
and stakeholder assessment values)

i got really positive feedback except for 
my runoff number. i need to reduce that 
a bit more

Knowledge of Scien-
tific Thinking

Utterance referring to scientific thinking (e.g., 
making hypothesis, testing hypothesis, devel-
oping models)

I guess it would be a model that you can 
test and observe the effects that would 
happen in the real world.

Skill of Zoning Codes Utterance indicating that a skill related to zon-
ing codes was performed

Converting land to open space/wetlands 
increases the bird population. That’s 
one of the stakeholder’s concerns, so I 
should maybe mark more open space 
and less industrial or commercial

Skill of Urban Plan-
ning Tools

Utterance indicating that a skill related to urban 
planning tools was performed

To get the desired result you’d have to 
change a few different indicators.
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This chapter is most relevant to readers who will be 
analyzing trace data of participant interaction in one or 
more digital settings (which may be of multiple media 
types), and wish to computationally derive higher levels 
of description of what is happening, possibly across 
multiple settings. Examples of these higher levels of 
description include identifying sessions of interaction, 
identifying groups or communities of learners across 
sessions, characterizing interaction in terms of key 
actors, and identifying relationships between actors. 
The approach outlined here, the Traces framework, 
has been used for discovery oriented research, but can 
also support hypothesis testing research that requires 
variables at these higher levels of description, or live 
monitoring of production learning settings using 
such descriptions. The Traces framework involves 
a set of concepts for thinking about and modelling 
interaction in sociotechnical systems, a hierarchy 
of models with corresponding representations, and 
computational methods for translating between these 

levels by transforming representations. These meth-
ods have been implemented in experimental software 
and tested on data from a heterogeneous networked 
learning environment.

The purpose of this chapter is to introduce the reader 
to the conceptual and representational aspects of 
the framework, with brief descriptions of how it can 
be used for multilevel analysis of activity and actors 
in networked learning environments. Due to length 
limitations, detailed examples and information on 
our implementation and research are not included1.

1 See Joseph, Lid, and Suthers (2007) and Suthers (2006) for theo-
retical background; see Suthers, Dwyer, Medina, and Vatrapu (2010) 
and Suthers and Rosen (2011) for the development of our analytic 
representations; see Suthers, Fusco, Schank, Chu, and Schlager 
(2013) for community detection applications; see Suthers (2015) for 
an example of how one might combine these capabilities into an 
activity reporter for monitoring a large networked learning envi-
ronment. Suthers et al. (2013) and Suthers (2015) describe the data 
from the Tapped In network of educators we used as a case study 
in developing this framework. Papers are available at http://lilt.ics.
hawaii.edu.

Chapter 16: Multilevel Analysis of Activity and 
Actors in Heterogeneous Networked Learning 
Environments

Daniel D. Suthers

Learning in today’s networked environments is often distributed across multiple media and 
sites, and takes place simultaneously via multiple levels of agency and processes. This is a 
challenge for those wishing to study learning as embedded in social networks, or simply to 
monitor a networked learning environment for practical purposes. Traces of activity may be 
fragmented across multiple logs, and the granularity at which events are recorded may not 
match analytic needs. This chapter describes an analytic framework, Traces, for analyzing 
participant interaction in one or more digital settings by computationally deriving higher 
levels of description. The Traces framework includes concepts for modelling interaction 
in sociotechnical systems, a hierarchy of models with corresponding representations, and 
computational methods for translating between these levels by transforming representa-
tions. Potential applications include identifying sessions of interaction, key actors within 
sessions, relationships between actors, changes in participation over time, and groups or 
communities of learners. 
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Motivations for the Traces framework derive in part 
from phenomena such as the emergence of Web 2.0 
(O’Reilly, 2005) and its adoption by educational practi-
tioners and learners for formal and informal learning, 
including more recent interest in MOOCs (massive 
open online courses) (Allen & Seaman, 2013). In these 
environments, learning is distributed across time and 
virtual place (media), and learners may participate in 
multiple settings. We focus on networked learning 
environments (NLE), which we define to include any 
sociotechnical network that involves mediated interac-
tion between participants (hence “networked”) in which 
learning might take place, including for example online 
communities (Barab, Kling, & Gray, 2004; Renninger 
& Shumar, 2002) and cMOOCs (connectivist MOOCs) 
(Siemens, 2013). The framework is not applicable to 
isolated activity by individuals, such as “xMOOCs” in 
which large numbers of individuals interact primarily 
with courseware or tutoring systems.

Learning and knowledge creation activities in these 
networked environments are often distributed across 
multiple media and sites. As a result, traces of such 
activity may be fragmented across multiple logs. For 
example, networked learning environments may in-
clude a mashup of threaded discussion, synchronous 
chats, wikis, microblogging, whiteboards, profiles, and 
resource sharing. Events may be logged in different 
formats and locations, disassociating actions that for 
participants were part of a single unified activity. Inte-
gration of multiple sources of trace data into a single 
transcript may be needed to reassemble data on the 
interaction. Also, the granularity at which events are 
recorded may not match analytic needs. For example, 
media-level events may be the wrong ontology for 
analyses concerned with relationships between acts, 
persons, and/or media rather than individual acts. 
Translation from log file representations to other 
levels of description may be required to begin the 
primary analysis.

Derivation of higher levels of description is also mo-
tivated by theoretical accounts of learning as a com-
plex and multilevel phenomenon. Theories of how 
learning takes place in social settings vary regarding 
the agent of learning, including individual, small group, 
network, or community; and in the process of learn-
ing, including for example information transfer, argu-
mentation, intersubjective meaning-making, shifts in 
participation and identity, and accretion of cultural 
capital (Suthers, 2006). Learning takes place simul-
taneously at all of these levels of agency and with all 
of these processes, potentially at multiple time scales 
(Lemke, 2000). A multi-level approach is also motivat-
ed by our theoretical stance that social regularities 

arise from how myriad individual acts are aggregated 
and influence each other, possibly mediated by artifacts 
(Latour, 2005), and the methodological implication 
that to understand phenomena such as actor relation-
ships or community structures, we also need to look 
at the stream of individual acts out of which these 
phenomena are constructed. Thus, understanding 
learning in its full richness requires data that reveal 
the relationships between individual and collective 
levels of agency and potentially coordinating multiple 
theories and methods of analysis (de Laat, 2006; Monge 
& Contractor, 2003; Suthers, Lund, Rosé, Teplovs, & 
Law, 2013).

This section covers the levels of description and cor-
responding representations underlying the Traces 
analytic framework with the next section discussing 
potential applications. To preview the approach, logs 
of events are abstracted and merged into a single 
abstract transcript of events, which is then used to 
derive a series of representations that support levels 
of analysis of interaction and of relationships. Three 
kinds of graphs model interaction. Contingency graphs 
record how events such as chatting or posting a mes-
sage are observably related to prior events by temporal 
and spatial proximity and by content. Uptake graphs 
aggregate the multiple contingencies between each 
pair of events to model how each given act may be 
“taking up” prior acts. Session graphs are abstractions 
of uptake graphs: they cluster events into spatio-tem-
poral sessions with uptake relationships between 
sessions. Relationships between actors and artifacts 
are abstracted from interaction graphs to obtain 
sociograms and a special kind of affiliation network 
that we call associograms. The representations used 
at various levels of analysis are shown schematically 
in Figure 16.1.

About Transcript
We begin with various traces of activity (such as log 
files of events) that provide the source data (Figure 
16.1a). These are parsed, using necessarily system-spe-
cific methods, into an event stream, as shown in the 
second level (boxes in Figure 16.1b). Events can come 
from different media (e.g., chats, threaded discussion, 
social media), be of various types (e.g., enter chat, exit 
chat, chat contribution, post message, read message, 
download file). They should be annotated with time 
stamps, actors, content (e.g., chat content), and locations 
(e.g., chat rooms) involved in the event where relevant. 
The result is an abstract transcript of the distributed 
activities. By translating from system-specific repre-
sentations of activity to the abstract transcript, we 
integrate hitherto fragmented records of activity into 

TRACES ANALYTIC FRAMEWORK

MOTIVATIONS
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one analytic artifact.

Contingency Graph
We then compute contingencies between events (arrows 
in Figure 16.1b), to produce a model of how acts are 
mutually contextualized. Human action is contingent 
upon its setting in diverse ways: computational meth-
ods can capture some of the contingencies amenable 
to automated detection. For example, a contingency 
called proximal event reflects the likelihood that events 
occurring close together in time and space are related. 
In analyzing quasi-synchronous chat, contingencies are 
installed to prior contributions in the same room that 
occur within an adjustable time window but not too 
recently. Address and reply contingencies are installed 
between an utterance mentioning a user by name and 
the last contribution and next contribution by that par-
ticipant within a time window, using a parser/matcher 
of user IDs to first names. Same actor contingencies 
are installed to prior acts of a participant over a larger 
time window to reflect the continuity of an agent’s 
purpose. Overlap in content as represented by sets 
of lexical stems is used to produce a lexical overlap 
contingency weighted by the number of overlapping 
stems. Further contingencies could be computed 
based on natural language processing methods for 
analysis of interactional structure (Rosé et al., 2008). 

The resulting contingency graph represents the first 
layer of abstraction (Figure 16.1b), the contextualized 
action model. In this graph, vertices are events, and 
contingencies are typed edges between vertices 
(example types were just described). There may be 
multiple edges between any two vertices (e.g., two 
proximal events by the same actor with lexical overlap 
will have at least three contingencies between them).

Uptake Graph
It is necessary to collapse the multiple edges between 
vertices into single edges for two reasons. First, most 
graph algorithms assume at most only one edge be-
tween any two vertices. Second, we are interested in 
uptake, the relationship between events in which a 
human action takes up some aspects of prior events 
as being significant in some manner. Being the fun-
damental building block of interaction (Suthers et al., 
2010), uptake is a basic unit for analysis of how learning 
takes place in and through interaction. Replying to prior 
contributions in chats and discussions are examples 
of uptake, but uptake is not limited to replies: one 
can appropriate a prior actor’s contribution in other 
ways. Uptake is not specific to a medium: it can occur 
in different media, and cross media (Suthers et al., 
2010). Contingencies are of interest only as collective 
evidence for uptake, so we abstract the contingency 

Figure 16.1. Levels of analysis and their representations.
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graph to an uptake graph.

As shown in Figure 16.1c, uptake graphs are similar to 
contingency graphs in that they also relate events, but 
they collect together bundles of the various types of 
contingencies between a given pair of vertices into a 
single graph edge, weighted by a combination of the 
strength of evidence in the contingencies and option-
ally filtering out low-weighted bundles (Suthers, 2015). 
Different weights can be used for different purposes 
(e.g., finding sessions, analyzing the interactional 
structure of sessions, constructing sociograms). 
Importantly, we do not throw away the contingency 
weights: these are retained in a vector to summarize 
the nature of the uptake relation, and, once aggregated 
into sociograms, of the tie between actors. We can 
do several interesting things with uptake graphs, but 
first we usually identify portions of the graph that we 
want to handle separately, as they represent sessions.

Sessions
Clusters of events in spatio-temporal proximity are 
computed to identify sessions (indicated by rounded 
containers in Figure 16.1c). Methods for doing so are 
discussed later. For intra-session analysis, the uptake 
graph for a session is isolated. Several paths are pos-
sible from here. For example, the sequential structure 
of the interaction can be micro-analyzed to under-
stand the development of group accomplishments: 
this analysis may be difficult to automate. Methods 
for graph structure analysis can be applied, such as 
cluster detection, or tracing out thematic threads 
(Trausan-Matu & Rebedea, 2010). For inter-session 
analysis, we collapse each session into a single vertex 
representing the session, but retain the inter-session 
uptake links. (For example, there are four sessions in 
Figure 16.1c and two inter-session uptakes.) These 
inter-session links indicate potential influences across 
time and space from one session to another.

Sociograms
Sociotechnical networks are commonly studied using 
the methods of social network analysis, using socio-
gram or sociomatrix representations of the presence 
or strength of ties between human actors, and graph 
algorithms that leverage the power of these repre-
sentations to expose both local (ego-centric) and 
non-local (network) social structures (Newman, 2010; 
Wasserman & Faust, 1994). Either within or across 
sessions, we can fold uptake graphs into actor–actor 
sociograms (directed weighted graphs, Figure 16.1d). The 
tie strength between actors is the sum of the strength 
of uptake between their contributions. If we want to 
be stricter about the evidence for relations between 
the two actors, we may use a different weighting that 
downplays proximity and emphasizes direct evidence 
of orientation to the other actor. These sociograms 

can be analyzed using conventional social network 
analysis methods, for example centrality metrics to 
identify key actors.

Associograms
The sociogram’s singular tie between two actors 
summarizes yet obscures the many interactions be-
tween the actors on which the tie is based, as well as 
the media through which they interacted. To retain 
the advantages of graph computations on a summary 
representation while retaining some of the information 
about how the actors interacted, we use bipartite, 
multimodal, directed weighted graphs, similar to 
but more specific than affiliation networks. They are 
bipartite because all edges go strictly between actors 
and artifacts and multimodal because the artifact 
nodes can be categorized into the different kinds 
of mediators that they represent; for example, chat 
rooms, discussion forums, and files. Directed edges 
(arcs) indicate read/write relations or their analogs: 
an arc goes from an actor to an artifact if the actor has 
read that artifact (e.g., opened a discussion message 
or was present when someone chatted), and from an 
artifact to an actor if the actor modified the artifact 
(e.g., posted a discussion message or chatted). The 
direction of the arc indicates a form of dependency, 
the reverse direction of information flow. Weights on 
the arcs indicate the number of events that took place 
between the corresponding actor/artifact pair in the 
indicated direction. Since “affiliation network” is not 
specific enough and “bipartite multimodal directed 
weighted graph” is too long, to highlight their unique 
nature we call these graphs associograms (Suthers & 
Rosen, 2011). This term is inspired by Latour’s (2005) 
concept that social phenomena emerge from dy-
namic networks of associations between human and 
non-human actors.

For example, Figure 16.2 shows a portion of an as-
sociogram from the Tapped In educator network, 

Figure 16.2. An associogram from the Tapped In data. 
Actors represented by nodes on the right have read 
and written to the files and discussions represented 

by differently coloured nodes on the left.
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representing asymmetric interaction between two 
actors, with one actor writing most of the files and 
another writing to most of the discussions. A sociogram 
consisting of a single link between these two actors 
would fail to capture this information. The associogram 
retains information about the distribution of activity 
across media. Network analytic methods can then 
simultaneously tell us how both human actors and 
artifacts participate in generating the larger phenomena 
of interest, such as the presence of communities of 
actors and the media through which they are tech-
nologically embedded (Licoppe & Smoreda, 2005). 
Although interaction is not directly represented, the 
associogram also provides a bridge to the interaction 
level of analysis (Suthers et al., 2010), allowing us to 
retrieve activity in specific media settings.

The Traces framework provides multiple pathways for 
analysis. In the following sections we illustrate various 
analyses that can be supported by this framework 
(Suthers & Dwyer, 2015). These examples are from 
analyses we have done with our experimental software 
implementation.

Identifying Sessions of Interaction
Different options exist for detection of sessions in 
interaction graphs. If interaction is not clearly demar-
cated by periods of non-interaction and one wishes to 
discover clusters of high activity, we have found that 
cohesive subgraph detection or “community detection” 
algorithms (Fortunato, 2010) such as modularity par-
titioning (Blondel, Guillaume, Lambiotte, & Lefebvre, 
2008) applied to uptake graphs are useful (Suthers, 
2017). If (as in our Tapped In data) activity is distributed 
across rooms and the activity within a room almost 
always has periods of non-activity between sessions, 
sessions can be identified efficiently without needing to 

construct a contingency graph (it can be constructed 
later for other purposes). Activity is tracked in each 
room, and a new session ID is assigned to the room 
every time there is a gap of S seconds of no activity. S 
is a tunable parameter, such as 240 seconds. Suthers 
(2017) discusses these options further.

Tracing Influences Between Sessions
We might be interested in non-local influences between 
sessions across time and space. Uptake relations be-
tween events in different sessions can be aggregated 
into weighted uptake relations between sessions (Figure 
16.1c). An example session graph from Suthers (2015) is 
shown in Figure 16.3. Some sessions have more heavily 
weighted links between them. Reading the edges in 
reverse order (uptake points backwards in time), we 
see that session 737 (in the Reception room) influenced 
session 755 (Teaching Teachers room), which in turn 
influenced 848 (NTraining room). Examination of the 
rooms and participants involved showed that many 
participants logged into or met in the Reception room, 
then went to Teaching Teachers for session 755 on 
mentoring in the schools. Then the facilitator of 755 
announced that she had another session on teacher 
training in another room: several participants in the 
mentoring session followed her to NTraining for session 
848. Further details are in Suthers (2015).

Identifying Actor Roles and Tracking 
Change in Participation Over Time
Educators or NLE facilitators may want to identify the 
key participants in their online learning communities, 
whether for assessment in formal educational settings, 
to encourage volunteers in participant-driven settings, 
or for research purposes such as to study what drives 
key participants. It is also important to know who is 
disengaged. Some of these needs can be met through 
social network analysis. We can generate sociograms 
for any granularity of the uptake graph (e.g., within 
a session, or across sessions over a time period) by 
folding uptake relations between events into ties 
between their actors. For example, a facilitator might 
want to see a sociogram summarizing actor activity 
in session 755, the session on mentoring teachers led 
by MT. The sociogram is shown in Figure 16.4. Node 
size is weighted in-degree, discussed below.

Sociograms add information over mere counts of num-
ber of contributions because some sociometrics are 
sensitive to the network context of nodes representing 
actors. For example, weighted in-degree indicates the 
extent to which other acts have contingencies to and 
hence potentially took up a given act. Aggregating these 
acts for an actor is an estimate of how much an actor’s 
contributions are taken up by others. This metric is 
sensitive to both the level of activity of the actor and 
that activity’s relation to others’ activity. Weighted 

EXAMPLES OF ANALYTIC OPTIONS

Figure 16.3. Close-up of session graph with in-
ter-session uptake. Node and edge size is weighted 

degree.
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out-degree is an estimate of how much an actor takes 
up others’ contributions. Eigenvector centrality (and 
its variants such as PageRank and Hubs and Authori-
ties) is a non-local metric that takes into account the 
centrality of one’s neighbours (Newman, 2010, p. 169), 
indicating the extent to which an actor is connected 
to others who are themselves central. Betweeness 
centrality is an indicator of actors who potentially 
play brokerage roles in the network: high betweeness 
centrality means that the node representing an actor 
is on relatively more shortest paths between other 
actors (Newman, 2010, p. 185), so potentially controls 
information flow or mediates contact between these 
actors. Betweeness is of particular interest when 
examining activity across sessions: different sessions 
generally have different actors, so an actor attending 
multiple sessions will have high betweeness.

Analyses on longer time scales may be of interest to 
researchers as well as practicing educators. One can 
trace the development of actors’ roles over time in 
terms of changes in their sociometrics. For example, 
one might aggregate uptake for all actors in the net-
work into sociograms at one week intervals, and then 
graph the sociometrics on a weekly basis, looking for 
trends. One can see some of these trends in Figure 
16.5, taken from Suthers (2015). The plots for sus-
taining actors will remain high (e.g., DW, a volunteer 

guide), and for those who return for periodic events 
will exhibit a regular spiking structure (e.g., MT, who 
facilitated monthly events). Steadily increasing or 
decreasing metrics indicate persons becoming more 
or less engaged, respectively (possibly DA), and single 
spikes indicate a one-off visit (AP).

Superficially, these analyses appear similar to the 
many sociometric analyses found in the literature, so 
we should highlight what the Traces framework has 
added. Our implementation of the Traces framework 
derived these latent ties from automated interaction 
analysis of streams of events, by identifying and then 
aggregating multiple contingencies between events, 
and then folding the resulting uptake relations between 
events into an actor–actor graph. This has significant 
advantages over, for example, manual content analy-
sis or the use of surveys to derive tie data, which are 
labour intensive, or reliance on explicit “friending” 
relations: surveys and friend links may not reflect the 
latent ties in actual interaction between the persons 
in question. Another advantage is described below.

Identifying Relationships Between Actors
The Traces framework derives ties between actors 
by aggregating multiple contingencies between 
their contributions. The contingencies indicate the 
qualitative nature of the relationship between these 
contributions, e.g., being close in time and space, 
using the same words, and addressing another actor 
by name. When contingencies are aggregated into 
uptake relations, we keep track of what each type of 
contingency contributed to the uptake relation. This 
record keeping is continued when folding uptakes 
into ties, so that for any given pair of actors we have a 
vector of weights that provides information about the 
nature of the relationship in terms of the underlying 
contingencies. For example, we can quantify how the 
relationship between DA and MT was enacted over a 
given time period in terms of how often they chatted 
in proximity to each other, the lexical overlap of their 
chat contents, and how often they addressed each 
other by name in each direction. Relational information 
might be of interest to educators or researchers who 
are managing collaborative learning activities amongst 
students, or even to examine one’s own relations to 
students. The Traces framework makes this possible by 
retaining information about the interactional origins 
of ties (see Suthers, 2015).

Identifying Groups or Communities of 
Learners Across Sessions
In the network analysis literature, “community detec-
tion” refers to finding subgraphs of mutually associated 
vertices under graph-theoretic definitions, rather than 
to sociological concepts of community (e.g., Cohen, 
1985; Tönnies, 2001). However, we can use the former 

Figure 16.4. Sociogram from a Tapped In session 
showing prominent actors and their interactions.

Figure 16.5. Eigenvector Centrality of several actors 
in Tapped In over a 14 week period.
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as evidence for the latter, particularly when studying 
networked societies (Castells, 2001; Wellman et al., 2003). 
A good graph-theoretic definition should capture the 
intuition that individuals in a sociological community 
are more closely associated with each other than they 
are with individuals outside of their community. Al-
gorithms based on the modularity metric are widely 
used in the literature for this purpose. The modularity 
metric (Newman, 2010, p. 224) compares the density 
of weighted links inside (non-overlapping) partitions 
of vertices to weighted links expected in a random 
graph, to find highly modular partitions. Finding the 
best possible partition under a modularity metric is 
computationally impractical on large networks, but a 
fast algorithm known as the Louvain method (Blondel 
et al., 2008) has been shown to give good approxima-
tions. An example is shown in Figure 16.6.

Once partitions have been obtained, one can charac-
terize the community structure of the network in 
several ways. Quantitative summaries can include the 
distribution of partition size (e.g., is there primarily 
one large community, or does the network contain 
many small and a few large communities?) and distri-
butions of parameters across sizes (e.g., how does 
activity per actor relate to community size, and how 
does the use of different media vary with community 
size?). Qualitative characterization of community 
structure requires examining the attributes of actors 
and the media through which they interact to interpret 
each partition. See Suthers, Fusco, et al. (2013) for 
examples of both quantitative and qualitative analyses 
of the partitioning shown in Figure 16.6.

This chapter introduced the Traces analytic framework, 
which integrates traces of activity distributed across 
media, places, and time into an abstract transcript, 

and then provides a linked abstraction hierarchy 
using observable contingencies between events to 
build models of interaction and ties. Contingencies 
are applied to events in the abstract transcript to 
produce a contingency graph. Contingencies are then 
aggregated into uptake between the same events. 
Uptake that crosses partitions can be used to identify 
influences across space and time, and uptake within 
partitions can be analyzed to study the interactional 
structure of a session. Uptake graphs can be folded 
into networks where nodes are actors rather than 
events, to which sociometrics are applied. Events 
can also be folded into actor–artifact networks or 
“associograms” that capture how actors are asso-
ciated with each other via mutual read and write of 
media objects. The framework addresses the need to 
understand how aggregate phenomena (e.g., “ties,” 
“roles,” and “communities”) are both produced by and 
provide the setting of specific interactional events. It 
has been implemented as experimental software and 
tested with data from a heterogeneous networked 
learning community.

Other authors have noted the need to combine multiple 
forms of analysis, including specifically social network 
analysis in networked learning environments. For 
example, de Laat, Lally, Lipponen, and Simons (2007) 
and Martínez and colleagues (2006) showed the utility 
of combining social network analysis with various 
qualitative and quantitative methods in the study 
of participation networks. Others have constructed 
and folded interaction graphs into sociograms of ties 
between actors. For example, Rosen and Corbit (2009) 
constructed graphs based on temporal proximity, 
and Haythornthwaite and Gruzd (2008) describe 
preliminary work in extracting interaction relations 
from references and names. The Traces framework is 
in the same spirit, but is arguably more mature. We 
consider multiple kinds of relations between events 
to provide a richer basis for session identification and 
subsequent analysis of activity and actors within ses-
sions, and have automated these analyses and tested 
them on a rich historical data corpus where diverse 
participants interacted in an environment exhibiting 
many features of today’s distributed interaction. 
Work by Trausan-Matu on “polyphonic analysis” 
(Trausan-Matu & Rebedea, 2010) has affinities to our 
use of multiple contingencies, but has only recently 
been abstracted to higher levels of analysis. A thesis 
by Charles (2013) has provided an alternative imple-
mentation of our approach and extended the set of 
contingencies. Our approach dovetails with work 
that applies natural language processing methods 
for analysis of interactional structure, and indeed 
rules for generating additional contingencies could be 
derived from such research. Although our software is 
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Figure 16.6. OpenOrd visualization of partitions 
found in combined associogram for actors associat-
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Writing is an integral part of educational practice, 
where it serves both as a means to train students 
how to express knowledge and skills as well as to 
help improve their knowledge. It is well established 
that in order to become a good writer, students need 
a lot of practice. However, just practicing writing is 
insufficient to become a good writer; receiving timely 
feedback is critical (e.g., Black & William, 1998; Hattie 
& Timperley, 2007; Shute, 2008). Studies of formative 
writing in the classroom (e.g., Graham, Harris, & Hebert, 
2011; Graham & Hebert, 2010; Graham & Perin, 2007) 
have shown that supporting students with feedback 
and providing instruction in strategies for planning, 
revising, and editing their compositions can have 
strong effects on improving student writing. 

Text as Data
Writing is a complex activity and can be considered 
a form of performance-based learning and assess-
ment, in that students are performing a task similar 
to what they will typically be expected to carry out in 
their future academic and work life. As such, writing 
provides a rich source of data about student content 

knowledge, expressive skills, and language ability. Thus, 
writing affords making multiple inferences about the 
nature of student performance based on the textual 
information.

Currently most writing is mediated by computer, which 
provides an opportunity to study and impact writing 
learning at a depth and over time periods that were just 
not practical with paper-based media. For instance, 
Walvoord and McCarthy (1990), with a series of col-
laborators, conducted classroom studies over nearly 
a decade, gathering artifacts such as student journals, 
drafts, and final papers to build understandings of 
writing instruction. Much of the effort to conduct the 
study was in the collection and hand analyses. Today, 
with computer-based writing, such resources are 
more readily available as part of the writing process, 
and are in a form where natural language processing 
and machine learning can be automatically employed. 
By applying appropriate learning analytic methods, 
textual information can therefore be automatically 
converted to data to support inferences about student 
performance.

Chapter 17: Data Mining Large-Scale 
Formative Writing

Peter W. Foltz1,2, Mark Rosenstein2

Student writing in digital educational environments can provide a wealth of information 
about the processes involved in learning to write as well as evidence for the impact of the 
digital environment on those processes. Developing writing skills is highly dependent on 
students having opportunities to practice, most particularly when they are supported 
with frequent feedback and are taught strategies for planning, revising, and editing their 
compositions. Formative systems incorporating automated writing scoring provide the 
opportunities for students to write, receive feedback, and then revise essays in a timely 
iterative cycle. This chapter provides an analysis of a large-scale formative writing system 
using over a million student essays written in response to several hundred pre-defined 
prompts used to improve educational outcomes, better understand the role of feedback in 
writing, drive improvements in formative technology, and design better kinds of feedback 
and scaffolding to support students in the writing process.  

Keywords: Writing, formative feedback, automated scoring, mixed effects modelling, vi-
sualization, writing analytics
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Automated analyses have been applied to under-
standing aspects of writing since the 1960s. Content 
analysis (e.g., Gerbner, Holsti, Krippendorff, Paisley, 
& Stone, 1969; Krippendorff & Bock, 2009) was de-
signed to allow analysis of textual data in order to 
make replicable, valid inferences about the content. 
However, the methods focused primarily on counts of 
key terms used in the texts. Ellis Page (1967) pioneered 
techniques to convert the language features of student 
writing into scores that correlated highly with teacher 
ratings of the essays. With the advent of increasingly 
more sophisticated natural language processing and 
machine learning techniques over the past 50 years, 
automated essay scoring (AES) has now become a 
widely used set of approaches that can provide scores 
and feedback instantly. Research on AES systems has 
shown that their scoring can be as accurate as human 
scorers (e.g., Burstein, Chodorow, & Leacock, 2004; 
Landauer, Laham, & Foltz, 2001; Shermis & Hamner, 
2012), can score multiple traits of writing (e.g., Foltz, 
Streeter, Lochbaum, & Landauer, 2013), and can be 
used for feedback on content (e.g., Foltz, Gilliam, & 
Kendall, 2000; Foltz et al., 2013).

While much of the focus in the evaluation of AES has 
examined the accuracy of the scoring and the different 
types of essays that can be scored, AES also has wide 
applicability to formative writing, where evaluation can 
focus more on how it aids student learning. Human 
assessment of writing can be time consuming and 
subjective, limiting the opportunities for students to 
receive feedback. As a component of a formative tool, 
AES can provide instantaneous feedback to students 
and support the teaching of writing strategies based 
on detecting the types of difficulties students encoun-
ter. For example, when incorporated into classroom 
instruction, students are able to write, submit, receive 
feedback, and revise essays multiple times over a class 
period. All student writing is performed electronically, 
and is automatically scored and recorded, providing 
a record of all student actions and all feedback they 
received. This archive permits continuous monitoring 
of performance changes in individuals as well as across 
larger groups of students, such as classes or schools. 
Teachers can analyze the progress of each student 
in a class and intervene when needed. In addition, it 
now becomes possible to chart progress across the 
class in order to measure effectiveness of curricula 
and teaching strategies as reflected in student writing 
performance. A number of formative writing tools 
using automated scoring have been developed and 
are in use, including WriteToLearn™ (W2L; Landau-
er, Lochbaum, & Dooley, 2009), Criterion, (Burstein, 
Chodorow, & Leacock, 2004), OpenEssayist (Whitelock, 
Field, Pulman, Richardson, & Van Labeke, 2013), and 
Writing Pal (Roscoe & McNamara, 2013).

Data Mining Applied to Writing
Automated formative assessment of writing provides 
a rich data set to examine the changes in writing 
performance and system features that influence that 
performance. With the increasing adoption of digital 
educational environments, there are new opportu-
nities to leverage the data from student interactions 
in these environments as evidence (e.g., DiCerbo & 
Behrens, 2012). Recent work has begun to extract and 
analyze writing from writing assignments, from peer 
grading exercises, as well as from collaborative forum 
discussions in order to examine student performance. 
While there have been a number of overviews of data 
mining methods (e.g., Peña-Ayala, 2014; Romero & 
Ventura, 2007; Romero & Ventura, 2013), there has 
still been little focus on large-scale data mining of 
formative writing. With the advent of more powerful 
computational discourse tools, new techniques are 
emerging (e.g., Buckingham-Shum, 2013; McNamara, 
Allen, Crossley, Dascalu, & Perret, this volume; Rosé, 
this volume).

Some studies have examined large corpora of student 
writing, although not focused on the aspects of forma-
tive feedback. For example, Parr (2010) analyzed 20,000 
essays written to 60 different prompts at different 
grade levels in order to measure how writing skills 
develop for different genres of essays. All scoring of 
the essays was performed by human scorers, although 
tools were provided to make the scoring easier and to 
ensure consistency. Deane and Quinlan (2010) performed 
analyses using the e-Rater automated scoring engine 
to extract features from thousands of essays and then 
performed factor analysis in order to examine devel-
opmental levels and linguistic dimensions of writing. 
Deane (2014) also used automated scoring of essays 
from a multi-state implementation, analyzing features 
from keystroke logs and the essays themselves, in order 
to predict factors of writing ability and reading level.

Aspects of the formative process have also been ex-
amined using smaller samples of data; for example, 
the research on collaborative writing at the University 
of Sidney (Calvo, O’Rourke, Jones, Yacef, & Reimann, 
2011; Reimann, Calvo, Yacef, & Southavilay, 2010) used 
student log data and automated assessment to support 
writing. In their work, they analyzed grammatical and 
topical aspects of writing as well as log files of the 
sequences of revisions and writing activities in order 
to understand team writing processes. In addition, 
research has performed fine-grained analysis of 
writing by coupling log data with physiological mon-
itoring, such as eye tracking (e.g., Leijten & Van Waes, 
2013). WhiteLock et al. (2013, 2015) used visualizations 
of textual features of essays, including displays of 
key words and phrases and information about essay 
structure across multiple essays as a way to allow 
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students and instructors to understand aspects of the 
content of the essays. These visualizations can then 
be used as the basis for providing advice for improving 
student writing.

Other research involving writing and data mining 
has considered writing as a secondary task, such as 
Crossley et al. (2015), who examined student writing in 
discussion forums within MOOCs to predict whether 
a student would successfully complete the course, 
and White and Larusson (2014), who developed lexical 
analysis techniques to analyze changes in student 
writing to detect when students reach the point when 
they sufficiently understand a core concept in order to 
re-express it in their own words. Finally, analyses of 
feedback during the revision process in online systems 
(e.g., Baikadi, Schunn, & Ashley, 2015; Calvo, Aditomo, 
Southavilary, & Yacef, 2012) has shown what kinds of 
feedback can be most effective in the revision process. 
The majority of these studies focused on analyses 
based on tens to hundreds of students, so while they 
inform the use of data mining techniques and provide 
critical information on the role of formative feedback, 
they have not yet been scaled larger administrations.

This chapter builds on the above approaches to de-
scribe an approach to large-scale analysis of writing 
by applying data mining to components of the forma-
tive writing process on hundreds of thousands to over 
a million samples of writing collected from a formative 
online writing system. The analyses are used to in-
vestigate specific classes of questions about how a 
formative system is currently being used, its efficacy, 

and how understanding current use yields suggestions 
for improved learning, both through improving the 
system implementation and by introducing direct 
interventions aimed at students using the system. The 
chapter illustrates approaches utilizing descriptive 
statistics of performance as well as formally modelling 
changes in performance. While the chapter focuses 
on methodology, the intent is to illustrate how writing 
data can be used more generally to inform decisions 
about the quality of student learning, about the ef-
fectiveness of implementation in the classroom, as 
well as the effectiveness of the digital environment 
itself as an educational tool.

The context used to illustrate the power of data mining 
in the lifecycle of a large-scale implementation was 
conducted with student interaction data from the 
formative writing assessment system WriteToLearn™. 
WriteToLearn™ is a web-based writing environment 
that provides students with exercises to write responses 
to narrative, expository, descriptive, and persuasive 
prompts as well as to read and write summaries of 
texts in order to build reading comprehension. Stu-
dents use the software as an iterative writing tool in 
which they write, receive feedback, and then revise 
and resubmit their improved essays. The automated 
feedback provides an overall score and individual trait 
scores such as “ideas, organization, conventions, word 

ONLINE FORMATIVE WRITING 
SYSTEM

Figure 17.1. Essay Feedback Scoreboard. WriteToLearn™ feedback with an overall score, scores on six popular 
traits of writing, as well as support for the writing process. 
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choice, and sentence fluency.” The student can also 
view supplemental educational material to help them 
understand the feedback, as well as suggest approaches 
to improve their writing. In addition, grammar and 
spelling errors are flagged. Figure 1 shows a portion 
of the system’s interface, in this case illustrating the 
scoring feedback resulting from a submission to a 
12th grade persuasive prompt. Evaluations of Write-
ToLearn™ have shown significantly better reading 
comprehension and writing skills resulting from two 
weeks of use (Landauer et al., 2009) as well as vali-
dating the system scores being as reliable as human 
raters, and significantly improved end-of-year pass 
rates on a statewide writing assessment (Mollette & 
Harmon, 2015).

Algorithm for Scoring Writing
WriteToLearn’s™ automated scoring is based on an 
implementation of the Intelligent Essay Assessor (IEA). 
IEA is trained to associate extracted features from 
each essay to scores assigned by human scorers. A 
machine-learning-based approach is used to determine 
the optimal set of features and the weights for each of 
the features to best model the scores for each essay. 
From these comparisons, a prompt- and trait-specific 
scoring model is derived to predict the scores that the 
same scorers would assign to new responses. Based 
on this scoring model, new essays can be immediately 
scored by analysis of the features weighted according 
to the scoring model. The focus in this chapter is not 
on the actual algorithms or features that make up 
the scoring, as those have been described in detail 
elsewhere (see Landauer et al., 2001; Foltz et al., 2013). 
Instead, the focus is how the trail left by automated 
scoring and student actions can be used to monitor 
learning across large sets of writing data and facilitate 
improvements in the formative system.

Data
The data comprised two large samples of student 
interactions with WriteToLearn™ collected from U.S. 
adoptions of the software. One set comprised approx-
imately 1.3 million essays from 360,000 assignments 
written by 94,000 students collected over a 4-year 
period. The second set represented approximately 
62,000 student sessions with nearly 900,000 actions. 
The data included student essays and a time-stamped 
log of all student actions, revisions, and feedback 
given by the system. Essays were recorded each time 
a student submitted or saved an essay, resulting in 
a record of each draft submitted. The essays were 
written to approximately 200 pre-defined prompts. 
No human scoring was performed on these essays. 
All essay scores were generated by automated scor-
ing, with the prediction performance of the models 
validated against human agreement from test sets or 
using cross-validation.

Analyses Enabled by the Approach
At all stages in the lifecycle of a formative system — 
design, implementation, deployment, redesign, and 
maintenance — analysis of actual use via analytics 
applied to log data can inform improvements to the 
system. As Mislevy, Behrens, Dicerbo, and Levy (2012) 
note, there is interplay between evidence-centred 
design, which represents best practices when a system 
is first conceived and data mining student actions of 
the implementation that reflects actual use, where 
each is critical in building and evolving educational 
systems. From the design phase, we are interested in 
analyzing use data to assess our assumptions and, in 
our case, determining if cycles of writing, feedback, 
and revising improves writing performance and at 
what rate and whether the rate of improvement differs 
among the traits of writing. In terms of pedagogical 
theory, we want to understand what mix of writing, 
mechanics feedback, content feedback, and revising 
leads to optimal learning, and potentially how to in-
dividualize advice to students and teachers. Currently 
the system by default allows six revision/feedback 
cycles with teachers able to customize the limit, and 
use data should help develop guidelines for this feature. 
Another quite productive form of analysis is to model 
student performance; here we discuss a mixed effects 
model that allows us to estimate the relative difficul-
ty of the prompts. Prompts typically are assigned a 
grade level when developed, but modelling allows us 
to determine if the prompt is correctly labelled; using 
performance data from millions of essays written to 
a prompt allows finer grained levelling.

Many additional types of analysis are possible with 
writing-log data than there is room to detail in this 
chapter (see also Calvo et al., 2012; Deane, 2014). Two 
areas we have found particularly promising are evalu-
ation of teachers’ instructional strategies; for instance, 
in terms of which prompts were chosen and how long 
(a single class period, a week, longer) students were 
allowed to write to a prompt. While systems such as 
the one described here have professional development 
instruction for teachers as well as teachers’ guides, 
it is astonishingly useful to observe how the system 
is actually used in classrooms in order to uncover 
new strategies and measure the relative effective-
ness among the strategies. Another area that we lack 
space to describe in detail is fine-grained analysis 
of student actions. For instance, it is possible to tell 
when and where in the writing process a student ex-
ploits a help facility, and often possible to infer when 
a student should have taken advantage of a facility 
but didn’t — from which it may be possible to infer 
redesign choices in terms of user interface layout and 
other design issues. Additional discussion of some of 
these directions can be found in Foltz and Rosenstein 
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(2013), Foltz and Rosenstein (2015), and illustrated in 
Foltz and Rosenstein (2016).

Does Writing and Revising Result in Im-
proved Writing Performance?
Formative writing systems are designed to support 
a rapid cycle of write, submit, receive feedback, and 
revise. This cycle is one of the key differentiators of 
automated formative writing from standard classroom 
writing practice, where human scoring of essays is 
time consuming so students cannot receive immediate 
feedback. Thus, it is critical to determine how often 
students submit and revise essays and determine the 
factors and time paths that lead to greatest success. 
This can help address questions of whether revising 
results in better writing, as measured by the automated 
scores and what patterns of use facilitate the most 
rapid improvement.

Using a subset of the data, we examined writing over 
a single semester in which teachers in three grades 
(5th, 7th, and 10th) across an entire state assigned writ-
ing exercises to students. During that period, 21,137 
students wrote to 72,051 assignments (an average of 
almost four assignments per student) with 107 different 
unique writing prompts assigned. These assignments 
resulted in 255,741 essays submitted and scored over 
the period of analysis. For each submission, students 
received feedback and scores on their overall essay 
quality, as well on six different writing traits: ideas, 
organization, conventions, word choice, sentence flu-

ency, and voice. While there was a wide distribution in 
the number of revisions students made, most students 
made more than one revision, with most making up to 
five revisions. Figure 2 shows the score improvement 
(score on last attempt minus score on first attempt) 
for students who wrote multiple drafts. It shows im-
provement for each of the six writing traits as well as 
the overall score. There is a clear trend indicating that 
more revisions equal higher scores. With the typical 
five revisions, the average student score improved 
by almost one score point (out of a maximum of 6). 
Generally, we see greatest improvement in scores 
for content-based features, such as ideas, voice, and 
organization, and less for features related to writing 
skill, such sentence fluency and writing conventions. 
The smoothness of the curves and small error bars 
are due to the large number of data points for each 
revision from 0 to 5.

Time Spent Between Revisions
We can further investigate the impact on student per-
formance of the time-spent writing before requesting 
feedback to better understand the best allocation of 
time among the write, submit, feedback, and revise 
phases. Using data from approximately 1.1 million stu-
dent writing attempts across a wide range of users of 
WriteToLearn™, we calculated the change in student 
grade (e.g., improvement from one draft to the next) 
based on how much time was spent between drafts. 
The change in grade shown in Figure 3 indicates that 
the improvement in writing score generally increases 
up to about 25 minutes at which point it levels off 
and begins to drop. In addition, most of the nega-

VALIDATING THEORY 

Figure 17.2. Change in writing scores for multiple writing traits across revisions. 
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tive change (essays receiving a lower score than the 
previous version) occurs with revisions of less than 
five minutes. The results suggest an optimal range of 
time to spend revising before requesting additional 
feedback. These two results indicate how analysis of 
log data can validate that the write-feedback-revise 
cycle improves writing skills, as well as illustrates the 
ability to fine-tune learning by attempting to lead the 
student into more effective cycles where feedback is 
requested at appropriate intervals.

Modelling
The underlying structure of the writing process, as 
it manifests within a formative writing tool, is often 
best made interpretable through the construction of 
formal statistical models. With their explicit represen-
tations of the complex interplay of revising, receiving 
writing advice, and composing responses to multiple 
prompts over time, these models provide estimates 
and confidence intervals for parameters of critical in-
terest. Grounded by the student log data, these models 
can account and control for the complex covariance 
structure implicit within this stream of data with its 
aspects of repeated measures of performance received 
on shared prompts embedded in an overall longitudinal 
model of growth that can span a significant portion of 
the total time a student receives writing instruction. 
A carefully constructed model facilitates teasing out 
student progress with exposure to the tool, allows 
placing both students and items on scales of skill level 
and difficulty respectively, and provides estimates on 
how changing levels of exposure to components of 
the available feedback impacts writing performance.

The models described here are based on over 840,000 
essays written against more than 190 prompts over a 
4-year period by approximately 80,000 students, where 
over 20% of the students were followed for three or 
more years. The models predict the holistic score for 
each essay submitted for feedback, which given the 
explanatory variables signifies the expected score a 
student would receive on their essay. The explanatory 
variables allow us to estimate and control for factors 
such as the student’s grade level, the length of the 
essay, and the difficulty of the prompt.

The writing process is represented within a linear 
mixed effects model framework (Pinheiro & Bates, 
2006), building on the techniques described in Baayen, 
Davidson, and Bates (2008). Mixed effects models can 
estimate both the student’s "skill level" and the item's 
“difficulty” by viewing them as being sampled from a 
population of all potential students and a bank of all 
potential prompts, estimates computed in addition to 
the relationships that hold over the entire population. 
The students and prompts were modelled as random 
effects drawn from a distribution with a mean of zero 
and with the standard deviation estimated from the 
data. The derived variability provides an estimate of 
student individual differences, while also capturing 
the variability of item difficulty. Table 1 contains 
descriptions of the fixed and random effects used in 
the models.

At each student grade level, the impact of the higher 
grade is to increase the score, while as content grade 
level increases (the labelled grade level of a prompt) 
the expected score decreases. Finally, in controlling 

Figure 17.3. Change in grade over revisions based on the time to revise.
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for essay length, a longer essay on average would be 
expected to receive a higher score. The four measures 
of exposure to WriteToLearn™ are all statistically 
significant and positive, indicating its cumulative 
positive effect.

While the four measures of WriteToLearn™ are relat-
ed — e.g., as number of attempts on a specific prompt 
increases, concurrently the total time spent using 
WriteToLearn™ increases — they capture different 
aspects of student interaction with the system. The 
effect sizes seems small; for instance, each additional 
attempt on a specific prompt increases the expected 
score by only .018, a number that represents just the 
increase based on receiving feedback on a single 
revision of the essay. In fact, it is only through data 
mining and modelling with large data sets that we can 
reliably estimate these important small, incremental 
effects. From a more global perspective, the cumulative 
impact of attempts and time spent interacting with 
WriteToLearn™ result in improvements in achievement. 
This progress is often best benchmarked with external 
validations such as those observed in improved pass 
rates on state achievement tests with more intensive 
use (Mollette & Harmon, 2015).

Modelling to Determine Writing Prompt 
Difficulty
Many pedagogical considerations arise in assigning a 
prompt to a student or a class and one often-expressed 
concern is adjusting the scoring of the prompt to the 
student’s level (see also Deane & Quinlan, 2010, for a 
related approach to determining prompt difficulty 

from a writing corpus). Although some prompts re-
quire a threshold skill level or specific knowledge or 
expertise to be addressed, many are applicable for 
students over a wide grade range. What differs in the 
assignment is the expectation of the quality or skill 
evidenced by the final product and its evaluation via 
a score. Scoring of prompts is based on grade-spe-
cific models, so a prompt labelled as appropriate for 
10th graders implies that it is both well-suited for the 
skills and knowledge expected in 10th grade, but also 
that the automated scoring was calibrated using 
training-set essays written by 10th graders. In cases 
where a prompt is appropriate for a range of grade 
levels, and training sets of students at different grade 
levels were available, the same prompt may appear at 
multiple grade levels, where the critical difference is 
that different scoring models are used to evaluate the 
student’s work at each grade level.

Often teachers prefer finer levels of discrimination 
among prompts, such as having a measure of the relative 
difficulty of a set of prompts that fit the grade level of 
their class. This is exactly the case that the random 
effect estimates of the prompts can be used to address. 
As a prompt’s labelled grade level increases, the coef-
ficient on fixed effect contentGradeLevel in the model 
indicates a 0.073 decrease in expected score (harder 
prompts contribute to lower scores), other variables 
held constant. Equivalently, controlling for the labelled 
prompt grade level, the individual prompt random 
effects indicates how strongly a given prompt differs 
in difficulty from this mean fixed effect. This allows 
ordering the prompts within grade levels, providing 

Variable Name Description

Fixed Effects

studentGradeLevel:n Student’s grade level as a factor level (coefficient is the difference between 
grade n and grade 3)

contentGradeLevel Grade level of prompt (an assigned level)

log10(wordCount) Log base 10 of word length of essay

attempt For a given prompt, the revision of this specific essay submission

elapsedTimeDay A measure of time in days of how long since first W2L use (a measure of age-
based growth)

cumW2LTimeDay Total face-time student has had with W2L by this submission

interaction Total number of submissions this student has made to W2L

Random Effects

studentID Factor levels, one for each student

contentID Factor levels, one for each prompt

Table 17.1. Description of Fixed and Random Effects
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empirically derived additional support infrastructure 
for teachers. Similarly, taking into account the fixed 
prompt effect allows ordering all of the prompts, 
which broadens the set of prompts a teacher may be 
comfortable assigning.

Beyond this practical result, estimates of prompt 
difficulty controlling for assigned grade level raise 
a number of interesting research questions. Table 2 
presents a subset of the prompts ordered by the esti-
mates of the conditional modes of the random effects 
(Bates, Maechler, Bolker, & Walker, 2015) shown in the 
column called difficulty along with columns for the 
labelled grade level and the prompt title. The impact 
on score received on an essay is the sum of the grade 
level times its coefficient from the model plus its 
difficulty, so the more positive difficulty is, the easier 
the prompt is relative to other prompts at that grade 
level; hence, prompts near the bottom of the table, 
relative to their grade level, are more difficult. We are 

just in the early stages of trying to form hypotheses 
to explain this data, such as why the first 10 prompts 
in the table are so much easier than other prompts at 
that grade level and why the last 10 are so much harder, 
as well as why the relatively easiest items seem to be 
pulled over a broader range of grade levels than the 
more constrained set of relatively most difficult items.

Considerations in Modelling with Large 
Data Sets
In designing a model, there are trade-offs between 
expressiveness and parsimony. With large datasets, 
often statistical significance is not a sufficient basis to 
decide on model form; the purpose of the analysis must 
also be factored into the decision. A strong message 
from the descriptive plots presented earlier was that 
of diminishing returns for variables such as number 
of submissions per essay. This tendency could be de-
scribed with a polynomial or in a general additive model 
context. The power of data mining a large data set is 
that we can make fewer assumptions about the form 
relationships will take. In this case, we could assume 
a linear relation between performance and grade, but 
instead we estimated a separate improvement relative 
to 3rd grade, as a baseline, and plotted the relationship 
in Figure 4. Additional research is necessary to better 
understand the causes of the asymptotic behaviour 
and the implications for potential improvements to 
WriteToLearn™.

We see that from the 4th through about the 10th grade, 
the improvement is approximately linear, but asymp-
totes out for 11th and 12th grade. This indicates that 
at least with this set of prompts and their scoring 
models, WriteToLearn™ has difficulty distinguishing 
improvement in writing among 10th through 12th 
graders. Estimating the slope of the linear portion of 
the curve from grades 4 to 10 yields a gain of 0.048/
grade level, which also can be expressed as an expected 
gain of 0.29 in going from 4th to 10th grade. This is the 
expected gain, holding the use of WriteToLearn™ 
constant. Additional research is necessary to better 
understand the causes of the asymptotic behaviour 
and potential improvements to WriteToLearn™.

Related to the work described here are finer grained 
models of action transitions also using mixed effect 
models (for instance in a tutoring context see Feng, 
Heffernan, Heffernan, & Mani, 2009) or using Markov 
methods (e.g., Beal, Mitra, & Cohen, 2007; Jeong et al., 
2008) or Bayesian techniques (e.g., Conati et al., 1997). 
These techniques can be used to better understand 
student interactions at the action level (such as use 
of scaffolding facilities) that complement the more 
course grained analysis described here.

Table 17.2. Prompts with Most Extreme (10 highest, 
10 lowest) Random EffectsTitle Grade Level Difficulty

Freedom of Speech 12 0.80

How to Start a Hobby – A/B 6 0.76

Essay About Causes and Effects in 
History 11 0.72

How to Start a Hobby 5 0.71

How to Start a Hobby 6 0.70

American President 10 0.68

What’s Cooking? 6 0.66

Consumer Reporter 12 0.64

What’s Cooking? – A/B 6 0.63

Favorite Activity 4 0.63

...

Effects of Texting on Communica-
tion Skills 8 –0.70

Should Recycling be Voluntary or 
Required? 7 –0.70

How Much Time to Play Computer 
Games 7 –0.71

An Unusual Event 9 –0.74

An Important Decision 8 –0.75

Interpret a Literary Theme 7 –0.79

A Meaningful Childhood Memory 10 –0.81

A Meaningful Life Lesson 10 –0.82

Dealing with Conflict 10 –0.85

Compare and Contrast Two Literary 
Characters 10 –1.08
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Digital education environments can provide an infra-
structure to support students with more personalized 
learning experiences by having students work on more 
authentic educational tasks while receiving immediate 
feedback and training specific to their learning needs. 
Properly instrumented, these environments can also 
provide a rich source of information about student 
learning and progress as they interact with the system. 
Large-scale implementations of formative writing pro-
vide rich sets of data for analysis of performance and 
effects of feedback. By treating the written product 
as data, applying automated scoring of writing allows 
monitoring of student learning as students write 
and revise essays within these implementations. By 
examining the log of student actions, the amount of 
time taken, and the changes in the essays, one can 
track the impact on learning from use of the system.

Developing and maintaining a formative system in 
a manner to maximize student learning growth re-
quires a range of decisions be made starting from the 
design and implementation and continuing through 
the monitoring of its use. Decisions in the design 
and implementation phase are typically limited to 
theory and best practices, which are often at a level 
of granularity that affords a great deal of ambiguity in 
implementation. However, once a system is deployed, 
these assumptions can be cast against the actual be-
haviour of teachers applying the system during their 
classroom activities and students learning to write. 
Through data mining, these assumptions can be tested, 
both to validate the assumptions of the system and to 
gain greater insight into how students learn.

Writing to Learn and Learning to Write
The resulting analysis validates a key tenet of forma-
tive writing: students can improve their writing with 
revisions based on feedback from the system. A data 
mining approach to writing permits a fine-grained 
approach to examining the changes in learning and 
the effects of feedback on performance. This further 
permits us to discover, prioritize, and address concerns 
as they arise and determine which changes are most 
likely to improve the student experience and their 
ability to sharpen their writing skills.

The focus of writing assessment has often been put 
on the product (i.e., the final essay). By performing 
data mining on student draft submissions and the 
log of their actions, it is possible to track the process 
that learners take to create the product. This analy-
sis allows interventions to be performed at strategic 
points during the process of writing rather than just 
evaluating the end-product. A wide range of types 
of analyses can be performed on writing data, in-
cluding examining the essays, the process to create 
the essays, as well as the progress of the changes. 
These approaches can be both descriptive analyses 
and modelling. While we could not possibly provide 
a comprehensive discussion on all types of analyses 
in this chapter, the goal was to illustrate a variety of 
approaches to show how data mining can provide new 
ways of thinking about collecting evidence of system 
and student writing performance and uncover patterns 
that go beyond those apparent from only observing 
individual students or classrooms.

CONCLUSION

Figure 17.4. Improvement in student score by grade level.
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Massive open online courses (MOOCs) are a techno-
logical innovation for providing low-cost educational 
experiences to a worldwide audience. In 2012, some 
of the first MOOCs attracted hundreds of thousands 
of people from countries around the world (Waldrop, 
2013), providing momentum for a disruption in higher 
education. Just a few years later, hundreds of institutions 
worldwide began to offer MOOCs on online learning 
platforms such as Coursera, EdX, and FutureLearn. 
Beyond expanding access to higher education, MOOCs 
have generated unprecedented amounts of educational 
data that have fuelled scholarship in existing academ-
ic communities and sparked interests in disciplines 
that were historically less involved in the learning 
sciences. This has amplified research in existing in-
terdisciplinary communities and given rise to entirely 
new communities at the intersections of education, 
computer science, human factors, and statistics. For 
the field of learning analytics, we highlight two novel 
features of MOOCs that can enhance next-generation 

research: the availability of not just big but also diverse 
learner-level educational data, and the opportunity to 
run large online field experiments at low cost.

The first feature of MOOCs that supports innovative 
research is the amount and nature of the data that 
can be collected. MOOCs collect learner data that 
is deep as well as broad: fine-grained records from 
individual learners’ interactions with content in the 
learning environment for a large number of learners 
(Thille et al., 2014). The dimensions of this recently 
available data enable applications of machine learning 
and data mining techniques that were previously in-
feasible. Beyond the large scale, however, the learner 
population is also considerably more diverse in MOOCs 
than in typical college courses. MOOCs attract more 
learners from countries that are not Western, Edu-
cated, Industrialized, Rich, and Democratic (WEIRD), 
the population on which most experimental social 
science is based (Henrich, Heine, & Norenzayan, 2010). 
Diverse data is critical for advancing inclusive scientific 
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theories and educational practices, ones that apply 
to a broader population. Moreover, big diverse data 
enables research that identifies individual differences 
between demographic and sociocultural groups (e.g., 
heterogeneous effects of an intervention) that could 
not be investigated in existing research with small or 
homogenous samples.

The second feature of MOOCs that promises to increase 
the pace and impact of educational research is the ability 
to conduct online experiments rapidly, economically, 
and with high fidelity (Reich, 2015). In the technology 
industry, this is referred to as A/B testing to convey 
that individuals are randomly assigned to one of two 
experimental conditions. Online experimentation 
enables rapid iteration to test theories and practices, 
because multiple experiments can run in parallel and 
researchers can add, delete, and modify experiments 
in real time and at low cost. For instance, a researcher 
might compare different versions of lecture videos in 
a course (e.g., varying the introduction to a topic and 
how concepts are presented) and observe performance 
on subsequent assessments. Once enough data has 
been collected, the researcher may drop those lecture 
versions associated with the lowest scores and add new 
versions based on theory and the results of existing 
versions, and continue iterating. In this process, the 
researcher may find that a particular version works 
best for a specific group of learners, for instance, less 
educated learners. This may provide novel theoretical 
insights and it calls for adaptive presentation of con-
tent to optimize for learning. Discovery of individual 
differences and responsive adaptation of content is 
feasible in digital learning environments with large 
heterogeneous samples of learners, such as in MOOCs.

The goal of this chapter is to map out these two fea-
tures of MOOCs, in light of the development of the 
field of learning analytics, and discuss how these 
features might advance the theory and practice of 
learning and instruction. We begin this chapter with 
a brief historical overview of the genesis and devel-
opment of MOOC initiatives. We discuss the advan-
tages of big data and diverse learner samples for re-
search and we review work that has begun to leverage 
these affordances. Then we turn to the opportunities 
that open up through experimentation and rapid it-
eration, and discuss how these have been used thus 
far in MOOC platforms. We close the chapter with a 
discussion of current limitations and ways to leverage 
the opportunities of large-scale digital learning en-
vironments more effectively.

The development of MOOCs occurred in the context of 
a long tradition of efforts to increase access to educa-
tion, including distance learning (e.g., correspondence 

schools, radio instruction), open access universities, 
and open educational resources (Simonson, Smaldino, 
Albright, & Zvacek, 2011). However, the notion of what 
constitutes a MOOC fundamentally shifted between 
2008, when George Siemens and Stephen Downes 
facilitated the first MOOC (Siemens, 2013), and 2012, 
when the New York Times declared “the year of the 
MOOC” (Pappano, 2012). This shift led Siemens (2013) 
to distinguish the original cMOOCs, which are based 
on the connectivist pedagogical model that empha-
sizes collective knowledge creation without imposing 
a rigid course structure, from later xMOOCs (i.e., the 
MOOCs of 2012 and onwards), which are mostly based 
on the instructionist model of lecture-based courses 
with assessments and a rigid course structure. Stan-
ford University Professors Sebastian Thrun, Daphne 
Koller, and Andrew Ng, who re-envisioned MOOCs as 
digital amplifications of their lecture classes to reach 
a broader audience, sparked this ideological shift. 
This vision led to the creation of several corporate 
and non-profit MOOC-providing organizations, most 
notably Coursera, Udacity, EdX, and FutureLearn. 
Institutions of higher education worldwide rushed to 
contribute to the growing number of courses, with 
each course attracting tens of thousands of learners 
(Waldrop, 2013).

The initial excitement and momentum began to fade 
once it became apparent that MOOCs fell short of 
delivering on the promise of providing universal low-
cost higher education. The first sobering piece of 
evidence was that only a small percentage of learners 
who start a course go on to complete it (Clow, 2013; 
Breslow et al., 2013), and although completion is not 
everyone’s goal (Kizilcec & Schneider, 2015; Kizilcec, 
Piech, & Schneider, 2013), this pattern suggests that 
critical barriers have remained unaddressed. The 
second sobering realization concerned the promise 
of advancing access for historically underserved 
populations. Many MOOC learners are already highly 
educated (Emanuel, 2013). Moreover, learners in the 
United States tend to live in more affluent areas and 
individuals with greater socioeconomic resources 
are more likely to earn a certificate (Hansen & Reich, 
2015). Further evidence shows that socioeconomic 
achievement gaps in MOOCs occur worldwide in 
terms of education levels and levels of national de-
velopment (Kizilcec, Saltarelli, Reich, & Cohen, 2017), 
and, moreover, that women underperform relative to 
men (Kizilcec & Halawa, 2015). These patterns may 
be partly due to structural, cultural, and education-
al barriers (e.g., Internet access, prior knowledge, 
language skills, culture-specific teaching methods). 
Additionally, learners may face social psychological 
barriers, such as the fear of being seen as less capa-
ble because of their social group (i.e., social identity 
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threat) and feeling uncertain about their belonging in 
MOOCs from elite Western institutions (Kizilcec et al., 
2017; Steele, Spencer, & Joshua, 2002; Walton & Cohen, 
2007). At least in terms of completion rates, North 
American MOOCs have disproportionately benefited 
more privileged learners, posing a critical challenge 
for a technology designed to promote educational 
equity. This highlights the amplifying power of tech-
nology, namely that new technologies tend to reflect 
existing inequalities unless active steps are taken to 
address them. In fact, as evidence of a lack of support 
for underserved populations emerged, platform pro-
viders broadened their initial focus on prominent US 
partners and started pursuing international university 
partners, NGOs, and foreign governments. While early 
MOOC platforms focused on providing desktop-based 
learning experiences, platform development efforts 
also shifted towards expanding support for mobile 
devices as a way to increase access in developing 
countries, where mobile Internet is pervasive.

The issue of accreditation and certification for MOOC 
learning activities has been under constant consid-
eration as the movement has matured. While content 
was originally provided free of charge, the value of a 
certificate (and a “verified certificate,” where an indi-
vidual’s identity is linked more closely to their course 
activity) has attracted learners willing to pay for access 
to content or just to receive a certificate at the end. 
The certificate credential has also evolved over time. 
A number of institutions offer degrees independent of 
academic institutions (e.g., Udacity Nanodegrees); use 
MOOCs as a gateway opportunity to complete liberal 
arts courses online (e.g., the Arizona State University and 
EdX Freshman Academy partnership); create compact 
online postgraduate programs (e.g., MIT Microdegrees) 
with the option to use this credential as a pathway to 
a traditional graduate degree; and offer full graduate 
programs online (e.g., University of Illinois’ iMBA and 
Data Science programs on the Coursera platform). 
There is an increasing supply of courses and short 
programs from various institutions, especially on pop-
ular topics like data science. Going forward, as more 
efficient marketplaces develop that better connect 
employers and educational institutions, we expect 
to see increased competition between educational 
institutions both to attract learners to their courses 
and to offer courses that can demonstrate superior 
workplace performance and career opportunities.

Theories of learning and instruction describe parts 
of a complex system (Mitchell, 2009). Any research 
that examines an instructional method or a learning 
strategy is therefore limited by its particular context, 

for example participants’ prior knowledge or the subject 
area. Which of the hundreds of potential contextual 
attributes matter in a particular instance is difficult 
to predict and infeasible to test. We therefore rely 
on scientific theory to constrain this complexity and 
identify the variables that matter (Koedinger, Booth, & 
Klahr, 2013). Nonetheless, educational theory is never 
conclusive or all encompassing. Empirical research in 
education, and the social sciences at large, tends to 
focus on specific contexts to reduce complexity at the 
expense of external validity. In particular, much empirical 
research in the social sciences is based on studies of 
people in WEIRD contexts, such as US college students 
who participate in psychology lab studies (Henrich, 
Heine, & Norenzayan, 2010). This raises questions about 
the generalizability of existing results and models to 
different contexts and populations. These concerns 
have also been raised specifically about research on 
technology-enhanced education (Ocumpaugh, Baker, 
Gowda, Heffernan, & Heffernan, 2014; Blanchard, 2012). 
To address this challenge, researchers require access to 
learner samples that are larger and more diverse than 
traditionally available. Such diverse learner samples 
are commonplace in MOOCs.

The supply and range of courses available on MOOC 
platforms has steadily increased since their initial 
offerings (Shah, 2015). These courses have been 
created by institutions around the world, including 
universities, museums, and national institutes. In early 
2016, Coursera announced that they had reached 18 
million learners worldwide.1 Most learners are located 
in the United States, China, India, and Brazil, with the 
strongest growth in enrollment in Mexico, Colombia, 
Brazil, and Russia. Four in ten learners are women 
on average, but the gender ratio ranges from 22% in 
Nigeria to 55% in the Philippines. Likewise, interest in 
various course topics varies by gender and location: 
business courses are most popular in France, while 
Polish learners prefer computer science, the subject 
area with (globally) the least gender balance. Cour-
sera learners tend to be well educated: around 80% 
had already earned a bachelor’s degree, according to 
a survey in 2015 (Zhenghao et al., 2015). This pattern 
resembles that of FutureLearn, a MOOC platform based 
in the United Kingdom, used by 3 million learners in 
20162: 73% hold degrees and, in contrast to Coursera, 
62% are women. EdX3 and Udacity,4 two other major 
MOOC providers, had served six million and two million 
learners by 2016, respectively. Many other institutions 
offer MOOCs, either through traditional learning 
management systems (e.g., the Canvas Network), via 
institutionally deployed open-source platforms (e.g., 

1 https://blog.coursera.org/post/142363925112 
2 https://about.futurelearn.com/press-releases/future-
learn-has-3-million-learners/ 
3 http://blog.edx.org/edx-year-in-review?track=blog 
4 https://www.udacity.com/success 
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Open EdX), or through proprietary or custom developed 
platforms. Together, according to data collected by 
Class Central (Shah, 2015), 550 institutions have created 
4,200 courses spanning virtually all disciplines that 
are reaching a remarkably heterogeneous population 
of over 35 million people worldwide.

While the data collected within a MOOC is high in 
velocity and volume, two of the three characteris-
tics of big data (Laney, 2001), it can be limited with 
respect to variety, unless active measures are taken 
to achieve variety. Traditional educational systems 
collect both detailed demographic information (e.g., 
gender, ethnicity, proxies for socioeconomic status) 
and prior knowledge measures (e.g., prior college 
enrollments, high school grades, standardized test 
scores). However, these variables are not collected 
automatically in MOOCs in order to maintain a low 
barrier to entry. Many MOOC-providing institutions 
thus began to collect this data through optional 
surveys. A self-selected group of learners, who tend 
to be more committed to completing the course, are 
also those who tend to complete these surveys. Reich 
(2014) suggested that roughly one quarter of enrolled 
learners fill out a course survey. The sheer volume of 
collected survey responses can be high (often tens of 
thousands), though it is important to remember that 
these data represent a skewed sample of generally 
more motivated learners. Improved mechanisms for 
data collection that overcome current limitations for 
unobtrusively obtaining comprehensive information 
on learner backgrounds are needed. Nevertheless, 
currently available survey data supports the assumption 
that MOOC learners constitute a relatively heteroge-
neous population from around the globe.

Access to a heterogeneous learner population brings 
two major advantages for advancing educational theory 
and practice. First, when evaluating an instructional 
method or analytic model on a heterogeneous sample, 
the results are more representative of a diverse set 
of learners, which reduces the likelihood of drawing 
conclusions that have adverse consequences for un-
derrepresented groups. Extending theory based on 
evidence from heterogeneous samples also promotes 
the development of more inclusive environments that 
support learners of various backgrounds. The second 
major advantage of heterogeneous learner samples is 
that they can reveal individual differences. Diversity is 
an essential ingredient for advancing an understanding 
of what works for whom and why — insights that enable 
effective tailoring of course materials and instructional 
methods. There is substantial room for improvement 
beyond tailoring to the “average learner,” who may not 
even resemble any of the actual learners (Rose, 2016). 
In fact, learning scientists have identified numerous 
variables that influence the efficacy of instructional 

methods, including prior knowledge, cognitive control, 
mental ability, and personality (Jonassen & Grabowski, 
1993). For example, prior knowledge is a well-docu-
mented individual difference (Ambrose, Bridges, DiP-
ietro, Lovett, & Norman, 2010), such that instructional 
methods that are relatively effective for novice learners 
can become ineffective, even counterproductive, for 
learners with increasing domain knowledge — a phe-
nomenon known as expertise reversal (Kalyuga, Ayres, 
Chandler, & Sweller, 2003). Taken together, diverse big 
data can advance a more inclusive science that moves 
beyond tailoring to averages.

Although researchers have examined countless in-
dividual differences, there is a scarcity of replication 
studies in the field of education. Replications account 
for only 0.13% of published papers in the 100 major 
journals (Makel & Plucker, 2014), and many of these 
studies rely on relatively homogenous student pop-
ulations in WEIRD countries. Even if study samples 
were more diverse, the meta-analysis of individual 
studies across different learning contexts would be 
complicated by variation in instructional conditions, 
much of which remains unobserved and therefore 
unaccounted for (Gašević, Dawson, Rogers, & Gašević, 
2016). MOOCs and online learning environments more 
generally can begin to address this pressing issue. 
These environments are particularly well suited for 
conducting large-scale studies with diverse samples 
in an authentic learning context, and it is substantially 
faster and cheaper to conduct an exact replication 
study in a MOOC by rerunning the same course or by 
embedding the same study in another course. In fact, 
MOOCs are especially suitable for conducting disci-
plinary research into what instructional approaches 
are most effective for different groups of learners. For 
example, in physics education, different approaches to 
teaching the second law of thermodynamics have been 
proposed and tested (e.g., Cochran & Heron, 2006), 
but it is unclear which approach is most effective for 
learners from different parts of the world.

A critical dimension of diversity in MOOCs is geogra-
phy, and thus culture. MOOCs assemble learners from 
Western and Eastern countries with their distinct 
cultural foundations of learning (Li, 2012). In Eastern 
countries (e.g., China, Japan), learning tends to be 
viewed as a virtuous, life-long process of self-perfection, 
based on Confucian influences, whereas in Western 
countries (e.g., US, Canada), learning is seen as a form 
of inquiry that serves the goal of understanding the 
world around us, based on Socratic and Baconian in-
fluences. Indeed, students from Confucian Asia who 
attend Western universities go through a period of 
academic adjustment (Rienties & Tempelaar, 2013) 
and this culture shock can hinder learning and raise 
feelings of alienation (Zhou, Jindal-Snape, Topping, & 
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Todman, 2008). This highlights the potential influence 
of cultural differences, and individual differences more 
broadly, on the efficacy of instructional approaches. 
MOOCs provide sufficiently diverse learner samples 
to investigate individual differences and refine exist-
ing theories by evaluating understudied dimensions 
of learner characteristics, both at an individual and 
group level. New insights into individual differences 
can inform current practices that support academic 
adjustment and tailored learning experiences in both 
in-person and online environments.

Current Research that Leverages 
Diverse Big Data in MOOCs
Researchers are just beginning to leverage the potential 
of large, heterogeneous learner data from MOOCs. 
Recent studies have investigated demographic and 
geographic differences in course navigation (Guo & 
Reinecke, 2014), learner motivation (Kizilcec & Schneider, 
2015), persistence and achievement (DeBoer, Stump, 
Seaton, & Breslow, 2013; Kizilcec & Halawa, 2015; 
Kizilcec et al., 2013), and socioeconomic differences 
in course completion of learners in the United States 
(Hansen & Reich, 2015) and worldwide (Kizilcec et al., 
2017). Notably, although learner demographics account 
for significant differences in course outcomes, they 
provide limited improvements over behavioural log 
data in the context of predictive modelling (Brooks, 
Thompson, & Teasley, 2015a; Brooks, Thompson, & 
Teasley, 2015b). We briefly describe two examples 
from the literature that highlight a range of possible 
approaches for leveraging diversity in MOOCs.

We first consider work by Kulkarni, Cambre, Kotturi, 
Bernstein, & Klemmer (2015), who set out to harness 
the diversity of MOOC learners to improve engagement 
and learning. They identified the relatively low level 
of social interaction in MOOCs as an opportunity for 
innovation and research. To address this shortcoming, 
they engineered a peer discussion system that puts 
online learners in touch with others in the course via 
group video chats. A series of experiments were con-
ducted to examine the influence of group composition 
on performance on assessments and to refine the design 
of the peer discussion system. In three experiments, 
learners were assigned into discussion groups with 
high versus low geographical diversity in terms of how 
many countries were represented. Different outcome 
measures of performance were assessed in each 
experiment, encompassing an open-ended question 
to assess conceptual understanding of the session, 
scores on weekly “homework” assessments, and the 
final exam score. Confirming the authors’ hypothesis, 
high-diversity peer discussions yielded short-term 
improvements in performance. Gender diversity, in 
contrast, showed no effect overall or differentially by 
diversity condition, counter to what might be predicted 

by prior work (Woolley, Chabris, Pentland, Hashmi, & 
Malone, 2010). Their research demonstrates a promis-
ing avenue for leveraging diversity as an educational 
asset. It also begins to examine individual differences 
that may influence the efficacy of this approach by 
testing for gender effects and evaluating alternative 
operationalizations of diversity.

A second example from the literature concerns the 
optimal presentation of the instructor in lecture vid-
eos. Seeing a human face can make it easier to pay 
attention, but it can also be distracting. The image 
principle posits that showing the instructor in a vid-
eo does not affect learning outcomes, because the 
motivational benefits of social cues are counterbalanced 
by additional extraneous cognitive processing (May-
er, 2001). How does this finding translate to the con-
text of MOOCs, where motivation is a critical anteced-
ent of persistence and achievement? Kizilcec, 
Bailenson, and Gomez (2015) found that 35% of MOOC 
learners in a course preferred watching videos with-
out the face when given a choice, mainly because they 
found the face too distracting. Then, in a randomized 
experiment in the same MOOC, the default video that 
constantly showed the instructor was compared to a 
strategic version that omitted the instructor when it 
was distracting. The strategic presentation raised 
perceived cognitive load and social presence, but it 
had no overall effect on persistence or course grades. 
However, accounting for learning preference (i.e., 
whether individuals preferred learning from pictures 
and diagrams or from written and verbal information), 
there was a substantial individual difference in per-
sistence: learners who expressed a verbal learning 
preference were 46% more likely to drop out of the 
course with the strategic than the constant presen-
tation. This demonstrates the importance of both 
accounting for individual differences in practice and 
refining existing theories. If social cues are more 
distracting or motivating for different people, this 
insight is worth incorporating in learner models for 
targeted instructional design.

Compared to traditional learning management systems 
used in higher education, MOOCs offer a limited set 
of options to course designers and hardly any new 
features. However, the large and diverse learning 
community behind MOOCs provides a remarkable 
opportunity to learn more about learning and teaching 
through experimental research. Much of the initial 
research with MOOCs focused on the analysis of 
course log data collected by default (e.g., clickstreams) 
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and self-report measures from course surveys with 
relatively low response rates. The recent availability of 
instructor-facing experimentation features in MOOCs 
has enabled researchers to conduct simple random-
ized experiments. Here we review three streams of 
experimental research — one concerned with small 
encouragements to promote engagement and learning, 
another concerned with changes to the course content 
and structure, and a third where MOOCs serve as a 
laboratory for studying general phenomena — and 
discuss methodological considerations going forward.

Three Streams of Published 
Experimental Research in MOOCs
One stream of experimental research has focused on 
small encouragements or nudges to improve course 
outcomes. These types of interventions can be con-
ducted through email, for example, by randomly 
assigning learners to receive different messages. A 
number of studies employed A/B tests to increase 
participation in discussion forums. Lamb, Smilack, Ho, 
and Reich (2015) tested three treatments (a self-test 
participation check, discussion priming with sum-
maries of prior discussions, and discussion preview 
emails about upcoming discussion topics) and found 
that the participation check increased forum activity 
over the default control condition. Kizilcec, Schneider, 
Cohen, and McFarland (2014) tested framing effects 
in email encouragements for forum participation in 
two experiments and found that a collectivist fram-
ing (i.e., “learn together”, “help each other”) reduced 
participation relative to an individualistic or neutral 
framing. Martinez (2014) tested framing effects using a 
social comparison paradigm (Festinger, 1954). Learners 
received an email with either an upward social com-
parison (describing how many learners outperform 
you), a downward social comparison (describing how 
many perform worse), or a control message omitting 
any social comparison. While the downward compar-
ison motivated high-performing learners, struggling 
learners benefited from the upward comparison. 
Finally, Renz, Hoffmann, Staubitz, and Meinel (2016) 
found that emails exhibiting popular forum discussions 
and unanswered questions increased forum activity, 
and that reminder emails about unseen lecture videos 
increased course activity (i.e., lecture views), compared 
to other reminders. However, a downside of email 
interventions is that researchers typically cannot 
observe who opened the email and was exposed to 
the treatment, which raises an analytic challenge for 
estimating treatment effects (cf. Lamb et al., 2015). 
Survey experiments, with the experiment embedded 
inside a survey, offer an alternative. One study had 
survey-takers randomly assigned to receive either 
tips about self-regulated learning or a control message 
about course topics, but found no improvement in 

course outcomes (Kizilcec, Pérez-Sanagustín, & Mal-
donado, 2016). A potential downside of experiments in 
optional surveys is self-selection into the study, which 
tends to skew the sample towards more committed 
learners who may respond to the treatment differently 
from those who opted against taking the survey. In 
general, although small nudges can have surprisingly 
large effects on human behaviour (Thaler & Sunstein, 
2009), most experiments in MOOCs have yielded small 
or non-significant results.

Another stream of experimental research has exam-
ined theory-based changes to course content and 
course structure. Renz, Hoffmann, Staubitz, and 
Meinel (2016) assessed the impact of providing learn-
ers with an “onboarding” session, an interactive tour 
that explains the course structure and navigation, but 
they found no improvements in course engagement. 
Following a quasi-experimental approach, Mullaney 
and Reich (2015) compared two consecutive instanc-
es of the same course with different content release 
models, staggered versus all-at-once presentation of 
materials. They also found no significant difference 
in persistence and completion rates. To facilitate two 
established learning strategies (retrieval practice and 
study planning), Davis, Chen, van der Zee, Hauff, and 
Houben (2016) tested weekly writing prompts that asked 
learners to summarize content and plan ahead. Yet, 
once again, no improvements in course persistence 
and completion were detected. Building on multimedia 
learning theory, Kizilcec and colleagues (2015) tested 
how the presentation of the instructor’s face in video 
lectures influences attrition and achievement rates 
and they found heterogeneous effects on attrition, 
as previously described. In the context of discussion 
forums, Tomkin and Charlevoix (2014) tested the effect 
of instructor contact on various course outcomes. Their 
high-touch condition, which had instructors respond 
to forum questions and send weekly summaries, did 
not improve satisfaction, persistence, or completion 
rates, compared with a low-touch condition without 
instructor involvement. Coetzee, Fox, Hearst, and 
Hartmann (2014) evaluated the impact of adopting a 
reputation system in the discussion forum and found 
that it increased response times and the number of 
responses per post, but it had no effect on grades 
or persistence. Another study evaluated different 
reputation systems and found that a forum badging 
system that emphasized badge progress and upcoming 
badges increased forum activity (Anderson, Hutten-
locher, Kleinberg, & Leskovec, 2014). Most studies in 
this stream of research, despite using stronger ma-
nipulations, also found no significant improvements 
in learning outcomes.

The third stream of experimental research leverages 
MOOCs as a lab environment to test general the-
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ories in a real-world context. For example, to test 
for (potentially unconscious) bias in online classes, 
Baker, Dee, Evans, and John (2015) planted messages 
in discussion forums across 126 MOOCs (1,008 mes-
sages total, eight per course) and randomly assigned 
learner names to be evocative of different races and 
genders. They found evidence of discrimination: in-
structors wrote more replies for white male names 
than for white female, Indian, and Chinese names. In 
testing social-psychological barriers to achievement, 
Kizilcec, Saltarelli, Reich, and Cohen (2017) found that 
theory-based intervention activities, designed to mit-
igate concerns about not belonging in the course, can 
effectively close the global achievement gap between 
learners in more versus less developed countries. On 
the benefits of diversity, Kulkarni et al. (2015) tested 
the role of geographical diversity in peer video dis-
cussion and found that being in a more diverse group 
improved subsequent test performance. Leveraging 
a natural experiment in peer assessment, Rogers and 
Feller (2016) found that exposure to exemplary peer 
performance causes attrition, due to the upward social 
comparison that undermines motivation and expect-
ed success. Again in the context of peer assessment, 
Kizilcec (2016) tested how the level of transparency 
about the peer grading process (i.e., how grades are 
adjusted and computed) affects learners’ trust in peer 
grading. Results suggest that an explanation that 
highlights the fairness of the procedure can promote 
resilience in trust for learners who received a lower 
than expected grade. The studies in this stream of 
research focus on different phenomena in the context 
of MOOCs and their results hold promise for enriching 
theory and practice.

Methodological Considerations for Ran-
domized Field Experiments in MOOCs
From this review of published research, it stands out 
that many experiments did not produce significant 
results. This may be surprising, given that MOOCs 
offer relatively large sample sizes that should render 
even practically insignificant differences statistically 
significant.5 However, MOOC data exhibits substantial 
levels of variance in outcome measures (e.g., per-
sistence, grades). While statistical power, the chance 
of detecting a true effect in data, increases with sam-
ple size, it decreases as data becomes noisier. When 
researchers underestimate the level of unexplained 
variance, it can result in underpowered studies that 
yield no significant findings. Yet this variance may 
actually signal the presence of individual differences 
that warrant further examination, for example, by 
5 As is standard practice in the social sciences, the field of educa-
tional research has adopted the p < 0.05 criterion to evaluate the 
statistical significance of experimental results. Thus, if there is a 
less than 5% chance of obtaining an effect at least as extreme as in 
the sample data when the null hypothesis is true, then the null (e.g., 
equal condition means) is rejected. 

testing for heterogeneous treatment effects. In gen-
eral, when evaluating and reporting on experiments 
in MOOCs, it is advisable to focus on the magnitude 
of treatment effects in addition to their statistical 
significance. Researchers should explicitly separate 
planned confirmatory tests of hypotheses from ad-
hoc exploratory analyses. Given the overwhelming 
number of possible outcomes and covariate measures 
in MOOC data, there is a real danger of increasing the 
Type I error rate (false positives) as a result of multiple 
testing, specification search, and researcher degrees 
of freedom (Gelman & Loken, 2013). To address this 
challenge, replication, pre-registration, and use of 
Bayesian alternatives to frequentist hypothesis testing 
(e.g., Kruschke, 2013) can help build robust scientific 
evidence going forward.

Despite existing within a phenomenon that is only 
four years old, randomized experiments in MOOCs 
are poised to deliver significant contributions to 
theory in education and related disciplines. Yet the 
promise of online field experiments for educational 
improvement has not been widely realized. Limits on 
the availability of real-time data and the level of access 
required to implement complex parallel experiments 
mean that most researchers are still only testing one 
idea at a time at the pace of new courses going live. A 
critical step towards rapid iteration with experiments 
in MOOCs is laying the groundwork for adaptive ex-
perimentation to accomplish the dual goal of learning 
through experimentation with the learner population 
and iteratively providing a better learning experience. 
This would provide a special opportunity for advancing 
scholarship in disciplinary teaching and learning. For 
example, instead of trying out a new way of teaching 
the concept of recursion and comparing test results 
with the previous cohort (a quasi-experimental de-
sign), multiple approaches to recursion can be taught 
simultaneously and their efficacy determined in short 
order. This would enable simultaneous tests of multiple 
educational theories in a domain and refining theory 
and practice by examining heterogeneous effects — a 
process that currently requires a whole community of 
researchers and substantial resources. Williams and 
colleagues (2014) proposed a first concept for adaptive 
experimentation in MOOCs in the form of MOOClets, 
which are small pieces of content that adapt based 
on results of ongoing experiments. Going forward, 
dynamic assignment to experimental conditions, for 
instance using a multi-armed bandit algorithm (Bather 
& Gittins, 1990), can enable rapid iteration over course 
designs, especially in combination with experimental 
system that supports complex and parallel designs, 
such as PlanOut (Bakshy, Eckles, & Bernstein, 2014). 
Overall, randomized field experiments in MOOCs offer 
researchers a novel opportunity to enrich theory and 
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practice at a fast pace.

The ability to deploy large randomized experiments 
rapidly to heterogeneous learner populations has the 
potential to disrupt the way educational research 
is carried out. While in the past learning theories 
might arise from the careful study of a small number 
of highly selective environments where control over 
conditions is difficult (e.g., higher education classroom 
studies in WEIRD contexts), it is now possible to deploy 
randomized experiments with high fidelity to tens 
of thousands of learners across the globe in a single 
course — an unprecedented opportunity in the field.

Traditional higher education research has faced two 
major pragmatic constraints to experimental inquiry. 
Perhaps the most significant constraint is the para-
digm of responsibility of instruction. In the higher 
education classroom, the faculty member teaching 
the course tends to be completely responsible for 
the student experience. Faculty thus tend to take an 
equality-driven approach rather than an experimen-
tal approach, and ensure that all students within the 
class have equal access to support and interventions. 
Innovation in these circumstances tends to be through 
quasi-experimental methods, where learners in a giv-
en cohort or year of study are compared with those 
of other cohorts or years of study, introducing more 
confounding variables. In MOOCs, the paradigm is dif-
ferent, perhaps due in part to the broader constellation 
of actors, including institutional administration and 
vendor partners, who assume some responsibility for 
the success of learners. The culture of some of these 
actors around balancing risk and reward, especially 
within venture-capital funded enterprises where rapid 
prototyping and testing is the norm, has fostered more 
favorable attitudes towards experimental approaches 
to advance learner success.

A second constraint in traditional higher education 
research is the acceptable amount of risk and reward 
made available through experimentation. With hundreds 
of years of higher education demonstrating value to 
society, and tens or hundreds of thousands of dollars 
on the line in tuition for a given student, it is harder for 
researchers to make the ethical argument to engage 
in high-risk research. Yet in MOOC environments, 
the majority of learners enrol at no cost, and few are 
in peril of losing their livelihood over the results of 
a MOOC experiment gone awry.6 This difference is 
reflected in institutional policy. Many institutions 
have strong protections for student records and 
6 Recent approaches to accepting MOOC credentials as credit in 
higher education, such as through the Arizona State University 
Global Freshman Academy and the MIT Micro-Masters programs, 
have begun to change the stakes for learners. 

privacy because of legal obligations such as FERPA in 
the United States. However, the same obligations do 
not exist for learners (or “users”) in MOOCs, which 
lifts some of the constraints from policies concerning 
experimental research with online learners. This has 
two important ramifications and opportunities for 
researchers:

1. The population of MOOC learners is different and, 
in many ways, much more diverse than that of tra-
ditional educational research, in terms of learner 
demographics (age, race, cultural background, 
et cetera), prior knowledge, and motivations for 
taking courses. This broader representation, 
along with the vast numbers of learners, provides 
an opportunity for scholars to test the general-
izability of learning theories across populations 
and to identity learning theories that are most 
applicable to specific groups of learners. This can 
enable quantitative approaches to problems that 
require such large datasets; for instance, Dillahunt, 
Ng, Fiesta, and Wang’s (2016) study of low-income 
populations who use MOOCs for social mobility 
would be difficult to study quantitatively if not 
for the breadth of learners enrolled in MOOCs.

2. The ability to experiment directly in the learning 
platform at no cost enables researchers to leverage 
the volume and variance of learner data for greater 
scientific impact. This presents an opportunity to 
close the feedback loop in education by promoting 
the integration of research, theory, and prac-
tice. Given the breadth and depth of the learner 
population in MOOCs, there is a real possibility 
to build environments that (semi-)automatically 
adapt to the learner based on her experience, the 
experiences of other learners, and the underlying 
platform data.

In this chapter, we have called out two affordances 
of research with MOOCs — the availability of diverse 
big data and the ability to conduct randomized field 
experiments with rapid iteration — which we believe will 
enable a more inclusive and agile science of learning. 
The fields of learning analytics and educational data 
mining, characterized largely by their heavy adoption 
and investigation of computational methods, are well 
poised to answer this call and achieve even broader 
impact going forward.

CONCLUSION
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Today’s digital world is marked with personalization 
based on massive logs of user actions. In the field of 
education, there continues to be research towards 
personalized and automated tutors that can tailor 
learning suggestions and outcomes to individual users 
based on the (often-latent) traits of the user. In recent 
years, higher education online learning environments 
such as massive open online courses (MOOCs) have 
collected high volumes of student-generated learning 
actions. In this chapter, we seek to contribute to the 
growing body of research that aims to utilize large 
sources of student-created data towards the ability 
to personalize learning pathways to make learning 

as accessible, robust, and efficient as desired. To do 
so, we demonstrate a strand of research focused on 
modelling the behavioural state of the student, distinct 
from research objectives concerned primarily with 
performance assessment and prediction. We seek to 
consider all actions of students in a MOOC, such as 
viewing lecture videos or replying to forum posts, 
and attempt to predict their next action. Such an 
approach makes use of the granular, non-assessment 
data collected in MOOCs and has potential to serve 
as a source of recommendations for students looking 
for navigational guidance.

Utilizing clickstream data across tens of thousands of 

Chapter 19: Predictive Modelling of Student 
Behavior Using Granular Large-Scale Action 
Data

Steven Tang, Joshua C. Peterson, and Zachary A. Pardos

Massive open online courses (MOOCs) generate a granular record of the actions learners 
choose to take as they interact with learning materials and complete exercises towards 
comprehension. With this high volume of sequential data and choice comes the potential to 
model student behaviour. There exist several methods for looking at longitudinal, sequential 
data like those recorded from learning environments. In the field of language modelling, 
traditional n-gram techniques and modern recurrent neural network (RNN) approaches 
have been applied to find structure in language algorithmically and predict the next word 
given the previous words in the sentence or paragraph as input. In this chapter, we draw an 
analogy to this work by treating student sequences of resource views and interactions in 
a MOOC as the inputs and predicting students’ next interaction as outputs. Our approach 
learns the representation of resources in the MOOC without any explicit feature engineering 
required. This model could potentially be used to generate recommendations for which 
actions a student ought to take next to achieve success. Additionally, such a model auto-
matically generates a student behavioural state, allowing for inference on performance and 
affect. Given that the MOOC used in our study had over 3,500 unique resources, predicting 
the exact resource that a student will interact with next might appear to be a difficult clas-
sification problem. We find that the syllabus (structure of the course) gives on average 23% 
accuracy in making this prediction, followed by the n-gram method with 70.4%, and RNN 
based methods with 72.2%. This research lays the groundwork for behaviour modelling of 
fine-grained time series student data using feature-engineering-free techniques.
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students engaged in MOOCs, we ask whether general-
izable patterns of actions across students navigating 
through MOOCs can be uncovered by modelling the 
behaviour of those who were ultimately successful 
in the course. Capturing the trends that successful 
students take through MOOCs can enable the devel-
opment of automated recommendation systems so 
that struggling students can be given meaningful and 
effective recommendations to optimize their time spent 
trying to succeed. For this task, we utilize generative 
sequential models. Generative sequential models can 
take in a sequence of events as an input and generate 
a probability distribution over what event is likely to 
occur next. Two types of generative sequential models 
are utilized in this work, specifically the n-gram and 
the recurrent neural network (RNN) model, which 
have traditionally been successful when applied to 
other generative and sequential tasks.

This chapter specifically analyzes how well such models 
can predict the next action given a context of previous 
actions the student has taken in a MOOC. The purpose 
of such analysis would eventually be to create a system 
whereby an automated recommender could query the 
model to provide meaningful guidance on what action 
the student can take next. The next action in many cases 
may be the next resource prescribed by the course but 
in other cases, it may be a recommendation to consult 
a resource from a previous lesson or enrichment mate-
rial buried in a corner of the courseware unknown to 
the student. These models we are training are known 
as generative, in that they can be used to generate 
what action could come next given a prior context of 
what actions the student has already taken. Actions 
can include things such as opening a lecture video, 
answering a quiz question, or navigating and replying 
to a forum post. This research serves as a foundation 
for applying sequential, generative models towards 
creating personalized recommenders in MOOCs with 
potential applications to other educational contexts 
with sequential data.

In the case of the English language, generative models 
are used to generate sample text or to evaluate the 
plausibility of a sample of text based on the model’s 
understanding of how that language is structured. A 
simple but powerful model used in natural language 
processing (NLP) is the n-gram model (Brown, De-
souza, Mercer, Pietra, & Lai, 1992), where a probability 
distribution is learned over every possible sequence 
of n terms from the training set. Recently, recurrent 
neural networks (RNNs) have been used to perform 
next-word prediction (Mikolov, Karafiát, Burget, 
Cernocky, & Khudanpur, 2010), where previously seen 

words are subsumed into a high dimensional continuous 
latent state. This latent state is a succinct numerical 
representation of all of the words previously seen in 
the context. The model can then utilize this repre-
sentation to predict what words are likely to come 
next. Both of these generative models can be used to 
generate candidate sentences and words to complete 
sentences. In this work, rather than learning about the 
plausibility of sequences of words and sentences, the 
generative models will learn about the plausibility of 
sequences of actions undertaken by students in MOOC 
contexts. Then, such generative models can be used 
to generate recommendations for what the student 
ought to do next.

In the learning analytics community, there is related 
work where data generated by students, often in MOOC 
contexts, is analyzed. Analytics are performed with 
many different types of student-generated data, and 
there are many different types of prediction tasks. 
Crossley, Paquette, Dascalu, McNamara, and Baker 
(2016) provide an example of the paradigm where raw 
logs, in this case also from a MOOC, are summarized 
through a process of manual feature engineering. In our 
approach, feature representations are learned directly 
from the raw time series data. This approach does not 
require subject matter expertise to engineer features 
and is a potentially less lossy approach to utilizing the 
raw information in the MOOC clickstream. Pardos and 
Xu (2016) identified prior knowledge confounders to 
help improve the correlation of MOOC resource usage 
with knowledge acquisition. In that work, the pres-
ence of student self-selection is a source of noise and 
confounders. In contrast, student selection becomes 
the signal in behavioural modelling. In Reddy, Labu-
tov, and Joachims (2016), multiple aspects of student 
learning in an online tutoring system are summarized 
together via embedding. This embedding process maps 
assignments, student ability, and lesson effectiveness 
onto a low dimensional space. Such a process allows 
for lesson and assignment pathways to be suggested 
based on the model’s current estimate of student ability. 
The work in this chapter also seeks to suggest learning 
pathways for students, but differs in that additional 
student behaviours, such as forum post accesses and 
lecture video viewings, are also included in the model. 
Additionally, different generative models are employed.

In this chapter, we are working exclusively with event 
log data from MOOCs. While this user clickstream 
traverses many areas of interaction, examples of 
behaviour research have analyzed the content of the 
resources involved in these interaction sequences. 
Such examples include analyzing frames of MOOC 
videos to characterize the video’s engagement level 
(Sharma, Biswas, Gandhi, Patil, & Deshmukh, 2016), 
analyzing the content of forum posts (Wen, Yang, & 

RELATED WORK
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Rosé, 2014; Reich, Stewart, Mavon, & Tingley, 2016), 
and analyzing the ad-hoc social networks that arise 
from interactions in the forums (Oleksandra & Shane, 
2016). We are looking at all categories of possible 
student events at a more abstract level compared to 
these content-focused approaches.

In terms of cognition in learning analytics and EDM, 
much work has been done to assess the latent knowl-
edge of students through models such as Bayesian 
knowledge tracing (BKT; Corbett & Anderson, 1994), 
including retrofitting the model to a MOOC (Pardos, 
Bergner, Seaton, & Pritchard, 2013) using superficial 
course structure as a source of knowledge components. 
This type of modelling views the actions of students as 
learning opportunities to model student latent knowl-
edge. Student knowledge is not explicitly modelled in 
this chapter, though the work is related. Instead, our 
models focus on predicting the complement of this 
performance data, which is the behavioural data of 
the student.

Deep knowledge tracing (DKT; Piech et al., 2015) uses 
recurrent neural networks to create a continuous latent 
representation of students based on previously seen 
assessment results as they navigate online learning 
environments. In that work, recurrent neural networks 
summarize all of a student’s prior assessment results 
by keeping track of a complex latent state. That work 
shows that a deep learning approach can be used to 
represent student knowledge, with favourable accu-
racy predictions relative to shallow BKT. Such results, 
however, are hypothesized to be explained by already 
existing extensions of BKT (Khajah, Lindsey, & Mozer, 
2016). The use of deep learning to approach knowl-
edge tracing still finds useful relationships in the data 
automatically, but potentially does not find additional 
representations relative to already proposed extensions 
to BKT. The work in this chapter is related to the use 
of deep networks to represent students, but differs in 
that all types of student actions are considered rather 
than only the use of assessment actions.

Specifically, in this chapter we consider using both 
the n-gram approach and a variant of the RNN known 
as the long short-term memory (LSTM) architecture 
(Hochreiter & Schmidhuber, 1997). These two both 
model sequences of data and provide a probability 
distribution of what token should come next. The use of 
LSTM architectures and similar variants have recently 
achieved impressive results in a variety of fields involv-
ing sequential data, including speech, image, and text 
analysis (Graves, Mohamed, & Hinton, 2013; Vinyals, 
Kaiser, et al., 2015; Vinyals, Toshev, Bengio, & Erhan, 
2015), in part due to its mutable memory that allows 
for the capture of long- and short-range dependen-
cies in sequences. Since student learning behaviour 

can be represented as a sequence of actions from a 
fixed action state space, LSTMs could potentially be 
used to capture complex patterns that characterize 
successful learning. In previous work, modelling of 
student clickstream data has shown promise with 
methods such as n-gram models (Wen & Rosé, 2014).

The dataset used in this chapter came from a Statis-
tics BerkeleyX MOOC from Spring 2013. The MOOC 
ran for five weeks, with video lectures, homework 
assignments, discussion forums, and two exams. The 
original dataset contains 17 million events from around 
31,000 students, where each event is a record of a 
user interacting with the MOOC in some way. These 
interactions include events such as navigating to a 
particular URL in the course, up-voting a forum thread, 
answering a quiz question, and playing a lecture video. 
The data is processed so that each unique user has 
all of their events collected in sequential order: 3,687 
types of events are possible. Every row in the dataset 
is converted to a particular index that represents the 
action taken or the URL accessed by the student.

Thus, every unique user’s set of actions is represent-
ed by a sequence of indices, of which there are 3,687 
unique kinds. Our recorded event history included 
students navigating to different pages of the course, 
which included forum threads, quizzes, video pages, 
and wiki pages. Within these pages, we also recorded 
the actions taken within the page, such as playing 
and pausing a video or checking a problem. We also 
record JavaScript navigations called sequential events. 
In this rendition of our pre-processing, we record 
these sequence events by themselves, without ex-
plicit association with the URL navigated to by the 
sequential event. Table 1 catalogs the different types 
of events present in the dataset as well as whether 
we chose to associate the specific URL tied to the 
event or not. In our pre-processing, some of these 
events are recorded as URL-specific, meaning that the 
model will be exposed to the exact URL the student is 
accessing for these events. Some events are recorded 
as non-URL-specific, meaning that the model will 
only know that the action took place, but not which 
URL that action is tied to in the course. Note that any 
event that occurred fewer than 40 times in the origi-
nal dataset was filtered out. Thus, many of the forum 
events are filtered out, since they were URL-specific, 
but did not occur very frequently. Seq goto, seq next, 
and seq prev refer to events triggered when students 
select navigation buttons visible on the browser page. 
Seq next and seq prev will move to either the next or 
the previous content page in the course respectively, 
while a seq goto represents a jump within a section 

DATASET
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to any other section within a chapter.

For example, if a student accesses the chapter 2, sec-
tion 1 URL, plays a lecture video, clicks on the next 
arrow button (which performs a JavaScript navigation 
to access the next section), answers a quiz question, 
then clicks on section 5 within the navigation bar 
(which performs another JavaScript navigation), that 
student’s sequence would be represented by five 
different indices. The first would correspond to the 
URL of chapter 2, section 1, the second to a play video 
token, the third to a navigation next event, the fourth 
to a unique identifier of which specific problem within 
the course the student accessed, and the fifth to a 
navigation goto event. The model would be given a 
list of these five indices in order, and trained to pre-

dict what should come after. The indices therefore 
represent the sequence of actions the student took. 
The length of five is not required; generative models 
can be given sequences of arbitrary length.

Of the 31,000 students, 8,094 completed enough 
assignments and scored high enough on the exams 
to be considered “certified” by the instructors of the 
course. Note that in other MOOC contexts, certifi-
cation sometimes means that the student paid for a 
special certification, but that is not the case for this 
MOOC. The certified students accounted for 11.2 mil-
lion of the original 17 million events, with an average 
of 1,390 events per certified student. The distinction 
between certified and non-certified is important for 
this chapter, as we chose to train the generative models 
only on actions from students considered “certified,” 
under the hypothesis that the sequence of actions that 
certified students take might reasonably approximate 
a successful pattern of navigation for this MOOC.

Each row in the dataset contained relevant information 
about the action, such as the exact URL of what the 
user is accessing, a unique identifier for the user, the 
exact time the action occurs, and more. For this chap-
ter, we do not consider time or other possibly relevant 
contextual information, but instead focus solely on the 
resource the student accesses or the action taken by 
the student. Events that occurred fewer than 40 times 
throughout the entire dataset were removed, as those 
tended to be rarely accessed discussion posts or user 
profile visits and are unlikely to be applicable to other 
students navigating through the MOOC.

In this work, we investigate the use of two generative 
models, the recurrent neural network architecture, and 
the n-gram. In this section, we detail the architecture 
of the recurrent neural network and the LSTM exten-
sion, the model we hypothesize will perform best at 
next-action prediction. Other “shallow” models, such 
as the n-gram, are described afterwards.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are a family of neural 
network models designed to handle arbitrary length 
sequential data. Recurrent neural networks work by 
keeping around a continuous, latent state that persists 
throughout the processing of a particular sequence. 
This latent state captures relevant information about 
the sequence so far, so that prediction at later parts 
of the sequence can be influenced by this continuous 
latent state. As the name implies, RNNs employ the 
computational approach utilized by feed forward neural 
networks while also imposing a recurring latent state 
that persists between time steps. Keeping the latent 
state around between elements in an input sequence 

Table 19.1. Logged Event Types and their Specificity

Course Page Events

Page View (URL-Specific)

Seq Goto (Non-URL-Specific)

Seq Next (Non-URL-Specific)

Seq Prev (Non-URL-Specific

Wiki Events

Page View (URL-Specific)

Video Events

Video Pause (Non-URL-Specific)

Video Play (Non-URL-Specific)

Problem Events

Problem View (URL-Specific)

Problem Check (Non-URL-Specific)

Problem Show Answer (Non-URL-specific)

Forum Events

Forum View (URL-Specific)

Forum Close (filtered out)

Forum Create (filtered out)

Forum Delete (filtered out)

Forum Endorse (filtered out)

Forum Follow (URL-Specific)

Forum Reply (URL-Specific)

Forum Search (Non-URL-specific)

Forum Un-follow (filtered out)

Forum Un-vote (filtered out)

Forum Update (filtered out)

Forum Up-vote (URL-Specific)

Forum View Followed Threads (URL-Specific)

Forum View Inline (URL-Specific)

Forum View User Profile (URL-Specific)

METHODOLOGY
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is what gives recurrent neural networks their sequen-
tial modelling power. In this work, each input into the 
RNN will be a granular student event from the MOOC 
dataset. The RNN is trained to predict the student’s 
next event based on the series of events seen so far. 
Figure 19.1 shows a diagram of a simple RNN, where 
inputs would be student actions and outputs would 
be the next student action from the sequence. The 
equations below show the mathematical operations 
used on each of the parameters of the RNN model: 
ht represents the continuous latent state. This latent 
state is kept around, such that the prediction at xt+1 
is influenced by the latent state ht. The RNN model is 
parameterized by an input weight matrix Wx, recurrent 
weight matrix Wh, initial state h0, and output matrix 
Wy: bh and by are biases for latent and output units, 
respectively.

ht = tanh(W xxt + W hht−1 + bh)                   (1)

yt =σ(W yht +by)                             (2)

LSTM Models
A popular variant of the RNN is the long short-term 
memory (LSTM; Hochreiter & Schmidhuber, 1997) 
architecture, which is thought to help RNNs learn 
long-range dependencies by the addition of “gates” 
that learn when to retain meaningful information 
in the latent state and when to clear or “forget” the 
latent state, allowing for meaningful long-term in-
teractions to persist. LSTMs add additional gating 
parameters explicitly learned in order to determine 
when to clear and when to augment the latent state 
with useful information. Instead, each hidden state 
hi is replaced by an LSTM cell unit, which contains 
additional gating parameters. Because of these gates, 
LSTMs have been found to train more effectively than 
simple RNNs (Bengio, Simard, & Frasconi, 1994; Gers, 
Schmidhuber, & Cummins, 2000). The update equations 
for an LSTM are as follows:

ft = σ(W fxxt + W fhht − 1 + bf)                    (3)

it = σ(Wixxt + Wihht−1 + bi)                      (4)

C~t = tanh(WCxxt + W Chht−1 +bC)                (5)

Ct = ft × Ct−1 + it × C˜t                                           (6)

ot = σ (W oxxt + W ohht−1  + bo)                   (7)

ht = ot × tanh(Ct)                           (8)

Figure 19.2 illustrates the anatomy of a cell, where the 
numbers in the figure correspond to the previously 
mentioned update equations for the LSTM: ft, it, and 
ot represent the gating mechanisms used by the LSTM 
to determine “forgetting” data from the previous cell 
state, what to “in-put” into the new cell state, and 
what to output from the cell state. Ct represents the 
latent cell state for which information is removed from 
and added to as new inputs are fed into the LSTM. C˜t 
represents an intermediary new candidate cell state 
gated to update the next cell state.

LSTM Implementation
The generative LSTM models used in this chapter were 
implemented using Keras (Chollet, 2015), a Python 
library built on top of Theano (Bergstra et al., 2010; 
Bastien et al., 2012). The model takes each student 
action represented by an index number. These indi-
ces correspond to the index in a 1-hot encoding of 
vectors, also known as dummy variabilization. The 
model converts each index to an embedding vector, 
and then consumes the embedded vector one at a 
time. The use of an embedding layer is common in 
natural language processing and language modelling 
(Goldberg & Levy, 2014) as a way to map words to a 
multi-dimensional semantic space. An embedding 
layer is used here with the hypothesis that a similar 
mapping may occur for actions in the MOOC action 
space. The model is trained to predict the next student 
action, given actions previously taken by the student. 
Back propagation through time (Werbos, 1988) is used 
to train the LSTM parameters, using a softmax layer 
with the index of the next action as the ground truth. 
Categorical cross entropy is used calculating loss, and 
RMSprop is used as the optimizer. Drop out layers 
were added between LSTM layers as a method to curb 

Figure 19.1. Simple recurrent neural network

Figure 19.2. The anatomy of a cell with the num-
bers corresponding to the update equations for the 

LSTM.
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overfitting (Pham, Bluche, Kermorvant, & Louradour, 
2014). Drop out randomly zeros out a set percentage 
of network edge weights for each batch of training 
data. In future work, it may be worthwhile to evaluate 
other regularization techniques crafted specifically 
for LSTMs and RNNs (Zaremba, Sutskever, & Vinyals, 
2014). We have made a version of our pre-processing 
and LSTM model code public,1 which begins with ex-
tracting only the navigational actions from the dataset.

LSTM Hyperparameter Search
As part of our initial investigation, we trained 24 LSTM 
models each with a different set of hyperparameters 
for 10 epochs each. An epoch is the parameter-fitting 
algorithm making a full pass through the data. The 
searched space of hyperparameters for our LSTM 
models is shown in Table 19.2. These hyperparameters 
were chosen for grid search based on previous work 
that prioritized different hyperparameters based on 
effect size (Greff, Srivastava, Koutník, Steunebrink, & 
Schmidhuber, 2015). For the sake of time, we chose not 
to train 3-layer LSTM models with learning rates of 
.0001. We also performed an extended investigation, 
where we used the results from the initial investiga-
tion to serve as a starting point to explore additional 
hyperparameter and training methods.

Because training RNNs is relatively time consuming, 
the extended investigation consisted of a subset of 
promising hyperparameter combinations (see the 
Results section). 

Cross Validation
To evaluate the predictive power of each model, 5-fold 
cross validation was used. Each model was trained on 
80% of the data and then validated on the remaining 
20%; this was done five times so that each set of student 
actions was in a validation set once. For the LSTMs, 
the model held out 10% of its training data to serve 
as the hill climbing set to provide information about 
validation accuracy during the training process. Each 
row in the held out set consists of the entire sequence 
of actions a student took. The proportion of correct 
next action predictions produced by the model is 
computed for each sequence of student actions. The 
proportions for an entire fold are averaged to gener-
ate the model’s performance for that particular fold, 
and then the performances across all five folds are 
averaged to generate the CV-accuracy for a particular 

1 https://github.com/CAHLR/mooc-behavior-case-study 

LSTM model hyperparameter set.

Shallow Models
N-gram models are simple, yet powerful probabilistic 
models that aim to capture the structure of sequences 
through the statistics of n-sized sub-sequences called 
grams and are equivalent to n-order Markov chains. 
Specifically, the model predicts each sequence state 
xi using the estimated conditional probability P(x-

i|xi−(n−1), ..., xi−1), which is the probability that xi follows 
the previous n-1 states in the training set. N-gram 
models are both fast and simple to compute, and have 
a straightforward interpretation. We expect n-grams 
to be an extremely competitive standard, as they are 
relatively high parameter models that essentially assign 
a parameter per possible action in the action space.

For the n-gram models, we evaluated those where n 
ranged from 2 to 10, the largest of which corresponds to 
the size of our LSTM context window during training. To 
handle predictions in which the training set contained 
no observations, we employed backoff, a method that 
recursively falls back on the prediction of the largest 
n-gram that contains at least one observation. Our 
validation strategy was identical to the LSTM models, 
wherein the average cross-validation score of the same 
five folds was computed for each model.

Course Structure Models
We also included a number of alternative models aimed 
at exploiting hypothesized structural characteristics 
of the sequence data. The first thing we noticed when 
inspecting the sequences was that certain actions are 
repeated several times in a row. For this reason, it is 
important to know how well this assumption alone 
predicts the next action in the dataset. Next, since 
course content is most often organized in a fixed 
sequence, we evaluated the ability of the course syl-
labus to predict the next page or action. We accom-
plished this by mapping course content pages to 
student page transitions in our action set, which 
yielded an overlap of 174 matches out of the total 300 
items in the syllabus. Since we relied on matching 
content ID strings that were not always present in our 
action space, a small subset of possible overlapping 
actions were not mapped. Finally, we combined both 
models, wherein the current state was predicted as 
the next state if the current state was not in the syl-
labus.

In this section, we discuss the results from the previ-
ously mentioned LSTM models trained with different 
learning rates, number of hidden nodes per layer, and 
number of LSTM layers. Model success is determined 
through 5-fold cross validation and is related to how 

RESULTS

Hidden Layers 1 2 3

Nodes in Hidden Layer 64 128 256

Learning Rate (_) 0.01 0.001 .0001*

Table 19.2. LSTM Hyperparameter Grid
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well the model predicts the next action. N-gram 
models, as well as other course structure models, are 
validated through 5-fold cross validation.

LSTM Models
Table 19.3 shows the CV-accuracy for all 24 LSTM 
models computed after 10 iterations of training. For 
the models with a learning rate of .01, accuracy on the 
hill climbing sets generally peaked at iteration 10. For 
the models with the lower learning rates, it would be 
reasonable to expect that peak CV-accuracies would 
improve through more training. We chose to simply 
report results after 10 iterations instead to provide 
a snapshot of how well these models are performing 
during the training process. We also hypothesize that 
model performance is unlikely to improve drastically 
over the .01 learning rate model performances in the 
long-run, and we need to maximize the most prom-
ising explorations to run on limited GPU computation 
resources. The best CV-accuracy for each learning 
rate is bolded for emphasis.

One downside of using LSTMs is that they require 
a GPU and are relatively slow to train. Thus, when 
investigating the best hyperparameters to use, we 
chose to train additional models based only on a 
subset of the initial explorations. We also extend the 
amount of context exposed to the model, extending 
past context from 10 elements to 100 elements. Table 
4 shows these extended results. Each LSTM layer has 
256 nodes and is trained for either 20 or 60 epochs, 
as opposed to just 10 epochs in the previous hyper-
parameter search results. The extended results show 
a large improvement over the previous results, where 
the new accuracy peaked at .7223 compared to .7093.

Figure 19.3 shows validation accuracy on the 10% 
hill-climbing hold out set during training by epoch for 
the 1 and 2 layer models from the initial exploration. 
Each data point represents the average hill-climbing 
accuracy among all three learning rates for a particular 
layer and node count combination. Empirically, having 
a higher number of nodes is associated with a higher 
accuracy in the first 10 epochs, while 2 layer models 
start with lower validation accuracies for a few epochs 
before approaching or surpassing the corresponding 1 
layer model. This figure provides a snapshot for the first 
10 epochs; clearly, for some parameter combinations, 
more epochs would result in a higher hill-climbing 
accuracy, as shown by the additional extended LSTM 
search. Extrapolating, 3-layer models may also follow 
the trend that the 2-layer models exhibited where 
accuracies may start lower initially before improving 
over their lower-layer counterparts.

Course Structure Models
Model performance for the different course structure 
models is shown in Table 19.5. Results suggest that 
many actions can be predicted from simple heuristics 
such as stationarity (same as last), or course content 
structure. Combining both of these heuristics (“syllabus 
+ repeat”) yields the best results, although none of the 

Learn Rate Nodes Layers Accuracy

0.01 64 1 0.7014

0.01 64 2 0.7009

0.01 64 3 0.6997

0.01 128 1 0.7046

0.01 128 2 0.7064

0.01 128 3 0.7056

0.01 256 1 0.7073

0.01 256 2 0.7093

0.01 256 3 0.7092

0.001 64 1 0.6941

0.001 64 2 0.6968

0.001 64 3 0.6971

0.001 128 1 0.6994

0.001 128 2 0.7022

0.001 128 3 0.7026

0.001 256 1 0.7004

0.001 256 2 0.7050

0.001 256 3 0.7050

0.0001 64 1 0.6401

0.0001 64 2 0.4719

0.0001 128 1 0.6539

0.0001 128 2 0.6648

0.0001 256 1 0.6677

0.0001 256 2 0.6894

Table 19.3. LSTM Performance (10 Epochs)

Table 19.4. Extended LSTM Performance (256 Nodes, 
100 Window Size) 

Learn Rate Epoch Layers Accuracy

0.01 20 2 0.7190

0.01 60 2 0.7220

0.01 20 3 0.7174

0.01 60 3 0.7223

0.001 20 2 0.7044

0.001 60 2 0.7145

0.001 20 3 0.7039

0.001 60 3 0.7147
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alternative models obtained performance within the 
range of the LSTM or n-gram results.

N-gram Models
Model performance is shown in Table 19.6. The best 
performing models made predictions using either the 
previous 7 or 8 actions (8-gram and 9-gram respec-
tively). Larger histories did not improve performance, 
indicating that our range of n was sufficiently large. 
Performance in general suggests that n-gram models 
were competitive with the LSTM models, although 
the best n-gram model performed worse than the 
best LSTM models. Table 19.7 shows the proportion 
of n-gram models used for the most complex model 
(10-gram). More than 62% of the predictions were 
made using 10-gram observations. Further, fewer than 
1% of cases fell back on unigrams or bigrams to make 
predictions, suggesting that there was not a significant 
lack of observations for larger gram patterns.

Still, about 6% fewer data points looks to be predicted 
by successively larger n-grams.

Validating on Uncertified Students
We used the best performing “original” LSTM model 
after 10 epochs of training (.01 learn rate, 256 nodes, 
2 layers) to predict actions on streams of data from 
students who did not ultimately end up certified. Many 
uncertified students only had a few logged actions, so 
we restricted analysis to students who had at least 30 
logged actions. There were 10,761 students who met 
these criteria, with a total of 2,151,662 actions. The 
LSTM model was able to predict actions correctly 
from the uncertified student space with .6709 accu-
racy, compared to .7093 cross-validated accuracy for 
certified students. This difference shows that actions 
from certified students tend to be different than actions 
from uncertified students, perhaps showing potential 
application in providing an automated suggestion 
framework to help guide students.

In this work, we approached the problem of modelling 
granular student action data by modelling all types of 
interactions within a MOOC. This differs in approach 
from previous work, which primarily focuses on mod-
elling latent student knowledge using assessment 
results. In predicting a student’s next action, the best 
performing LSTM model produced a cross-validation 
accuracy of .7223, which was an improvement over the 
best n-gram model accuracy of .7035: 210,000 more 

CONTRIBUTIONS

Figure 19.3. Average accuracy by epoch on hill 
climbing data, which comprised 10% of each 

training set.

Table 19.5. Structural Models

Structural Model Accuracy

repeat 0.2908

syllabus 0.2339

syllabus + repeat 0.4533

Table 19.6. N-gram Performance

N-gram Accuracy

2-gram 0.6304

3-gram 0.6658

4-gram 0.6893

5-gram 0.6969

6-gram 0.7012

7-gram 0.7030

8-gram 0.7035

9-gram 0.7035

10-gram 0.7033

Table 19.7. Proportion of 10-gram prediction by n

n % Predicted by

1 0.0003

2 0.0084

3 0.0210

4 0.0423

5 0.0524

6 0.0605

7 0.0624

8 0.0615

9 0.0594

10 0.6229

Table 19.8. Cross Validated Models Comparison

N-gram Correct N-gram Incorrect

LSTM Correct 7,565,862 577,683

LSTM Incorrect 367,960 2,735,702
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correct predictions of the total 11-million possible. 
Table 8 shows the number of times the two models 
agreed or disagreed on a correct or an incorrect 
prediction during cross validation. Both LSTM and 
n-gram models provide significant improvement over 
the structural model of predicting the next action by 
syllabus course structure and through repeats, which 
shows that patterns of student engagement clearly 
deviate from a completely linear navigation through 
the course material.

To our knowledge, this chapter marks the first time 
that behavioural data has been predicted at this level 
of granularity in a MOOC. It also represents the first 
time recurrent neural networks have been applied to 
MOOC data. We believe that this technique for rep-
resenting students’ behavioural states from raw time 
series data, without feature engineering, has broad 
applicability in any learning analytics context with high 
volume time series data. While our framing suggests 
how behavioural data models could be used to suggest 
future behaviours for students, the representation 
of their behavioural states could prove valuable for 
making a variety of other inferences on constructs 
ranging from performance to affect.

Both the LSTM and the n-gram models have room for 
improvement. In particular, our n-gram models could 
benefit from a combination of backoff and smoothing 
techniques, which allow for better handling of unseen 
grams. Our LSTM may benefit from a broader hyper-
parameter grid search, more training time, longer 
training context windows, and higher-dimensional 
action embeddings. Additionally, the signal-to-noise 
ratio in our dataset could be increased by removing less 
informative or redundant student actions, or adding 

additional tokens to represent time between actions.

The primary reason for applying deep learning models 
to large sets of student action data is to model student 
behaviour in MOOC settings, which leads to insights 
about how successful and unsuccessful students 
navigate through the course. These patterns can be 
leveraged to help in the creation of automated rec-
ommendation systems, wherein a struggling student 
can be provided with transition recommendations 
to view content based on their past behaviour and 
performance. To evaluate the possibility of such an 
application, we plan to test a recommendation sys-
tem derived from our network against an undirected 
control group experimentally. Additionally, future 
work should assess performance of similar models 
for a variety of courses and examine to what extent 
course-general patterns can be learned using a single 
model. The models proposed in this chapter maintain a 
computational model of behaviour. It was demonstrat-
ed through these models that regularities do exist in 
student behaviour sequences in MOOCs. Given that a 
computational model was able to detect these patterns, 
what can the model tell us about student behaviours 
more broadly and how might those findings connect 
to and build upon existing behavioural theories? Since 
the model tracks a hidden behavioural state for the 
student at every time slice, this state can be visualized 
and correlated with other attributes of the students 
known to present at that time. Future work will seek 
to open up this computational model of behaviour so 
that it may help inform our own understanding of the 
student condition.

This work was supported by a grant from the National 
Science Foundation (IIS: BIGDATA 1547055).
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With the emergence of massive amounts of data in 
various domains, recommender systems have become 
a practical approach to provide users with the most 
suitable information based on their past behaviour and 
current context. Duval (2011) introduced recommend-
ers as a solution “to deal with the ‘paradox of choice’ 
and turn the abundance from a problem into an asset 
for learning” (p. 9), pointing out that several domains 
such as educational data mining, big data, and Web 
analytics all try to find patterns in large amounts of 
data. For instance, data mining approaches can make 
recommendations based on similarity patterns de-
tected from the collected data of users. Furthermore, 
a survey conducted by Greller and Drachsler (2012), 
identified recommender systems and personalization 
as an important part of LA research. 

Recommender systems can be differentiated according 
to their underlying technology and algorithms. Rough-
ly, they are either content-based or use collaborative 
filtering. Content-based algorithms are one of the 
main methods used in recommender systems; they 
recommend an item to the user by comparing the 
representation of the item’s content with the user’s 
preference model (Pazzani & Billsus, 2007). Collabora-

tive filtering is based on users’ opinions and feedback 
on items. Collaborative filtering algorithms first find 
like-minded users and introduce them as so-called 
nearest neighbours to some target user; then they 
predict an item’s rating for that user on the basis of the 
ratings given to this item by the target users’ nearest 
neighbours (co-ratings) (Herlocker, Konstan, Terveen, 
& Riedl, 2004; Manouselis, Drachsler, Verbert, & Duval, 
2012; Schafer, Frankowski, Herlocker, & Sen, 2007).

In the past, we have applied recommender systems in 
various educational projects with different objectives 
(Drachsler et al., 2010; Fazeli, Loni, Drachsler, & Sloep, 
2014; Drachsler et al., 2009). In this chapter we want 
to share some best practices we have identified so far 
regarding the development and evaluation of recom-
mender system algorithms in education; we especially 
want to provide an example of how to set up and run 
a recommender systems experiment.

As described by the RecSysTEL working group for 
Recommender Systems in Technology-Enhanced 
Learning (Drachsler, Verbert, Santos, & Manouselis, 
2015) it is important to apply a standard evaluation 
method. The working group identified a research 
methodology consisting of four critical steps for eval-

Chapter 20: Applying Recommender Systems 
for Learning Analytics: A Tutorial
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uating a recommender system in education:

1. A selection of dataset(s) that suit the recommen-
dation task. For instance, the recommendation 
task can be finding new items or finding relevant 
items for a user.

2. An offline data study of different algorithms on the 
selected datasets including well-known datasets 
(if possible, education-oriented datasets such 
as MovieLens makes movie recommendations) 
to provide insights into the performance of the 
recommender systems.

3. A comprehensive user study to test psycho-educa-
tional effects on learners as well as on the technical 
aspects of the designed recommender system.

4. A deployment of the recommender system in a 
real life application, where it can be tested un-
der realistic, normal operational conditions with 
actual users.

The above four steps should be accompanied by a 
complete description of the recommender system 
according to the classification framework presented 
(Drachsler et al., 2015). The dataset used should be 
reported in the special section on educational datasets 
of the Journal of Learning Analytics1 and made avail-
able for other researchers under certain conditions 
(Dietze, Siemens, Taibi, & Drachsler, 2016). This would 
allow other researchers to repeat and adjust any part 
of the research to gain comparable results and new 
insights and thus build up a body of knowledge around 
recommender systems in learning analytics.

In this chapter, we present an example of an exper-
imental study that followed the research methodol-
ogy described above for recommender systems in 
education. The rest of the chapter is organized as 
follows: In the next section, we present an example 
of a recommender system study that followed the 
methodology described above step by step. Next, we 
explain the practical implications of the experiment; 
then, we conclude.

 

In this section, we describe how one should evaluate 
a recommender system in learning, making use of an 
experimental study presented in our 2014 EC-TEL paper 
(Fazeli et al., 2014). This study follows the standard 
methodology described above. To this methodology, 
however, we added an additional step: that of devel-
oping a conceptual/theoretical model (Fazeli et al., 
2013)., which is presented in a RecSysTEL special issue 
1 https://epress.lib.uts.edu.au/journals/index.php/JLA/article/
view/5071/5600

(Manouselis et al., 2012).

In our study, our target environment is social learning 
platforms in general. Social learning platforms work 
similarly to social networks such as Facebook but, 
unlike Facebook, they are developed exclusively for 
the purpose of learning and knowledge sharing. They 
often serve, therefore, as a common place exclusively 
for educational stakeholders such as teachers, students, 
learners, policy makers, and so on. Our target social 
learning platform is Open Discovery Space (ODS).2 As 
indicated on the ODS homepage, 

ODS addresses various challenges that face the 
eLearning environment in the European context. 
The interface has been designed with students, 
teachers, parents and policy makers in mind. 
ODS will fulfill three principal objectives. Firstly, 
it will empower stakeholders through a single, 
integrated access point for eLearning resources 
from dispersed educational repositories. Sec-
ondly, it engages stakeholders in the production 
of meaningful educational activities by using a 
social-network style multilingual portal, offering 
eLearning resources as well as services for the 
production of educational activities. Thirdly, it 
will assess the impact of the new educational 
activities, which could serve as a prototype to 
be adopted by stakeholders in school education.

The main goal of our study is to find out which rec-
ommender system can best suit the data and infor-
mation needs of a social learning platform, the main 
recommendation task being to finding relevant items 
for users. In the following sub-sections, we describe 
the study step by step.

Dataset Selection
Most data studies target a specific environment or 
specific group of users and thus require a specific 
type of data. In our case, the target social learning 
platforms is ODS. Consequently, we tried to find data 
collected from learning platforms similar to ODS. 
We chose the MACE and OpenScout datasets for the 
following reasons:

1. The datasets provide social data of users (ratings, 
tags, reviews, et cetera) on learning resources. 
So, the structure, content, and target users of the 
datasets are similar to those of ODS.

2. Running recommender algorithms on these data-
sets helps us to evaluate their performance before 
going online with the actual users of the ODS.

3. Both the MACE and OpenScout datasets comply 
with the CAM (Context Automated Metadata) for-
mat (Schmitz et al., 2009), which offers a standard 
metadata specification for collecting and storing 

2 http://opendiscoveryspace.eu

A RECOMMENDER SYSTEM 
EXPERIMENT IN THE EDUCATIONAL 
DOMAIN
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social data. CAM has also been applied in the ODS 
for storing social data.

Besides these two datasets, we also tested the Mov-
ieLens dataset as a reference since, up until now, the 
educational domain has been lacking reference datasets 
for study, unlike the ACM RecSys conference series, 
which deals with recommender systems in general. 
Table 20.1 provides an overview of all three datasets 
(Fazeli et al., 2014). Note that the educational datasets 
MACE and OpenScout clearly suffer from extreme 
sparsity. All the data are described more fully our 
EC-TEL 2014 article (Fazeli et al., 2014).

Offline Data Study
Algorithms. In this second step, we tried to select 
algorithms that would work well with our data. First, 
it is important to check the input data to be fed into 
the recommender algorithms. In this case, the ODS 
data, thus the data of the selected datasets, includes 
interaction data of users with learning resources (items). 
Therefore, we chose to use the Collaborative Filtering 
(CF) family of recommender systems. CF algorithms 
rely on the interaction data of users, such as ratings, 
bookmarks, views, likes, et cetera, rather than on the 
content data used by content-based recommenders. 
CF recommenders can be either memory-based or 
model-based, according to the “type”; they can be 
either item-based or user-based, referring to the 
“technique.” For a detailed description of these dis-
tinctions, please see Section 4 of Fazeli et al. (2014). In 
our study, we made use of all types and techniques: 
both memory-based and model-based, as well as both 

user-based and item-based. Figure 20.1 shows our 
experimental method, consisting of three main steps:

1. We compared performance of memory-based 
CFs, including both user-based and item-based, 
by employing different similarity functions. 

2. We ran the model-based CFs, including state-
of-the-art Matrix Factorization methods, on our 
sample data. 

3. We performed a final comparison of best-performing 
algorithms from steps 1 and 2. In addition to the 
baselines, we evaluated a graph-based approach 
proposed to enhance the mechanism of finding 
neighbours using the conventional k-nearest 
neighbours (kNN) method (Fazeli et al., 2014).

Performance Evaluation. After choosing suitable 
datasets and recommender algorithms, we arrive at 
the task of evaluating the performance of candidate 
algorithms. For this, we need to define an evaluation 
protocol (Herlocker et al., 2004). A good description 
of an evaluation protocol should address the following 
questions:

Q1. What is going to be measured?

Typically, in most offline recommender system studies, 
we measure the prediction accuracy of the recom-
mendations generated. By this, we want to measure 
how much the rating predictions differ from the actual 
ones by comparing a training set and a test set. The 
training and test sets result from splitting our user 
ratings data (the same as user interaction data). In our 

Dataset # of users # of items Transactions Sparsity (%) Source

MACE 631 12,571 23,032 99.70 MACE portal 

OpenScout 331 1,568 2,560 99.50 OpenScout portal 

MovieLens 941 1,512 96,719 93.69 GroupLens research 

Table 20.1. Details of the Selected Datasets

Figure 20.1. Experimental method used in Fazeli et al., 2014.
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EC-TEL 2014 study, we split user ratings into 80% and 
20% for the training set and the test set, respectively. 
This kind of split is commonly used in recommender 
systems evaluations (Fazeli et al., 2014).

Q2. Which metrics are suitable for a recommender 
system study?

If our input data contains explicit user preferences, 
such as 5-star ratings, we can use MAE (mean average 
error) or RMSE (root mean square error). MAE and 
RMSE both follow the same range as the user ratings; 
for example, if the data contains 5-star ratings, these 
metrics range from 1 to 5.

If the input data contains implicit user preferences, 
such as views, bookmarks, downloads, et cetera, we 
can use Precision, Recall, and F1 scores. We made use 
of the F1 score since it combines precision and recall, 
which are both important metrics in evaluating the 
accuracy and coverage of the recommendations gen-
erated (Herlocker et al., 2004). F1 ranges from 0 to 1.

In addition, we need to define the n in top-n rec-
ommendations on which a metric is measured, also 
known as a cut-off. In Fazeli et al. (2014), we computed 
the F1 for the top 10 recommendations of the result 
set for each user.

Finally, we present the results of running the candi-
date algorithms on the datasets following the defined 
evaluation protocol. Due to limited space, we only 
present the final results of our EC-TEL 2014 article 
here. Please see Sections 5.1 and 5.2 of the original 
article (Fazeli et al., 2014) for more results.

Figure 20.2 shows the F1 results of best performing 
memory-based CF (Jaccard kNN), model-based CF (a 
Bayesian method), compared to the graph-based CF. 
The x-axis indicates the datasets used and the y-axis 
shows the values of F1. As Figure 20.2 shows, the 
graph-based approach performs best for MACE (8%) 

and MovieLens (24%) and the selected memory-based 
and model-based CFs come in second and third place 
right after the graph-based CF. For OpenScout, the 
memory-based approach performs better with a dif-
ference of almost 1%.

In conclusion, according to the results presented in 
Figure 20.2, the graph-based approach seems to per-
form well for social learning platforms. This is reflected 
by an improved F1, which is an effective combination 
of precision and recall of the recommendation made.

Deployment of the Recommender System 
and User Study
In the educational domain, the importance of user 
studies has become ever more apparent  (Drachsler 
et al., 2015). Since the main aim of recommender sys-
tems in education goes beyond accurate predictions, 
it should extend to other quality indicators such as 
usefulness, novelty, and diversity of the recommenda-
tions. However, the majority of recommender system 
studies still rely on offline data studies alone. This is 
probably because user studies are time consuming 
and complicated.

After running the offline data study on the ODS data, 
we furthered the work reported in Fazeli et al. (2014) 
by conducting a user study with our target platform. 
For this, we integrated the algorithms that performed 
best with ODS. We asked actual users of ODS wheth-
er they were satisfied with the recommendations we 
made for them. For this we used a short questionnaire 
using five metrics: usefulness, accuracy, novelty, di-
versity, and serendipity. The full description and results 
of this data study and the follow-up user study have 
not been published yet. The user study does not con-
firm the results of the data study we had run on the 
actual ODS data, showing that it is quite necessary to 
run user studies that can go beyond the success in-
dictors of data studies, such as prediction accuracy. 

Figure 20.2. F1 of the graph-based CF and the best performing baseline memory-based and model-based CFs 
for all the datasets used (Fazeli et al., 2014).
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Accuracy is one of the important metrics in evaluat-
ing recommender systems but relying solely on this 
metric can lead data scientists and educational tech-
nologists down less effective pathways.

Accessing most educational datasets is challenging 
since they are not publicly and openly available, for 
example through reference links. Moreover, it is often 
difficult to compare the findings of related studies, for 
instance those by Verbert et al. (2011) and Manouselis, 
Vuorikari, and Van Assche (2010). Although we applied 
the same datasets, and some of the algorithms used 
in those two studies, the results of our example study 
differ from their results. Therefore, we could not 
gain additional information from the comparisons 
regarding the personalization of learning resources. 
One possible reason is that the studies use different 
versions of the same dataset because the collected 
data belongs to different periods of time. For the MACE 
dataset, for instance, different versions are available. 
In fact, no unique version has been fixed for running 
experiments nor for comparison in the recommender 
system community.

This problem originates from the fact that, unfortunately, 
there is no gold-standard dataset in the educational 
domain comparable to the MovieLens dataset3 in the 
e-commerce world. In fact, the LA community is in need 
of several representative datasets that can be used as 
a main set of references for different personalization 
approaches. The main aim is to achieve a standard 
data format to run LA research. This idea was initially 
suggested by the dataTEL project (Drachsler et al., 2011) 
and later followed up by the SoLAR Foundation for 
Learning Analytics (Gašević et al., 2011). In the domain 
of MOOCs, Drachsler and Kalz (2016) have discussed 
this lack of comparable results and the pressing need 
for a research cycle that uses data repositories to 
compare scientific results. Moreover, an EU-funded 
project called LinkedUp4 follows a promising approach 
towards providing a set of gold-standard datasets by 
applying linked data concepts (Bizer, Heath, & Bern-
ers-Lee, 2009). The LinkedUp project aims to provide 

3 http://www.grouplens.org/node/73
4 www.linkedup-project.eu

a linked data pool for learning analytics research and 
to run several data competitions through the central 
data pool.

Overall, the outcomes of different recommender sys-
tems or personalization approaches in the education 
domain are still hardly comparable due to the diversity 
of algorithms, learner models, datasets, and evaluation 
criteria (Drachsler et al., 2015; Manouselis et al., 2012).

The main goal of this chapter has been to illustrate 
how to identify the most appropriate recommender 
system for a learning environment. To do so, we fol-
lowed an example data study using the standard 
methodology presented in Drachsler et al. (2015) for 
evaluating recommender systems in learning. The 
methodology consists of four main steps:

1. Select suitable datasets preferably from the edu-
cational domain and, in case the actual data is not 
available yet, similarly to the target data. 

2. Run a set of candidate recommender algorithms 
that best fits the input data. The output of this 
step should reveal which recommender algorithms 
best works with the input data. 

3. Conduct a user study to measure user satisfaction 
on the recommendations made for them. 

4. Deploy the best candidate recommender to the 
target learning platform.

The fact that our user study results did not confirm 
the results of the offline data study illustrates the 
importance of running user studies even though they 
are quite time consuming and complicated.

This chapter has been partly funded by the EU FP7 
Open Discovery Space project. This document does 
not represent the opinions of the European Union, 
and the European Union is not responsible for any 
use that might be made of its content. The work of 
Hendrik Drachsler has been supported by the FP7 
EU project LACE.

PRACTICAL IMPLICATIONS AND 
LIMITATIONS

CONCLUSION
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Four descriptions of learning analytics are widely 
cited. Siemens (2010) described learning analytics as 
“the use of intelligent data, learner-produced data, 
and analysis models to discover information and social 
connections, and to predict and advise on learning.” 
The website for the 1st International Conference on 
Learning Analytics and Knowledge posted this de-
scription: “the measurement, collection, analysis and 
reporting of data about learners and their contexts, for 
purposes of understanding and optimizing learning 
and the environments in which it occurs.”1 Educause 
(n.d.) defined learning analytics as “the use of data and 
models to predict student progress and performance, 
and the ability to act on that information.” Building 
on Eckerson’s (2006) framework, Elias (2011) notes 
“learning analytics seeks [sic] to capitalize on the 
modelling capacity of analytics: to predict behaviour, 
act on predictions, and then feed those results back 
into the process in order to improve the predictions 
over time” (p. 5).

These descriptions beg fundamental questions. What 
data should be gathered for input to methods that 
generate learning analytics? Answering this question 

1 https://tekri.athabascau.ca/analytics/

sets boundaries on and shapes, first, approaches to 
computations that underlie analytics and, second, 
what analytics can say about phenomena. For instance, 
ordinal (rank) data preclude using arithmetic opera-
tions on data, such as addition or division. If data are 
not ordinal, A cannot be described as greater than B, 
nor are transitive statements valid: if A > B and B > C, 
then A > C.

What properties of data bear on the validity of inter-
ventions based on learning analytics developed from 
the data? For example, determining that a learner’s 
age, sex, or lab group predicts outcomes offers weak 
grounds for intervening without other data. None 
of these data classes are legitimately considered a 
direct, proximal (i.e., sufficient) cause of outcomes. 
Age and sex can’t be manipulated; changing lab group 
may be impractical (e.g., due to scheduling conflicts 
with other courses or a job). And, notably, prediction 
does not supply valid grounds for inferring causality.

Who generates data? Who receives learning analytics? 
Learning ecologies involve multiple actors. Authors of 
texts and web pages vary cues they intend to guide 
learners about how to study; font styles and formats 
(bullet lists, sidebars that translate text to graphics) 

Chapter 21: Learning Analytics for 
Self-Regulated Learning
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are examples. Instructional designers and instructors 
augment authors’ works, for example, by setting goals 
for learning and elaborating content. They create and 
recommend schedules for learning; they control most 
opportunities for feedback to learners. Learners study 
solo and often form online cliques or study groups in 
which they exchange views about topics, share prod-
ucts of learning activities (e.g., questions, notes), and 
form and disengage from social units. The college or 
university strives to improve material and cyber in-
frastructure wherein other actors’ work unfolds. Each 
category of actors generates data and is a legitimate 
candidate to receipt of learning analytics.

What are the temporal qualities — onset, duration, 
and offset — of collecting data, processing it, and 
delivering learning analytics? Will learners receive 
learning analytics as they work or will they need to 
be reminded of context when learning analytics are 
delayed? Are temporal delimiters positioned elastically 
or rigidly across a timeline of learning? Whose model 
of a learning episode — the analyst’s or the learner’s 
— matters?

Finally, what are learning analytics supposed to help 
improve? And, what standards should be used to gauge 
improvement? For example, if after receiving learning 
analytics a learner becomes more efficient in studying 
but achievement does not improve, is this a benefit? 
Is there value in freeing time for learners to engage 
in activities beyond academic assignments?

In this chapter, in keeping with a focus on self-regu-
lated learning, the learner is positioned as the prime 
actor. Other actors’ activities play roles as external 
conditions that may vary and, perhaps, be influenced 
by a learner’s behaviour.

Self-Regulated Learning
A framework is useful to conceptualize learning ana-
lytics for self-regulated learning (SRL). When learners 
self-regulate their learning, they “actively research 
what they do to learn and how well their goals are 
achieved by variations in their approaches to learn-
ing” (Winne, 2010a, p. 472). One widely cited model 
elaborates features of SRL as four loosely sequenced 
recursive phases that unfold over the timeline of a 
task (Winne, 2011; Winne & Hadwin, 1998).

In phase 1, a learner surveys resources and constraints 
the learner predicts may affect how work on a learning 
task proceeds, the probability that specific actions 
bring about particular results, and the consequenc-
es of those activities. These factors can be located 
externally, in the learning environment or internal 
to the learner. Examples of external factors include 
access to information available from peers or in the 
Internet, software tools with functions designed to 
support learning in various ways, and time allowed for 

work on a task. Examples of internal factors include 
knowledge and misconceptions, interest in the task or 
topic, or a motivational disposition to interpret slow 
progress as a signal of low ability or of need to apply 
more effort (see Winne, 1995).

Having identified resources and constraints, in phase 
2 a learner sets goals and plans how to approach 
them. Goals are standards a product should meet. 
Ipsative goals compare a learner’s current results 
to earlier results; they measure personal growth 
(or decline). Criterion-referenced goals measure a 
product in relation to a fixed profile of task features 
or achievements in a domain. Norm-referenced goals 
position a learner’s product relative to a peer’s or a 
group’s. Comparisons may be framed by a learner, an 
instructor, or other person. It is important to note 
that goals can target attributes of learning processes: 
which process is used, effort dedicated to carrying 
out a process, efficiency of a process, or increasing 
the probability a process yields a particular product. 
Goals also can be set in terms of products per se and 
their attributes; for example, number of pages writ-
ten for an essay, anxiety reduced, or thoroughness of 
exposition. Plans describe actions a learner intends to 
carry out to approach goals. Every action potentially 
generates multiple products. Key products include 
information added to knowledge, errors corrected, 
gaps filled or misconceptions replaced. Products can 
also include the learner’s perceptions about rate of 
progress, effort spent, opportunity to explore, or 
prospects to impress others.

In phase 3, the learner engages with the task by 
enacting planned operations. Working on a task in-
herently generates feedback that updates the task’s 
conditions. Feedback may originate in the learner’s 
external environment, such as when software beeps 
or a peer comments on a contribution to an online 
discussion. Or, feedback may arise internally as a 
result of the learner’s monitoring work flow, such as 
when a search query is deemed unproductive because 
results were not what was expected or don’t satisfy 
the need for particular information. Modest “course 
corrections” may result as the learner tracks updates 
to conditions across the timeline of a task. It is worth 
explicitly noting that goals can be updated.

Phase 4 is when the learner disengages from the task 
as such, monitors results in one or several of phases 1 
to 3, and elects to make a large-scale change. Examples 
might be when a learner suspends work on solving a 
problem and returns to studying assigned readings 
with a goal to repair major gaps in knowledge; or, 
if re-studying is not predicted to be successful, the 
learner asks for help from the instructor. Changes 
may be immediately applied to the task, reshaping 
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its multivariate profile in a major way. Or, plans for 
change may be filed for later use, what is called “for-
ward reaching transfer.”

A 5-slot schema describes elements within each phase 
of SRL. A first-letter acronym, COPES (Winne, 1997, 
summarizes the five elements in this schema. C refers 
to conditions. These are features the learner perceives 
influence work throughout phases of the task. For ex-
ample, if there are no obvious standards for monitoring 
a product generated in phase 3, the learner may elect 
to search for standards or may abandon the task as too 
risky. Conditions fall into two main classes, as noted 
earlier. Internal conditions are the learner’s store of 
knowledge about the topic being studied and about 
methods for learning, plus the learner’s motivational 
and affective views about self, the topic, and effort in 
this context. External conditions are factors in the 
surrounding environment perceived to potentially 
influence internal conditions or two of the other facets 
of COPES, operations and standards.

O in the COPES schema represents operations. First-or-
der or primitive cognitive operations transform infor-
mation in ways that cannot be further decomposed. I 
proposed five such operations: searching, monitoring, 
assembling, rehearsing, and translating; the SMART 
operations (Winne, 2011). Table 21.1 describes each 
along with examples of traces — observable behaviour 
— that indicate an occurrence of the operation. Sec-
ond- and higher-order descriptions of cognition, such 
as study tactics and learning strategies, are modelled 
as a pattern of SMART operations (see Winne, 2010a). 
An example study tactic is “Highlight every sentence 
containing a definition.” An example learning strategy 
is “Survey headings in an assigned reading, pose a key 
question about each, then, after completing the entire 
reading assignment, go back to answer each question 
as a way to test understanding.”

P is the slot in the COPES schema that represents 
products. Operations inevitably create products, 

though not always intended ones. A product can 
be uncomplicated, such as an ordered list of British 
monarchs, or complex, for example, an argument 
about privacy risks in social media or an explanation 
of catalysis. E represents evaluations of a product 
relative to standards,  S, for products. Standards for 
a product constitute a goal.

Two further and significant characteristics of SRL 
are keys to considering how learning analytics can 
inform and benefit learners. First, SRL is an adjust-
ment to conditions, operations, or standards. Thus, 
SRL can be observed only if data are available across 
time. Second, learners are agents. They regulate their 
learning within some inflexible and some malleable 
constraints, the conditions under which they work. 
As agents, however, learners always and intrinsically 
have choice as they learn. A learner may think, “I did 
it because I had to.” A valid interpretation is that the 
learner elected to do it because the consequences 
forecast for not doing it were sufficiently unappealing 
as to outweigh whatever cost was levied by doing it.

The COPES model identifies classes of data with which 
learning analytics about SRL can be developed. In the 
next major section, I describe four main classes of data 
distinguished by their origin: traces, learner history, 
reports, and materials studied. In the following major 
section, I examine computations and reporting formats 
for learning analytics in relation to SRL. Together, 
these sections describe an architecture for learning 
analytics designed to support learners’ SRL. In a final 
section, I raise several challenges to designing learning 
analytics that support SRL.

As learners work, they naturally generate ambient data 
(sometimes called accretion data; Webb, Campbell, 
Schwartz, & Sechrest, 1966). Ambient data arise in the 

DATA FOR LEARNING ANALYTICS 
ABOUT LEARNING AND SRL

Operation Description Sample Traces

Search Directing attention to particu-
lar information

Opening successive bookmarks.
Using a search tool.

Monitor
Comparing information 
presentations in terms of 
standards

Highlighting text (the information highlighted meets a 
standard, e.g., important).
Selecting a previously made note for review 
(e.g., judgment of learning).

Assemble Relating items of information Tagging.
Assigning two bookmarks to a titled folder.

Rehearse Maintaining or re-instating in-
formation in working memory

Reviewing a note.
Copying, then pasting.

Translate Transforming the representa-
tion of information

Paraphrasing.
Describing a graph, equation, or diagram in words.

Table 21.1. SMART Cognitive Operations
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natural course of activity. For example, clicking a hy-
perlink to open a web resource is data about a learner’s 
cognition and motivation — based on whatever is the 
present context (perhaps the title of the resource), the 
learner forecast information in it has sufficient value to 
motivate viewing it. This click is a trace, a bit of ambient 
data that affords relatively strong inferences about 
one or more cognitive, affective, metacognitive, and 
motivational states and processes (CAMM processes; 
Azevedo, Moos, Johnson, & Chauncey, 2010). I offer 
two further examples of traces and inferences they 
afford. An explicit caution is the validity of inferences 
grounded in trace data should always be qualified by 
a probability <1.00 (certainty).

Highlighting a Sentence Fragment. To select par-
ticular text for highlighting among hundreds of 
sentences read in a typical study session, the learner 
metacognitively monitors attributes of information in 
the text relative to standards. Standards discriminate 
text to be highlighted from text that should not be 
highlighted. The learner might monitor information 
for “structural” features, such as definitions or prin-
ciples; or for motivational/affective features, such as 
interestingness or novelty. Authors often attempt to 
signal information that should be highlighted using 
font styles (e.g., italics) or phrasing: “It is interesting 
that…” A highlight also traces that the learner plans to 
review highlighted text. Why else would the learner 
permanently mark selected text?

Reviewing a Note. Before reviewing a particular note, 
the learner engages in metacognitively monitoring 
what can be recalled about or what is understood 
about particular information. The learner chooses to 
review when recall is judged sufficiently inadequate 
perhaps because it is inaccurate, incomplete, or un-
clear. Searching for and re-viewing a particular note 
traces motivation to repair whatever problem the 
learner perceived. If the learner highlights information 
in the reviewed note, that identifies which particular 
information the learner had monitored and judged 
inadequate.

Four features describe ideal trace data gathered for 
generating learning analytics to support SRL. First, 
the sampling proportion of operations the learner 
performs while learning is large. Ideally, but not 
realistically, every operation throughout a learning 
episode is traced. Second, information operated on is 
identifiable. Third, traces are time stamped. Fourth, 
the product(s) of operations is (are) recorded. Data 
having this 4-tuple structure would permit an ideal 
playback machine to read data about a learning ep-
isode and output a perfectly mirrored rendition of 
every learning event and its result(s). With 4-tuple 
trace data, raw material is available to generate rich 

learning analytics.

In reality, every trace datum is at least mildly imperfect 
and slightly unreliable. For example, a highlight traces 
a monitoring operation and generates a product — the 
mark plus the content marked. At a future time, this 
marked content is a condition that facilitates focused 
review. What may not be clearly revealed by a high-
light is the standard(s) the learner used to select that 
content. Better designed traces can reduce this gap. 
If learners are invited to tag content they highlight — 
interesting, important, unclear, project1, tellMike, — 
each tag the learner applies exposes a standard used to 
metacognitively monitor the information highlighted. 
In some cases, a tag reveals a stronger signal about 
a plan — e.g., use this content in project1, in the next 
chat tell Mike about this content.

Learner History
Instruments for recording traces to mirror the history 
of a learner’s activities are available in at least three 
environments: paper systems, learning management 
systems, and systems that offer learners tools for 
studying “on the fly.”

Paper Systems. In a paper-based learning environ-
ment, some examples of traces include content high-
lighted, notes, marginalia such as !, ?, and √ added to 
the whitespace of textbook pages, a pile of books or 
papers stacked in order of use (e.g., the topmost was 
most recently used), and post-it tabs of various colours 
attached to pages in a notebook.

Consider the ? symbol a learner may write in the 
margin of a textbook page. This symbol traces that 
the learner metacognitively monitored the meaning 
of content and judged it confusing or lacking infor-
mation needed to fully grasp it. A further inference 
is available. Why would the learner spend effort to 
write the ? symbol in the margin? Content could be 
judged confusing or incomplete without recording a 
symbol. Odds are the learner is motivated to and plans 
to repair this gap, and return to context surrounding 
the text to improve understanding.

While tracing in a paper-based environment is easy for 
learners to do, it is hugely labour intensive to gather and 
prepare paper-bound trace data for input to methods 
that compute learning analytics. In software-supported 
environments, this burden is greatly eased.

Learning Management Systems. Today’s learning 
management systems seamlessly record several time-
stamped traces of learners’ work, such as logging in 
and out, resources viewed or downloaded, assignments 
uploaded, quiz items attempted, and forum posts to 
anyone or to particular peers. By adding some simple 
interface features, goals can be inferred. For example, 
clicking a button labelled “practice test” traces a learn-
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er’s judgment that knowledge is lacking or certitude is 
below a threshold of confidence. Aggregate trace data 
can support inferences about 1) learners’ preferred 
work schedules that mildly support inferences about 
procrastination, 2) which resources are judged more 
relevant or appealing, 3) motivation to calibrate judg-
ments of learning and efficacy, and 4) value attributed 
to contributing, acquiring, or clarifying by exchanging 
information with peers.

Traces gathered across the time stream can mark when 
learners first study a resource, if and when they review 
a resource, if and when they choose to self test, and 
when they take a test for marks. Coupled with other 
data about factors such as credit hours completed or 
the characteristics of peers with whom information 
is exchanged, traces like these provide raw material 
for building models about how learners self-regulate 
the study-review-practice-test cycle (Arnold & Pistilli, 
2012; Delaney, Verkoeijen, & Spirgel, 2010; Dunlosky 
& Rawson, 2015).

When instructors or institutions require students to 
use a learning management system, ambient data are 
generated in the course of everyday use of the sys-
tem. Costs incurred to collect trace data and prepare 
them for input to computations that generate learning 
analytics are slight.

Most learning management systems lack precision in 
traces with respect to tracking operations learners 
carry out as they study or review, and which particular 
information they study and review. A time-stamped 
trace that a resource was downloaded provides no 
information about whether the learner studied that 
content, not to mention how the learner studied it.

Software Tools for Studying. Winne and Baker (2013) 
nominated a triumvirate of motivation, metacognition 
and SRL as “raw material for engineering the bulk 
of an account about why and how learners develop 
knowledge, beliefs, attitudes and interests” (p. 1). They 
noted three challenges to research on improving 
learning outcomes by mining trace data about these 
factors: operationalizing indicators, gathering data 
that trace these constructs and filtering noise that 
obscures signals about the constructs (see also Roll 
& Winne, 2015a).

Operationalizing indicators — traces of COPES — calls 
for software developers to exercise imagination in 
designing interfaces that optimize opportunities for 
gathering trace data while supporting experimentation 
about learning and without enforcing new or perturbing 
a learner’s preferred work habits. Table 21.2 presents 
illustrations of opportunities to gather trace data in 
a context where the learner uses software tools to:

• Search for information in a library containing 

assigned readings, supporting resources provided 
by an instructor, and artifacts the learner creates 
(e.g., terms, notes).

• Select content in an assigned reading to highlight 
it or tag it.

• Make a note structured by a schema that records 
the annotation in a web form with slots tailored 
to a schema — e.g., TERM NOTE: term, definition, 
example, see also …; or DEBATE NOTE: claim, 
evidence, warrant, counterclaim, my position.

• Organize items in a folder-like directory.

Phase 4, strategic revision of tactics and strategies for 
learning, is not included in Table 21.2; it is addressed 
in the later section on Learning Analytics for SRL.

As Winne and Baker (2013) noted, “Self-regulated 
learning (SRL) is a behavioural expression of metacog-
nitively guided motivation” (p. 3). Consequently, every 
trace records a motivated choice about how to learn. 
Beyond representing features of the COPES model, 
traces reveal learners’ beliefs about worthwhile effort 
that operationalizes choices among alternative goals.

The Learner’s Reports
Paper-based questionnaires (surveys) and live oral 
reports are prevalent choices of methods for gather-
ing data about learning events. Oral reports can be 
obtained through interviews outside the temporal 
boundaries of a studying session or during learning-
on-the-fly as think aloud reports.

In both paper-based (or electronically presented) 
questionnaires and oral reports, learners are prompt-
ed to describe one or more features of COPES. The 
nature of the prompt is critical because it establishes 
several external conditions that a co-operative learner 
uses to set standards for deciding what to report. A 
thorough review is beyond the scope of this chapter; 
see Winne and Perry (2000) and Winne (2010b). In 
general, because questionnaire data are only weakly 
contextual (e.g., When you study, how often do you/
how important is it for you to …?) and because all 
forms of self-report data suffer loss, distortion, and 
bias due to frailties of human memory, they may not 
reliably indicate how a learner goes about learning in 
any particular study episode or how learning varies (is 
self-regulated) as conditions vary. Self-report data are 
important, however, because they do reliably reflect 
beliefs learners hold about COPES. Beliefs shape what 
learners attend to about tasks, about themselves, and 
about standards they set for themselves.

Materials Studied
Materials learners work with are sources of data about 
conditions that may bear on how they engage in SRL. 
Texts can be described by various analytics including 
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readability2 and cohesion (e.g., Coh-Metrix3). Content 
can be indexed for the extent to which learners have 
had opportunity to learn it plus characteristics of 
what a learner learned from previous exposures. Ma-
terials a learner studies also can be identified for the 
presence of rhetorical features such as examples and 
multichannel presentations of information, such as a 
quadratic expression described in words (semantic), 
an equation (symbolic), and a graph (visual) forms.

Learning analytics to support SRL typically will have 
two elements: a calculation and a recommendation. 
The calculation — e.g., notation about presence, count, 
proportion, duration, probability — is based on traces 
of actions carried out during one or multiple study 
episodes (Roll & Winne, 2015a). A numeric report may 
be conveyed along with or as a visualization. Examples 
might be a stacked bar chart showing relative pro-
portions of highlights, tags and notes created while 
studying each of several web pages, a timeline marked 
with dots that show when particular traces were 
generated, and a node-link graph depicting relations 
among terms in a glossary (link nodes when one term is 
defined using another term) with heat map decorations 
showing how often each term was operated on while 
studying. This element directly or by transformation 
mirrors information describing COPES traced in the 
2 See, for example, http://www.wordscount.info/readability.html
3 http://cohmetrix.com/

history of a learner’s engagement. Table 21.3 presents 
illustrative trace data that might be mirrored.

A “simple” history of trace data mirrored back to a 
learner may be conditioned or contextualized by 
other data: features of materials such as length or a 
readability index, demographic data describing the 
learner (e.g., prior achievement, hours of extracurric-
ular work, postal code), or other characterizations of 
learners such as disposition to procrastinate, degree 
in a social network (the number of people with whom 
this learner has exchanged information) or context 
for study (MOOC vs. face-to-face course delivery, op-
portunity to submit drafts for review by peers before 
handing in a final copy to be marked).

The second element of a learning analytic about SRL 
is a recommendation — what should change about how 
learning is carried out plus guidance about how to go 
about changing it. Learners can directly control three 
facets of COPES: operations, standards, and some con-
ditions (Winne, 2014). Products are controllable only 
indirectly because their characteristics are function 
of 1) conditions a learner is able to and chooses to vary, 
particularly information selected for operations; and, 
2) which operation(s) the learner chooses to apply in 
manipulating information. Evaluations are determined 
by the match of product attributes and the particular 
standards a learner adopts for those products. Rec-
ommendations about changing conditions, operations, 
or standards may be grounded in findings from data 
mining not guided by theory, by findings from research 

LEARNING ANALYTICS FOR SRL

Phase of SRL Trace Inference

1) Survey 
resources and 
constraints

Search for “marking rubric” or “require-
ments” at the outset of a study episode.

An internal condition, namely, a learner’s expectation that guidance is available 
about the requirements for a task.

Open several documents, scan each for 
15–30 s, close.

Refreshing information about previous work, if documents were previously 
studied; or scanning for particular but unknown information.

2) Plan and set 
goals Start timer. Plan to metacognitively monitor pace of work.

Fill in fields of a “goal” note with slots: 
goal, milestones, indicators of success.

Assemble a plan in which goals are divided into sub-goals (milestones), set 
standards for metacognitively monitoring progress.

3) Engagement Select and highlight content. Metacognitive monitoring, unknown standards.

Select and tag content. Metacognitive monitoring; the standard used to monitor is revealed by the tag 
applied (e.g., confusing, good point).

Select a bigram (e.g., greenhouse gas, 
slapstick comedy) and create a term.

Metacognitive monitoring content for technical terminology, assembling the 
term with a definition.

Select content and annotate it using a 
“debate note” form, filling in slots: claim, 
evidence, warrant, counterclaim, my 
position.

Metacognitive monitoring with the standard to test whether content is an argu-
ment + assemble and rehearse information about the argument.

Open a note created previously. Metacognitive monitoring knowledge relative to a standard of completeness or 
accuracy, judge knowledge does not meet the standard.

Put documents and various notes into a 
folder titled “Project Intro.”

Metacognitively monitor uses of content; The standard is “useful for the intro-
duction to a project”; assembling elements in a plan for future work.

Table 21.2. Illustrative Traces and Inferences about Phases of SRL
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in learning science, nor a by combination.

Whether a recommendation is offered or not, change 
in the learner’s behaviour traces the learner’s evalua-
tion that 1) previous approaches to learning were not 
sufficiently effective or satisfactory and 2) the learner 
predicts benefit by adopting the recommendation or 
an adaptation of it. In this sense, learning analytics 
update prior external conditions and afford new in-
ternal conditions. Together, a potential for action is 
created, but this is only a potential for two reasons. 
First, learners may not know how or have skill to 
enact a recommendation. Second, because learners 
are agents, they control their learning. As Winne and 
Baker (2013) noted:

What marks SRL from other forms of regulation 
and complex information processing is that the 
goal a learner seeks has two integrally linked 
facets. One facet is to optimize achievement. The 
second facet is to optimize how achievement 
is constructed. This involves navigating paths 
through a space with dimensions that range 
over processes of learning and choices about 
types of information on which those processes 
operate. (p. 3)

Thus, learning analytics afford opportunities for 
learners to exercise SRL but the learner decides what 
to do. There is an important corollary to this logic. If a 
learning analytic is presented without a recommenda-
tion for action, an opportunity arises for investigating 
options a learner was previously able to exercise on 
his or her own and, now, chooses to exercise. In other 
words, motivation and existing tactics for learning can 
be assessed by analytics that omit recommendations 
and guidance for action.

Research on learning analytics as support for SRL is 
nascent. The field has just begun to map frontiers, 

including what to trace, instrumentation for gathering 
traces, interfaces that optimize gathering data without 
overly perturbing learning activities, computational 
tools for constructing analytics about SRL that meld 
trace data with other data, scheduling delivery of 
learning analytics, and features of information con-
veyed in learning analytics (Baker & Winne, 2013; Roll 
& Winne, 2015b). Amidst these many topics, several 
merit focused exploration.

Grain Size
Features of learning events can be tracked at multiple 
grain sizes ranging from individual keystrokes and clicks 
executed along a timeline marked off in very fine time 
units (e.g., tens of milliseconds) to quite coarse grain 
sizes (e.g., the URL of a web page and when it loads, the 
learner’s overall score on a multi-item practice quiz). 
Different methods for aggregating fine-grained data 
will represent features of COPES differently. While 
this affords multiple views of how learners engage in 
SRL, several questions arise.

First, how will depictions of SRL and recommendations 
for adapting learning vary across learning analytics 
formed from data at different grain sizes? An analogy 
might be made to chemistry. Chemical properties 
and models of chemical interactions vary depending 
on whether the unit is an element, a compound, or 
a mixture. Consider two grain sizes for information 
that is manipulated with an assembling operation: 1) 
snippets of text selected for tagging when studying a 
web page, and 2) entire artifacts — quotes, notes, and 
bookmarks — that a learner files in a titled (tagged) 
folder. Future research may reveal that assembling at 
one grain size has different implications for learning 
relative to assembling at another grain size.

If grain size matters, one implication is that approaches 
to forming learning analytics may benefit by con-
sidering not only whether and which operations are 
applied — what a learner does — but also character-
istics of information to which operations are applied. 

CHALLENGES FACING LEARNING 
ANALYTICS ABOUT SRL

COPES Description

Conditions Presence/absence of a condition within a learning episode
Onset/offset along the timeline in a study episode or across a series of episodes

Operations Frequency of SMART operations (see Table 21.1)
Sequence, pattern, conditional probability one SMART operation relative to others

Product
Presence
Completeness (e.g., number of fields with text entered in a note’s schema)
Quality

Standard
Presence
Precision
Appropriateness

Evaluation Presence
Validity

Table 21.3. Analytics Describing COPES Facets in SRL
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Learning analytics for SRL may benefit by blending 
counts and other quantitative descriptions of COPES 
with semantic, syntactic, and rhetorical features of 
conditions, products, and standards.

Because coarser grained reflections of SRL generally, 
but not necessarily, are built up using finer grained 
data, another issue arises in developing and using 
statistical calculations. Statistical descriptions that 
describe relationships among larger-grained features 
of learning and SRL, such as correlation and distance 
metrics, may share finer-grained constituents. This 
inherently introduces part-whole relationships. Will 
that matter?

Time
Excepting research in learning science that investigates 
how achievement covaries with time spans between 
episodes of studying, reviewing, and taking tests 
(Delaney et al., 2010), the phenomenon of forgetting 
(Murayama, Miyatsu, Buchli, & Storm, 2014) and loss of 
knowledge across the summer vacation (Cooper, Nye, 
Charlton, Lindsay, & Greathouse, 1996), time data has 
been underused. Traces and other data available to 
learning analytics commonly can be supplemented with 
time stamps. Much research remains to investigate 
how temporal features of COPES and coarser-grained 
descriptors may play useful roles in learning analyt-
ics about SRL as a process that unfolds within each 
studying episode and across a series of episodes. One 
focus for this research is identifying patterns in COPES 
events across time (Winne, Gupta, & Nesbit, 1994). 
Vexing questions here are how to define the span of 
a time window within which patterns are sought and 
the degree to which non-focal events intervening in 
an encompassing pattern can be identified and filtered 
out (see Zhou, Xu, Nesbit, & Winne, 2011). Another key 

topic relating to time is investigating when learning 
analytics should be delivered: in real time (i.e., ap-
proximately instantaneously following an event or 
identification of a pattern), on demand (by learners or 
instructors), or at punctuated intervals (e.g., weekly)?

Generalization
Learning science strives to balance the accuracy 
of descriptions about particular learning events in 
contrast to describing how learning events relate to 
outcomes, which requires ignoring details to allow 
generalizing over specific events. When data and time 
stamps at very fine-grain sizes are available about the 
course of studying over time, accuracy of description 
is maximized. How should generalizations be formed, 
tested, and validly interpreted as accuracy is deliber-
ately compromised (see Winne, 2017)?

The goal of education is development — of knowledge, 
interest, confidence, critical thinking, and so on. If 
education succeeds, each learner changes over time, 
and changes quite likely vary among peers. Even if 
there is genuinely big data, at very fine grain sizes of 
data, it is statistically very unlikely any two learners’ 
data signatures perfectly match. Learning analytics 
face a challenge to find balance between accuracy and 
generalization when describing one learner’s ipsative 
development or the match of that learner’s “learning 
signature” to others’. The field of learning analytics will 
benefit from frequent consideration of this challenge.
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With the rise in online and blended learning, massive 
open and online courses (MOOCs) and flipped classroom 
approaches, the use of video has seen a steady increase. 
Although much research has been done, particularly 
focusing on psychological aspects, the educational 
value, and the user experience, the advancements of 
the technology and the emergence of analytics pro-
vide an opportunity to explore and integrate not only 
how videos are used in the curriculum but whether 
their adoption has contributed towards learner en-
gagement or learning (Giannakos, Chorianopoulos, & 
Chrisochoides, 2014). Educators are choosing to bring 
videos into their courses in a variety of ways to meet 
their particular intentions. This is occurring not only 
in higher education, continuing professional develop-
ment, and the K–12 sectors but also in corporate and 
government training (Ritzhaupt, Pastore, & Davis, 2015). 
Therefore, it is important to evaluate or investigate 
how learners are using and engaging with videos in 
order to inform future modifications or advances in 
how they are integrated into the curriculum.

The use of videos in the curriculum stems from ear-
lier use of multimedia in learning environments dat-

ing back several decades. Hence, before exploring how 
videos are integrated into the curriculum or identi-
fying methods to investigate how learners use them, 
it is important to consider prior research conducted 
on multimedia learning. This chapter begins with a 
discussion of related work, specifically multimedia 
learning and strategies for evaluating learning with 
multimedia. This is followed by methodological con-
siderations including video types, the ways videos can 
be integrated into the curriculum, and the data min-
ing approaches that can be applied to understand use, 
engagement, and learning with videos. The final 
section summarizes the chapter and offers directions 
for further exploration. 

What Do We Know about Learning with 
Multimedia and Interactive Courseware?
“People learn better from words and pictures than from 
words alone” is the key statement driving the popular 
work of Mayer (2009) on multimedia learning. Videos 
are a form of multimedia and therefore this chapter 

RELATED WORK

Chapter 22: Analytics of Learner Video Use

Negin Mirriahi1, Lorenzo Vigentini2

Videos are becoming a core component of many pedagogical approaches, particularly with 
the rise in interest in blended learning, flipped classrooms, and massive open and online 
courses (MOOCs). Although there are a variety of types of videos used for educational 
purposes, lecture videos are the most widely adopted. Furthermore, with recent advances 
in video streaming technologies, learners’ digital footprints when accessing videos can 
be mined and analyzed to better understand how they learn and engage with them. The 
collection, measurement, and analysis of such data for the purposes of understanding how 
learners use videos can be referred to as video analytics. Coupled with more traditional 
data collection methods, such as interviews or surveys, and performance data to obtain 
a holistic view of how and why learners engage and learn with videos, video analytics can 
help inform course design and teaching practice. In this chapter, we provide an overview 
of videos integrated in the curriculum including an introduction to multimedia learning 
and discuss data mining approaches for investigating learner use, engagement with, and 
learning with videos, and provide suggestions for future directions. 

Keywords: Video, analytics, learning, instruction, multimedia

ABSTRACT

1School of Education & Teaching Innovation Unit, University of South Australia, Australia
2School of Education & PVC (Education Portfolio), University of New South Wales, Australia
DOI: 10.18608/hla17.022



HANDBOOK OF LEARNING ANALYTICSPG 252 CHAPTER 22 ANALYTICS OF LEARNER VIDEO USE PG 253

will leverage a wealth of research exploring their 
effectiveness for learning. Since the introduction of 
computers and instructional technology in education, 
both the research on and the development of interac-
tive course materials, followed the trends and shifts 
of beliefs in psychological and educational research 
and can be identified within one of the following three 
phases/perspectives: 

1. Behaviourist: presenting an objectivist view of 
knowledge and instructional design features fo-
cusing on serial structuring of material, program/
delivery control, and regular review and testing 
against specified criteria — from Skinner’s (1950) 
radical behaviourism to Gagne’s (1965) tenets on 
the conditions of learning.

2. Cognitive: focusing on the factors affecting ef-
fective learning and teaching with attention to 
information processing and the characteristics 
of the learner, the teachers, and the learning 
environment (Keller, 1967; McKeachie, 1974).

3. Constructivist: knowledge-building with a focus 
on the interdependence of social and individual 
processes in the co-construction of knowledge 
(Palincsar, 1998).

In between these often entrenched perspectives, 
the key issue has been the definition of how much 
instruction affects learning (Lee & Anderson, 2013) 
and, in particular, how much the instructivist and 
constructivist approaches deriving from the three 
perspectives facilitate active learning. According to 
the behavioural perspective, learning can be efficiently 
accomplished with a strong set of instructions and 
a specific sequence of learning (Kirschner, Sweller, 
& Clark, 2006; Lee & Anderson, 2013) but there may 
be a trade-off between efficiency and effectiveness 
(Atkins, 1993). Instead, the key weakness of the cog-
nitive orientation is the articulation or provision 
of suitable metacognitive frameworks to support 
learning. Constructivist and connectivist models of 
learning are student-centred in nature and imply a 
level of self-directedness and self-regulation in order 
to navigate through the teaching material to determine 

the most suitable learning pathway. Notwithstanding 
the philosophical perspective taken, “what seems to 
be missing are models of learning appropriate for the 
design opportunities offered by new technologies” 
(Atkins, 1993, p. 252) and this includes videos and 
multimedia.

Practitioners and instructional designers find com-
fort in Gagne’s (1965) model of instructional events 
and his classification of types of learning outcomes 
because of their relative ease of adoption and use 
(Reeves, 1986). Furthermore, the concept of mastery 
learning (Bloom, 1968) has attracted a large amount 
of research supporting its effectiveness (Guskey & 
Good, 2009; Kulik, Kulik, & Bangert-Drowns, 1990) and 
together with the five main elements of Keller’s (1967) 
Personalized System of Instruction (PSI), as noted in 
Figure 22.1, strongly influenced instructional design 
and learning sciences. 

Mayer (2009) attempts to summarize the wealth of 
knowledge on multimedia learning accrued over the 
past four decades in the formulation of 12 principles, as 
noted in Figure 22.2. These principles provide insight 
into the way people learn with multimedia, grounded 
in evidence from psychology, instructional design, 
and the learning sciences. Being aware of the positive 
and negative design features and their known effects 
on learning is very important when an instructor is 
integrating videos into their teaching.

Another aspect to consider, described in more detail 
below in Data-Mining Approaches to Videos, is the issue 
of engagement and how learning relates to patterns of 
engagement. Although Mayer and colleagues demon-
strated the effects of certain features of the medium 
on learning, when moving from a lab context to real 
life, the extent to which a learner interacts with the 
medium is an important aspect. This is mediated not 
only by the characteristics of the medium, but also by 
the individual preferences and approaches to learning, 
which make it quite hard to clearly disentangle the 
relation between the volume or amount of engagement 
with videos (i.e., the interaction) and the learning, 
which is tied to the mode of assessing learning.

Figure 22.1. Keller’s (1967) elements of the PSI (Personalized System of Instruction).

• The go-at-your-own-pace feature, which permits a learner to move through the course at a speed commensurate 
with his ability and other demands upon his time

• The unit-perfection requirement for advancement, which lets the learner advance to new material only after 
demonstrating mastery of that which preceded

• The use of lectures and demonstrations as vehicles of motivation, rather than sources of critical information

• The related stress upon the written word in teacher–learner communication

• The use of proctors, which permits repeated testing, immediate scoring, almost unavoidable tutoring, and a marked 
enhancement of the personal-social aspect of the educational process
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Key Considerations in the Multimedia 
Literature
A recent review of the literature on video-based 
learning between 2003–2013 (Yousef, Chatti, & Schro-
eder, 2014) provided a useful overview of the types of 
studies conducted. This categorization is reproduced 
in Figure 22.3 below.

This provides a good starting point to make sense 
of the most recent research directions, but mostly 
ignores the research produced in the previous five 
decades, culminating in Mayer (2009), who identifies 
six major strands relevant to multimedia and video in 
learning and education: 1) perception and attention; 2) 
working memory and memory capacity; 3) cognitive 
load theory; 4) knowledge representation and integra-
tion; 5) learning and instruction (including learning 

styles, approaches, and instructional methods); and 
6) self-regulation of learning. These areas provide 
the theoretical backdrop necessary to understand, 
identify, and select adequate analytics (intended 
here as both methods and metrics) to demonstrate 
the effectiveness of videos for learning. In particular, 
work done on the first three areas provides essential 
parameters to determine the way in which a learner 
may interact and engage with videos, and the second 
set of three provides useful data to understand the 
way in which learning from and with videos occurs, 
all illustrated in Figure 22.4.

Relating back to the taxonomy of Yousef and colleagues 
(2014), the notion of effectiveness fits in the broader 
learning space (Figure 22.4) and is at the centre of the 
discussion and the evaluation of how effectiveness can 

1. Coherence Principle – People learn better when extraneous words, pictures, and sounds are excluded rather 
than included.

2. Signalling Principle – People learn better when cues that highlight the organization of the essential material 
are added.

3. Redundancy Principle – People learn better from graphics and narration than from graphics, narration, and 
on-screen text

4. Spatial Contiguity Principle – People learn better when corresponding words and pictures are presented near 
rather than far from each other on the page or screen.

5. Temporal Contiguity Principle – People learn better when corresponding words and pictures are presented 
simultaneously rather than successively.

6. Segmenting Principle – People learn better from a multimedia lesson, which is presented in user-paced segments 
rather than as a continuous unit.

7. Pre-training Principle – People learn better from a multimedia lesson when they know the names and charac-
teristics of the main concepts.

8. Modality Principle – People learn better from graphics and narrations than from animation and on-screen text.

9. Multimedia Principle – People learn better from words and pictures than from words alone.

10. Personalization Principle – People learn better from multimedia lessons when words are in conversational style 
rather than formal style.

11. Voice Principle – People learn better when the narration in multimedia lessons is spoken in a friendly human 
voice rather than a machine voice.

12. Image Principle – People do not necessarily learn better from a multimedia lesson when the speaker’s image is 
added to the screen.

Figure 22.2. Mayer’s (2009) multimedia design principles.

Figure 22.3. Overview of the video-based literature 2003–2013 (adapted from Yousef et al., 2014). 
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be applied to instruction, the learners, and the tools 
(specifically videos). There is a direct connection be-
tween instruction and the learner: this is exemplified 
in what an instructor does to facilitate learning to 
respond to the learners, represented under teaching 
methods as noted in Figure 22.3 (Yousef et al., 2014). 
Furthermore this is extended in Figure 22.4 to illustrate 
the relationship between both instruction and the 
learner and instruction and the learning tools — i.e., the 
video. In the interaction between instruction and the 
learner, elements such as learning styles, approaches, 
and instructional methods alongside self-regulated 
learning affect the effectiveness of instruction and 
learning. Instruction is affected by the instructional 
methods and cognitive load, and multimedia learning 
theory. The direct relation between the instruction 
and the instructional tools such as the resources, 
activities, supporting and evaluation tools — in this 
particular case the use of videos — is partly present in 
Yousef and colleagues’ (2014) taxonomy under “design,” 
but the important reference to the learner is missing, 
especially when students not only consume videos, 
but also produce them (Juhlin, Zoric, Engström, & 
Reponen, 2014). Finally, the dual relationship between 
the learning and the video is affected by learners’ per-
ception, attention, their working memory and capacity 
as well as their preferences driven by the affordances 
of the videos. Figure 22.4 also shows some key metrics 
that could be applied to investigate the relationships 
between instruction, the learner, and the video when 
measuring effectiveness.

Evaluation Methods to Investigate the 
Effectiveness of Videos on Learning
In order to evaluate the effectiveness of multimedia 
and videos, together with experimental (e.g., lab) 
studies, a plethora of published research proposes a 
comparative approach (see Data-Mining Approaches 
to Videos below), or a “horserace” model for evaluating 
the comparison of a mythical “traditional instruction” 
with the latest innovations in instructional technolo-
gy tools (Reeves, 1986, 1991). Although experimental 
studies have a certain appeal and credibility, research 
studies adopting experimental or quasi-experimen-
tal designs comparing instructional technologies 
have produced very few useful outcomes. Literature 
reviews and meta-analyses have recognized this 
phenomenon as the “no significant differences” prob-
lem (Joy & Garcia, 2000; Oblinger & Hawkins, 2006; 
Russell, 1999). Videos have been subjected to similar 
comparative studies since the 1980s — initially with a 
focus on videodiscs and interactive videos, and later 
with computer-based instruction, video animations, 
documentaries, and video-recorded presentations 
or lectures. The debate on the influence of media on 
learning has been well represented by the opposing 
views of Clark (1983, 1994) and (Kozma, 1991, 1994). Clark 
(1994) argues that media does not influence learning 
under any condition; however, “learning is caused by 
the instructional methods embedded in the media 
presentation” (p. 26). Notably, instructional methods 
were defined as “any way to shape information that 
activates, supplants, or compensates for the cognitive 
processes necessary for achievement or motivation” 

Figure 22.4. Interconnections between the learner, instruction, and video with reference to some of the key 
metrics used in the literature.
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(p. 23). On the other side of the debate, Kozma (1991, 
1994) argues that media and methods are intertwined 
and dependent on each other:

From an interactionist perspective, learning with 
media can be thought of as a complementary 
process within which representations are con-
structed and procedures performed, sometimes 
by the learner and sometimes by the medium 
[…] media must be designed to give us power-
ful new methods, and our methods must take 
appropriate advantage of media’s capabilities 
(1994, pp. 11, 16).

Within this “Great media debate,” Tennyson (1994) 
argues, “a scientist is never satisfied with the current 
state of affairs, but is always and foremost challenged 
by extending knowledge” (p. 15). He asserts that a 
scientist turns into an advocate when statistically 
significant results are found and the newly found 
approach is adopted to tackle the world’s complexity: 
this is termed the “big wrench” approach. “The advo-
cate, with the big wrench in hand, sets out to solve, 
suddenly, a relatively restricted number of problems. 
That is, all of the formerly many diverse problems, 
now seem to be soluble with the new big wrench (or 
panacea)” (p. 16). This should provide a stark warning 
against the temptation of focusing too much or ex-
clusively on one method of evaluation, (e.g., analytics) 
as the potential “big wrench” used to make sense of 
learning with and from videos in education. Instead, 
a range of approaches should be used to investigate 
and evaluate use, engagement, and learning with vid-
eos. Such strategies will be explored in Data-Mining 
Approaches to Videos, below.

Video Types
Videos have become increasingly important to provide 
varied pedagogical opportunities to engage learners 
and respond to the growing need for flexible, blend-
ed, and online learning modes. There are two broad 
categories of video use: synchronous and asynchro-
nous. The former provides a real-time opportunity for 
learners and instructors to engage with one another 
simultaneously through virtual classrooms, live web-
casts, or video feeds. The latter supports self-paced 
learning and is primarily an individual interaction 
between the medium and the learner. Asynchronous 
videos are becoming more common and vary from 
the capture of an in-class lecture, to the recording of 
an educator’s talking head or their audio of a lecture 
accompanied by slides or images illustrating core 
concepts (Owston, Lupshenyuk, & Wideman, 2011). 
Such lecture videos can be a variety of durations and 

have become more mainstream with the introduction 
of automatic lecture recordings in many lecture halls 
facilitated by technologies such as Echo3601, Open-
cast2,  and Kaltura3 minimizing the resources and time 
required of the educator to produce the videos. While 
in some learning contexts, these videos are provided 
to learners as supplemental resources, many educators 
are adopting flipped classroom approaches whereby 
information-transmission is done through required 
video lectures prior to class time, providing time in 
class for collaborative and active learning activities. 
Further, lecture videos have also gained momentum 
with their recent availability through streaming plat-
forms such as YouTube, Apple’s iTunes U program, 
and the Khan Academy where a vast variety of videos 
covering various disciplines and concepts are avail-
able. MOOCs have also contributed to the widespread 
adoption of lecture videos. For many MOOC providers 
(e.g., Coursera, Udacity, EdX), a core functionality is 
the provision of video streaming, providing much of 
the course content via videos supported by quizzes, 
forums, and readings (Diwanji, Simon, Marki, Korkut, & 
Dornberger, 2014; Li, Kidzinski, Jermann, & Dillenbourg, 
2015). These particular MOOCs, which focus heavily 
on video lectures and individual mastery of content 
(e.g., via quizzes with immediate feedback), follow a 
cognitive-behaviourist approach, often referred to as 
xMOOCs (Conole, 2013), and have largely developed 
since 2012 (Margaryan, Bianco, & Littlejohn, 2015). While 
in many cases higher education videos are the result 
of live recording with what is available (i.e., automatic 
lecture recording or desktop recording using screen 
capture and audio recording), in MOOCs, videos tend 
to be scripted, recorded, and edited with high-end 
equipment and slick production values (Guo, Kim, & 
Rubin, 2014; Ilioudi, Giannakos, & Chorianopoulos, 
2013; Kolowich, 2013).

Lecture videos are not the only type of educational 
videos being integrated in the curriculum. Video re-
cordings of learners’ own performances or engagement 
with an activity are used for self-reflection, peer and 
instructor feedback, and goal-setting purposes. For 
example, pre-service teachers have viewed record-
ings of their own teaching scenarios and made notes 
or markers on particular segments for their own 
self-reflection purposes or to provide feedback to 
peers facilitated by video annotation software such 
as the Media Annotation Tool (MAT) (Colasante, 2010, 
2011). The use of video recordings for learner reflection 
and critical analysis has also been used in medical 
education whereby learners view recordings of their 
consultations with simulated patients and explain 
their behaviour and note areas of improvement linked 
1 Echo360 Active Learning Platform http://echo360.com
2 Opencast http://www.opencast.org
3 Kaltura http://corp.kaltura.com

METHODOLOGICAL CONSIDER-
ATIONS
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to specific time-codes in the video using annotation 
software, DiViDU (Hulsman, Harmsen, & Fabriek, 2009). 
In the performing arts discipline, videos of learners’ 
own performances have been used for self-reflection 
purposes (Daniel, 2001) and more recently coupled 
with video annotation software, CLAS, for learners 
to make time-stamped and general comments related 
to their performance (Gašević, Mirriahi, & Dawson, 
2014; Mirriahi, Liaqat, Dawson, & Gašević, 2016; Risko, 
Foulsham, Dawson, & Kingstone, 2013).

Video in the Curriculum
Although videos are included in the curriculum in 
various ways, it is not often transparent whether 
the integration of videos into the course has been 
effective or requires further refinement. Whether as 
supplemental resources, core components of flipped 
classroom approaches or MOOCs, or used for re-
flective practice and peer feedback, it is important 
to understand how learners engage with the videos 
and how it contributes to their learning experience 
(Giannakos et al., 2014). To date, numerous studies 
have been conducted in various educational settings 
exploring the effectiveness of videos in the curriculum 
(Giannakos, 2013; Yousef et al., 2014). However many 
of the earlier studies have largely relied on learners’ 
and educators’ self-reports rather than objective data. 
Relying solely on self-reports can lead to potential 
inaccurate recall of learners’ prior behaviour (Winne 
& Jamieson-Noel, 2002) or lead to social-desirability 
bias whereby learners provide the expected response 
rather than the most accurate one (Beretvas, Meyers, & 
Leite, 2002; Gonyea, 2005). Recent advances in learning 
analytics and data mining techniques, however, can 
provide more objective and authentic data regarding 
learners’ actual use of learning technologies by analyz-
ing their digital footprints (Greller & Drachsler, 2012). 
Hence, mining the data from learners’ use of videos as 
a complement to other data sources (e.g., assessment 
scores, surveys, etc.) (Giannakos, Chorianopoulos, & 
Chrisochoides, 2015) can help begin to uncover how 
learners actually use videos and how they contribute 
to their learning experience. Leveraging the trace or 
clickstream data available from learners’ use of videos, 
which can be termed video analytics, has become 
more readily available in recent years from streaming 
video platforms (YouTube, Vimeo) or MOOC providers 
(Udacity, Coursera, FuturLearn, EdX).

Broadly, we define video analytics as the collection, 
measurement, and analysis of data from learners’ use 
of videos for the purposes of understanding how they 
engage with them in learning contexts. This provides 
the opportunity to mine learners’ actual use of the 
videos alongside data collected from other online 
activities such as quizzes or annotations to explore 
when and how learners engage with the videos and 

their associated activities. Aggregating such data with 
performance measures (e.g., grades or scores) can 
help identify any impact on learning outcomes while 
collecting information about learners’ intentions or 
motivations through self-reports can help explain 
learner use. Collectively, these varied data sets can 
help reveal whether learners are engaging or using 
video technologies as intended by the course design 
or if further revisions to the pedagogical approach 
are required to better meet the intended outcomes of 
the learning and teaching strategy (Pardo et al., 2015).

In the next section, we discuss various approaches to 
studying learner use of video technologies (using 
video analytics alongside other data collection meth-
ods) to begin to understand patterns in learning and 
engagement.

Data mining is commonly defined as the process of 
collecting, searching through, and analyzing a large 
amount of computerized data, in order to discover 
patterns, trends, or relationships (Witten & Frank, 
2005; Romero & Ventura, 2010; Peña-Ayala, 2014). This 
is done through a combination of tools and methods 
used in statistics and artificial intelligence (AI). The 
algorithms driving the mining process derive from a 
field of research in AI termed knowledge discovery and 
machine learning: the broad categories of machine 
learning and the algorithms associated with these 
are represented in Figure 22.5.

Data mining has long been used to study multimedia 
and video. This is partly because of the relative ease in 
creating new content and the availability of web-based 
video streaming services to distribute videos. When 
one looks at applications and mining techniques for 
videos, there are two major strands of work: 1) making 
sense of the content of the video and 2) exploring how 
learners use videos. In the next two sections, we will 
explore some of these methods and techniques.

Figure 22.5 provides an overview of the connections 
of machine learning algorithms and applications ap-
plicable to video analytics. It provides a distinction 
between supervised and unsupervised machine learn-
ing, leading to the specific types of algorithms used to 
analyze the data from different applications of video 
(e.g., learners’ interaction with video content and their 
use of videos). Depending on the nature of the data 
sources (for example, usage and in-video behaviours, 
or frame analysis), different families of algorithms are 
more appropriate for making sense of the data.

In this chapter, we will not dwell on the effectiveness 
of algorithms, but briefly describe some applications 

DATA MINING APPROACHES TO 
VIDEOS
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of video content mining, giving particular attention 
to usage. Table 22.1 provides an explicit mapping of 
existing literature, algorithms, types of interactions, 
and features used in the analysis.

Mining Applied to Content
Making sense of videos is a complex problem that 
leverages advances in automated content-based meth-
odologies such as visual pattern recognition (Antani, 
Kasturi, & Jain, 2002), machine learning (Brunelli, Mich, 
& Modena, 1999), and human-driven action (Avlonitis, 
Karydis, & Sioutas, 2015; Chorianopoulos, 2012; Risko 
et al., 2013). The latter can be individual use of video 
resources or the social metadata (tagging, sharing, and 
social engagement). Video indexing, commonly used to 
make sense of video content, is based on three main 
steps: 1) video parsing, 2) abstraction, and 3) content 
analysis (Fegade & Dalal, 2014). Furthermore, given the 
exponential growth of video content, the problems of 
navigation (or searching within content) and summa-
rization can also be resolved using content analytics 
(Grigoras, Charvillat, & Douze, 2002; He, Grudin, & 
Gupta, 2000). 

The relevance of this work can be seen in the ability to 
characterize and present video content to learners and 
the methods to integrate this medium with teaching 
and instruction. For example, a better way of guiding 
learners to key points in a video or providing learners 
with ways to regulate their own learning with videos 
is to provide a navigational index much like a table of 
contents or glossary to allow learners to jump to the 
most relevant part of video. One way of providing this 

is using video annotation software, which provides 
instructors and learners with the option of flagging 
particular time-stamped parts of a video for later 
review and to gauge their learning in relation to oth-
ers by viewing other’s annotations or flags (Dawson, 
Macfadyen, Evan, Foulsham, & Kingstone, 2012). Given 
that new users of websites and applications tend to 
watch videos and skip text while more expert users 
skip videos and scan the associated text (Johnson, 
2011), this creates interesting design problems and 
questions: by aggregating learner engagement or use 
of videos, could the “crowd-sourced” expertise of 
learners provide automated or user-driven instruc-
tional support scaffolding novice or less experienced 
learners or is the adoption of machine learning more 
effective? Although there is much evidence in favour 
of machine driven methods (i.e., EDM and AIED com-
munities), the problem of knowledge representation 
and transfer remains a crucial one.

Another source of accessible metadata about videos 
came about with assistive technologies and the synching 
of text transcripts related to videos. For example, Ed-X 
displays both video and transcripts on the same page, 
whilst YouTube has recently introduced an automatic 
caption tool to create subtitles.

Mining Applied to Usage: Logs of Activity 
to Measure Interaction
The extraction of trace or log data from learners’ use 
of video technologies and the analysis to understand 
learning processes or engagement is still at an early 
stage both in terms of a research discipline (e.g., learning 

Figure 22.5. Interconnections between the learner, instruction, and video with reference to some of the key 
metrics used in the literature.
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analytics and educational data mining) but also in terms 
of how it is used to inform teaching practice. As noted 
by Giannakos, Jaccheri, and Krogstie (2015), further 
experimentation with methodological approaches is 
needed to advance the area. Yet, there are a growing 
number of studies exploring how learners learn and 
engage with video technologies using educational data 
mining and learning analytics methods alongside more 
traditional data collection approaches (e.g., question-
naires, observations, and interviews). To provide an 
overview we specifically looked at published literature 
from 2000 onward mentioning video or multimedia 
learning. The additional criterion required was at least 
the use of one of the variables categorized under “us-
age” or “interaction,” as described in the last section.

In Table 22.1, we introduce studies that have used 
such methods to explore learner use, engagement, 
and learning with videos. We have categorized the 
studies using the algorithm categories and application 
types noted on Figure 22.5.

In addition to the definition of each variable, the type of 
study or algorithm uses the same taxonomy presented 
earlier with studies that use the comparative approach 
or studies that apply data mining techniques classed 
using the schema in Figure 22.5. Notably, a “modelling” 
type, referring to work, has been added, which used 
the data and variables not to inform the learning and 
teaching per se, but to explain or describe the patterns 
of use and interaction with videos.

Moving from Usage to Engagement
As seen in the previous section, a number of studies 
investigate what learners do with videos. However, in 
order to characterize engagement in the context of 
learning and teaching, it is essential to consider what 
is meant by engagement with videos. For example, 
a learner could click on the play button of a video 
presented as part of a “flipped classroom” activity 
and then walk away to make coffee. The video would 
still be playing, and logging this activity as usage; 
however, the learner would be not be engaged with 
the activity. This poses a challenge when interpreting 
activity logs and makes the case for avoiding the “big 
wrench” approach mentioned earlier. The time spent on 
task is not simple to interpret in an ecologically valid 
setting; unlike in experimental conditions in which 
extraneous variables are controlled or monitored, 
real learning might occur in highly noisy conditions 
(for example, increasingly “on the go” from a mobile 
device on a busy commuter bus (Chen, Seilhamer, 
Bennett, & Bauer, 2015).

However, expedients made available via modern web 
technologies can partly circumvent this problem. For 
example, including in-video quizzes (IVQ) provides 
an opportunity to check whether learners have un-
derstood concepts in the video or how they perceive 
its effectiveness. These not only provide a “pulse” on 
engagement, but also a view on the effectiveness of the 
videos for learning. Most MOOC providers offer some 
form of IVQs that can be inserted at specific points. 
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Anusha & Shereen, 2014 Classification v v
Avlonitis & Chorianopoulos, 2014 Correlation v v v v
Avlonitis, Karydis, & Sioutas, 2015 Correlation, Regression v v v v
Brooks, Epp, Logan, & Greer, 2011 Clustering v v v v
Chen, Chen, Xu, March, & Benford, 2008 Comparison v v
Chorianopoulos, 2012 Comparison v o v v v
Chorianopoulos, 2013 Comparison v v v v
Chorianopoulos, Giannakos, Chrisochoides, & Reed, 
2014 Framework v v v v v

Cobarzan & Schoeffmann, 2014 Comparison v v v v
Coleman, Seaton, & Chuang, 2015 Modelling, Classification v v
Crockford & Agius, 2006 Comparison v v v
de Konig, Tabbers, Rikers, & Paas, 2011 Comparison v v v v
Delen, Liew, & Willson, 2014 Comparison v v v
Dufour, Toms, Lewis, & Baecker, 2005 Comparison v v v v v
Gašević, Mirriahi, & Dawson, 2014 Comparison v v
Giannakos, Chorianopoulos, & Chrisochoides 2014 Comparison v v v v
Giannakos, Chorianopoulos, & Chrisochoides, 2015 Modelling, Comparison v v v v v v

Table 22.1. Summary of Related Work using Video Analytics Techniquesmat
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Giannakos, Jaccheri, & Krogstie, 2015 Correlation v v v v v
Gkonela & Chorianopoulus, 2012 Modelling v v v v v v
Grigoras, Charvillat & Douze, 2002 Modelling, Regression v v v v
Guo, Kim, & Rubin, 2014 Comparison v v v v
He, 2013 Correlation v v v
He, Grudin, & Gupta, 2000 Modelling, Clustering v v
He, Sanocki, Gupta, & Grudin, 2000 Comparison v v v v
Ilioudi, Giannakos, & Chorianopoulos, 2013 Comparison v v v v
Kamahara, Nagamatsu, Fukuhara, Kaieda, & Ishii, 
2009 Modelling v v v

Kim, Guo, Cai, Li, Gajos, & Miller, 2014 Modelling, Comparison v v v v v v v v
Kim, Guo, Seaton, Mitros, Gajos, & Miller 2014 Modelling, Regression v v v v
Li, Gupta, Sanoki, He, & Rui, 2000 Modelling, Comparison v v v v v
Li, Kidzinski, Jermann, & Dillenbourg, 2015 Modelling, Regression v v v v v
Li, Zhang, Hu, Zhu, Chen, Jiang, Deng, Guo, Faraco, 
Zhang, Han, Hua, & Liu, 2010 Modelling, Comparison v v v

Lyons, Reysen, & Pierce, 2012 Comparison v v v v
Mirriahi & Dawson, 2013 Correlation v v v
Mirriahi, Liaqat, Dawson, & Gašević, 2016 Clustering v v v v
Monserrat, Zhao, McGee, & Pendey, 2013 Comparison v v v v
Mu, 2010 Comparison v v v v
Pardo, Mirriahi, Dawson, Zhao, Zhao, & Gašević, 2015 Correlation, Regression v v v v
Phillips, Maor, Preston, & Cumming-Potvin, 2011 Comparison v v v v
Risko, Foulsham, Dawson, & Kingstone, 2013 Modelling v v v o v v
Ritzhaupt, Pastore & Davis, 2015 Correlation v v
Samad & Hamid, 2015 Modelling, Comparison v v
Schwan & Riempp, 2004 Comparison v v v v
Shi, Fu, Chen, & Qu, 2014 Modelling, Comparison v v v
Sinha & Cassell, 2015 Modelling, Regression v v
Song, Hong, Oakley, Cho, & Bianchi, 2015 Modelling v o v
Syeda-Mahmood & Poncelon, 2001 Clustering v v v v
Vondrick & Ramanan, 2011 Correlation v v v
Weir, Kim, Gajos, & Miller, 2015 Comparison v v v v
Wen & Rose, 2014 Clustering v v
Wieling & Hofman, 2010 Correlation, Regression v v v
Yu, Ma, Nahrstedt, & Zhang, 2003 Modelling, Clustering v v v v
Zahn, Barquero, & Schwan, 2004 Comparison v v v v v v
Zhang, Zhou, Briggs, & Nunamaker, 2006 Comparison v v v v v
Zupancic & Horz, 2002 Comparison v v v v v

NOTES: where 'o' is present, the attribution is subject to interpretation.
Overall usage refers to counts of activity; Navigation refers to browse, search and skip; In-video behaviours provides details of play, pause, back, forwards and 
speed change; Tagging/Flagging is the simple action of marking a time point which may contain a keyword (tagging) or visual indicator (flagging); Annotation re-
fers to the ability to add text or other references to the videos; Social Interaction refers to the ability to share inputs or outputs with others; Learning design refers 
to specifically designed conditions, activities, or modes of presentation; Satisfaction and Perceived effectiveness are obtained via surveys or other in-line methods 
(i.e. quizzes); User information refers to the availability of user details (i.e. demographics); Assessment implies the presence of performance tests or grades; Con-
tent-related means that the input/outputs have a relevance for the content.

Table 22.1 (cont.). Summary of Related Work using Video Analytics Techniquesmat

Giannakos et al. (2014) offered an interesting approach 
to studying in-video behaviours, testing the affordances 
of different types of implementation of videos and quiz 
combinations. The SocialSkip web application (http://
www.socialskip.org ) allows instructors to test different 
scenarios and see the results on students’ navigation 
and performance. In this sense, Kozma’s argument 
that media (and videos in this case) have defining 
characteristics interacting with the learner, the task 

characteristics are dependent on the instructional 
design that employs them and therefore shapes the 
type of engagement possible with the medium, which 
can be directly tested with analytics.

Gauging Learning from Usage and En-
gagement
There is evidence that some learners like the oppor-
tunities provided by video (Merkt, Weigand, Heier, & 
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Schwan, 2011) and, under certain conditions and with 
particular designs, videos lead to better learning (using 
achievement level and grades as proxies for learning) 
(Giannakos et al., 2014; Mirriahi & Dawson, 2013). Lab 
experiments have demonstrated that videos lead to 
better retention and recall (Mayer, Heiser, & Lonn, 
2001), but the issue of transfer is a serious weakness 
in most studies. How do we go about demonstrating 
learning? If more active engagement with content 
facilitates deep learning, can videos provide this op-
portunity and, if so, under what conditions?

The discussion about whether it is possible to deter-
mine whether learning occurs based on the level of 
engagement with videos is a tricky one. Earlier we 
considered simple time on task as an ineffective way 
to measure engagement. In fact, engagement in learn-
ing and teaching can be characterized as having six 
dimensions (Figure 22.6): intellectual, emotional, 
behavioural, physical, social, and cultural. The dimen-
sions most relevant when considering the use of 
videos are strictly intertwined with the nature of use 
and integration in the curriculum and, therefore, the 
type of data required to explore engagement for 
learning is dependent on the learning design and the 
technology available.

For example, a combination of analytics from learn-
ers’ use of videos alongside surveys can help capture 
the metrics related to the intellectual, emotional, 
and cultural dimensions of learning such as whether 
they find the videos relevant or challenging and their 
motivation towards watching them. With the addition 
of IVQs, feedback and clarity of instruction (the be-
havioural dimension) can be explored. With the use 
and sharing of video tagging and annotation, the social 
dimension can be considered; if videos are used in the 
classroom, there is opportunity to understand the ef-
fects of the physical environment on learning. One of 
the fundamental problems is the inability to extricate 
the effect of videos on learning because the proxy of 

learning is often student performance or achievement 
demonstrated through assessments external to the 
video activity (with the exception of IVQs that could 
be used as summative quizzes assessing content 
directly related to a video). This poses a challenge 
for making appropriate judgements on the extent of 
learning achieved through engagement with videos. 
Yet, we can rely on the reported levels of satisfaction 
that learners provide as feedback with the usefulness 
or effectiveness of videos for their learning, providing 
a glimpse in their learning experience. 

SUMMARY & FUTURE DIRECTIONS

The overview provided in this chapter is meant to 
introduce learning scientists, researchers, educators, 
and others interested in investigating the impact of 
videos on learning, use, and engagement to prior ap-
proaches that can be adapted to explore new questions 
and hypothesis.

The chapter has provided an overview of the types of 
potential videos used for educational purposes and the 
various ways they can be integrated into the curriculum 
(although by no means an exhaustive list). Data mining 
approaches, as one method of analyzing relevant data 
(alongside more traditional approaches) about learner 
use, engagement, and learning with videos is discussed 
with a short summary of approaches reported in recent 
studies as a starting point for interested readers to 
explore further as they wish.

This chapter has introduced video analytics and some 
applications showing how this approach can support 
the investigation and evaluation of learner engagement 
and learning with videos. Situating the concept of 
videos in the curriculum within multimedia learning 
provides a theoretical foundation for considering the 
ways in which multimedia (and videos) are included 
in learning and teaching and how they have histor-
ically been evaluated for their effectiveness. As we 
have seen, a single approach, or “big wrench,” may 
not be as appropriate as a combination of methods 
and approaches.

Despite the considerable research accrued on the 
evaluation of the effectiveness of multimedia and 
videos for learning, many questions remain. Expanding 
on the studies and strategies to date and leveraging 
the growing body of data being captured by video 
technologies provides an opportunity to investigate 
a milieu of questions not limited to the following:

1. How do learners use, engage with, and learn 
from different types of videos (e.g., reflection vs. 
lecture)? A mixed methods approach consisting of 
video analytics, learner feedback, and instructor 
reflections and in variety of curriculum or learning 

Figure 22.6. Elements of engagement in learning and 
teaching.
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Professional learning is a critical component of on-
going improvement, innovation, and adoption of new 
practices for work (Boud & Garrick, 1999; Fuller et 
al., 2003; Engeström, 2008). In an uncertain business 
environment, organizations must be able to learn con-
tinuously in order to deal with continual change (IBM, 
2008). Learning for work takes different forms, ranging 
from formal training to discussions with colleagues to 
informal learning through work activities (Eraut, 2004; 
Fuller et al., 2003). These actions can be conceived of 
as different learning contexts producing a variety of 
data that can be used to improve professional learning 
and development (Billett, 2004; Littlejohn, Milligan, 
& Margaryan, 2012). In contemporary workplaces, 
professionals tend to collaborate via networked en-
vironments, using digital resources, leaving various 
forms of digital traces and “clickstream” data. Analysis 
of these different types of data potentially provides a 
powerful means of improving operational effective-
ness by enhancing and supporting the various ways 
professionals learn and adapt.

For some years now, employers have been aware of 
the potential of learning analytics to support and 
enhance professional learning (Buckingham Shum & 
Ferguson, 2012). Learning analytics (LA) is an emerging 
methodological and multidisciplinary research area 

aimed at “the measurement, collection, analysis and 
reporting of data about learners and their contexts, 
for the purposes of understanding and optimizing 
learning and the environments in which it occurs” 
(Siemens & Long, 2011, p. 34).

The vision for LA in education was of multifaceted 
systems that could leverage data and adaptive mod-
els of pedagogy to support learning (Baker, 2016; 
Berendt, Vuorikari, Littlejohn, & Margaryan, 2014). 
These systems would mine the massive amounts of 
data generated as a by-product of digital learning 
activity to support learners in achieving their goals 
(Ferguson, 2012). However, the systems developed for 
use in university education have been much simpler, 
focusing on economic concerns associated with higher 
education cost and impact in terms of learner outcomes 
(Nistor, Derntl, & Klamma, 2015; HEC Report, 2016). 
Many LA systems are based on predictive models that 
analyze individual learner profiles to forecast whether 
a learner is “at risk of dropping out” (Siemens & Long, 
2011, p. 36; Wolff, Zdrahal, Nikolov, & Pantucek, 2013; 
Berendt et al. 2014; Nistor et al., 2015). These data are 
then presented to learners or teachers using a variety 
of dashboards. Current research is focusing on the 
actions taken to follow up on this feedback (Rienties 
et al., 2016).

Chapter 23: Learning and Work: Professional 
Learning Analytics

Allison Littlejohn

Learning for work takes various forms, from formal training to informal learning through 
work activities. In many work settings, professionals collaborate via networked environments 
leaving various forms of digital traces and “clickstream” data. These data can be exploited 
through learning analytics (LA) to make both formal and informal learning processes trace-
able and visible to support professionals with their learning. This chapter examines the 
state-of-the-art in professional learning analytics (PLA) by considering how professionals 
learn, putting forward a vision for PLA, and analyzing examples of analytics in action in 
professional settings. LA can address affective and motivational learning issues as well as 
technical and practical expertise; it can intelligently align individual learning activities with 
organizational learning goals. PLA is set to form a foundation for future learning and work. 
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In educational settings, learning is focused on course 
objectives. However, in organizational settings learning 
processes have to be aligned with organizational and 
project goals (Kimmerle, Cress, & Held, 2010). Learn-
ing tends to be planned around annual performance 
review processes, usually overseen by a Human Re-
source department. This type of system works well 
in organizations where large groups have standard 
work tasks and plan similar development activities.

In many organizations, however, job roles are becoming 
specialized, requiring unique and personalized develop-
ment planning. In these circumstances, the “top down” 
planning models, where goals and priorities are planned 
and sequenced from the outset, may not be effective. 
Some organizations are shifting from top-down and 
individualized development planning using enterprise 
systems to adaptive and collaborative activity planning 
based around grassroots use of technologies, shift-
ing towards “smart” or “agile” development planning 
where project teams have discretion to change the 
direction of the project over time (Clow, 2013). This 
means that development goals cannot be planned at 
the beginning of each development cycle; new and 
emerging priorities arise as each project unfolds. Agile 
planning systems require adaptive, just-in-time learning 
where people acquire the knowledge they need for 
new work tasks as the tasks emerge.   However, this 
means that professionals have to be able to plan and 
self-regulate their own learning and development, 
changing their learning priorities as their work tasks 
evolve (Littlejohn et al., 2012).

Learning in educational settings tends to focus around 
individual learner outcomes and explicit pedagogical 
models. Professional learning, however, is driven by the 
demands of work tasks and is interwoven with work 
processes (Eraut, 2000). By “professional learning,” I 
mean the activities professionals engage in to stim-
ulate their thinking and professional knowledge, to 
improve work performance and to ensure that practice 
is informed and up-to-date (Littlejohn & Margaryan, 
2013, p. 2).

Professionals themselves tend to think of learning in 
terms of training or formal learning (Eraut, 2000). Yet, 
there is a growing body of evidence that professional 
learning is more effective when integrated with work 
tasks (see, for example, Collin, 2008; Tynjälä, 2008; Fuller 
& Unwin, 2004; Eraut, 2004). This type of learning is 
difficult to distinguish from everyday work tasks, so 
professionals may not recognize instances of learning 
(Argyris & Schön, 1974; Engeström, 1999).

Eraut’s (2004) work in particular foregrounds the 
importance of on-the-job learning, broadly describing 

professional learning as “intentional” and planned or 
“unintentional” and opportune. According to Tynjälä 
(2008) intentional learning may be pre-planned and 
structured as formal learning, for example degree 
programmes, classroom training, practical workshops, 
coaching or mentoring; other forms are less easy to 
recognize, for example asking a colleague for help or 
watching an expert perform a task. Learning can 
result as an “unintended” consequence of work activ-
ity (Eraut, 2000). A manager in finance organization 
might improve his inter-cultural competencies over 
time as new colleagues from branches around the 
world join his team (Littlejohn & Hood, 2016). Profes-
sionals may be unaware of this sort of experiential 
learning until they reflected on how their practice has 
evolved over time. These different forms of profes-
sional learning are illustrated in the typology in Fig-
ure 23.1.

The different approaches to learning illustrated in 
Figure 23.1 facilitate development of different types 
of knowledge (Tynjälä & Gijbels, 2012; Littlejohn & 
Hood, 2016). Education and training tend to focus 
on learning theoretical and practical knowledge, 
while coaching and mentoring allow opportunities 
to learn sociocultural and self-regulative knowledge, 
for example. All these knowledge types are critical 
for the adoption of new practices for work. Change 
in practice requires the construction of conceptual 
and practical knowledge as well as the development 
of sociocultural and self-regulative knowledge (Eraut, 
2007). Construction of multiple types of knowledge is 
most readily achieved through a combination of for-
mal (structured, pre-planned) learning activities with 
informal (unstructured, on-the-job) learning (Harteis 
& Billett, 2008). As such, workplace learning operates 
as a reciprocal process (Billett, 2004) shaped by the 
affordances of a specific workplace, together with 
an individual’s ability and motivation to engage with 
what is afforded (Billett, 2004; Fuller & Unwin, 2004).

HOW PROFESSIONALS LEARN

Figure 23.1. Typology of professional learning, in-
formed by Eraut (2000, 2004).
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Learning processes for work are more dynamic than 
in educational settings; Informal learning activities 
are spontaneous and mostly invisible to others. This 
presents challenges and opportunities for the field of LA.

An underlying vision for LA in professional contexts is 
to make both formal and informal learning processes 
traceable and more explicit in order to connect each 
professional with the knowledge they need (Littlejohn 
et al., 2012; de Laat & Schreurs, 2013). This vision is 
based on a system of mutual support through which 
each professional connects with and contributes to 
the collective knowledge by connecting with people 
and networks to find relevant knowledge and experi-
ences; consuming or using this knowledge and, in the 
process, creating new knowledge that is contributed 
back to the collective (Milligan, Littlejohn, & Mar-
garyan, 2014). These actions create a common capital 
through re-usable knowledge via the selective accu-
mulation of shared by-products of individual activities 
motivated, initially, by personal utility (Convertino, 
Grasso, DiMicco, De Michelis, & Chi, 2010, p. 15). These 
actions would be supported by a set of algorithms, 
data mining mechanisms, and analytics that create 
a “common capital through re-usable knowledge via 
the selective accumulation of shared by-products of 
individual activities motivated, initially, by personal 
utility” (Convertino et al., 2010, p. 15).

Professional learning is influenced by the learner’s 
internal motivation and personal agency in connecting 
to and interacting with the collective knowledge and 
their environment (Littlejohn & Hood, 2016), therefore 
there are two critical components to this vision. First, to 
ensure personal agency it is critical that professionals 
have the ability to self-regulate their learning. Second, 
to trigger motivation, learning (and learning systems) 
should be integrated with, rather than separate from, 
work practices. In moving towards this vision, a range 
of approaches to Professional LA have been developed 
over the past few years.

Analytics in Action
LA is a multidisciplinary area using ideas from learn-
ing science, computer science, information science, 
educational data mining, knowledge management 
highlighting, and, more recently, artificial intelligence 
(Gillani & Enyon, 2014). Emerging areas of analytics 
make use of complex datasets containing multiple data 
types such as discourse data, learner disposition data, 
and biometrics (Siemens & Long, 2011). Techniques 
used in LA include discourse analysis, where learn-
ers discussions and actions provide opportunity for 

helpful interventions (Gillani & Enyon, 2014); semantic 
analysis, tracing the relationship between learners and 
learning (Wen, Yang, & Rosé, 2014), learner disposition 
analytics, identifying affective characteristics associ-
ated with learning (Buckingham Shum & Deakin Crick, 
2012) and content analytics, including recommender 
systems that filter and deliver content based on tags 
and ratings supplied by learners. These techniques 
are useful for encapsulating the complex factors that 
influence how professionals learn.

Diverse approaches to LA have been field-tested in 
various professional settings. Some methods capital-
ize on the data generated as a by-product of learning 
in digital systems. Others use new approaches, for 
example social learning analytics (SLA) that examine 
how individuals and groups learn and develop new 
knowledge. These methods and systems capitalize on 
new forms of organization, different feedback formats, 
and the numerous ways people and the resources they 
require for their learning and work can be brought 
together. Many are in the early stages of development 
and this section examines different approaches and 
their impact on learning and performance.

Accelerating Just-in-Time Learning
Some approaches to PLA are aimed towards embed-
ding agile approaches to professional learning in work 
settings. Many organizations recognize that training 
is not effective if professionals learn a new process 
then do not use their new knowledge and embed it 
within their practice. Recognizing the importance of 
enabling people to learn new expertise at the point of 
need, organizations have been seeking ways to capture 
and disseminate expertise.

Wearable Experience for Knowledge Intensive Training 
(WEKIT)1 is exploring if and how data generated through 
smart Wearable Technology can capture expertise 
and disseminate the know-how to inexperienced 
professionals at the point of need. WEKIT is based on a 
three-stage process: mapping skill development path-
ways, capturing and codifying expertise, and making 
the expertise available to novices at the point of need. 
In the first stage, a community of professionals and 
stakeholders2 map out a recognized skill development 
pathways for industry. In the second stage, a group 
of software developers use the pathway templates 
to develop technology tools to support novices in 
learning new procedural knowledge — for example 
how to turn on (or off) a specialist valve. Finally, the 
expertise is transmitted to the novice via an augmented 
visual interface. Tools such as head-mounted digital 
displays allow the novice to see the valve overlaid with 
instructions on how to switch it on safely. Through 

1 https://wekit-community.org/ 
2 the WEKIT.club 

A VISION FOR PROFESSIONAL 
LEARNING ANALYTICS
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wearable and visual devices, the system directs each 
professional’s attention to where it is most needed, 
based on an analysis of user needs. The system aims 
to make informal learning processes traceable and 
recognizable so that novices can rapidly develop 
expertise. In this way, learning can be agile, as the 
need arises.

The WEKIT project commenced in December 2015 and 
evaluations of the effectiveness of the approach have 
yet to be published. However, the three key steps in 
the transfer of expertise in the WEKIT methodology 
all have risks associated with them. First, expertise 
development pathways are difficult to model. Experts 
are involved in building the pathways and algorithms 
to support expertise development in an attempt to 
capture and codify the expertise accurately. However, 
it is difficult for an expert to understand the optimal 
learning pathway that will enable each novice’s expertise 
development, since this depends on the novice’s prior 
experience. Second, not all expertise can be codified. 
Augmented visual interfaces and collaborative digital 
interfaces can help with expertise development, but 
tacit expertise, such as the “gut feeling” that a piece 
of equipment is operating optimally, takes time to 
be developed. Thirdly, the novice has to be actively 
involved in learning new expertise, rather than simply 
following instructions. This is particularly relevant 
in work settings where task outcomes are difficult to 
predict, such as knowledge work. Learning in these 
situations is most effective when integrated with 
work tasks. Therefore, an emerging trend is to embed 
PLA within work-integrated systems: platforms that 
support experts and novices in co-working, smart 
systems or augmented reality environments, such as 
those described earlier.

Exploiting Organizational Networks
By tapping into informal professional networks, people 
can achieve the kind of agile learning described by 
Clow (2013). This type of self-governing, bottom-up 
approach to professional development requires a deep 
understanding of how and where professionals interact 
and exchange ideas about their work. Making informal 
learning practices and networks visible is a key aim 
for PLA. de Laat & Schreurs (2013) demonstrated that 
LA techniques can visualize informal professional net-
works. Using a tool based on social network analysis 
— the network awareness tool (NAT) — they detected 
multiple isolated networks of teachers within a single 
organization. More recent work uses wearable devices 
to track professional networks in health care settings 
(Endedijk, 2016). By exploiting these informal profes-
sional networks, organizations have a mechanism to 
improve human social capital and learning. However, 
the study illustrates the limited extent of connections 
across professional networks, so multiple methods of 

exploiting networks are needed.

Learning Layers3 exploits networks and relationships 
at the individual, organizational, and inter-organiza-
tional levels to improve performance. Professionals 
working within and across regional small to medium 
enterprises (SMEs) in different European countries 
work together in web-based, networked environments 
to build ideas and knowledge. The system exploits 
semantic technologies to analyze and support the 
co-production of knowledge by connecting people 
and making recommendations (Ley et al., 2014).

Technology environments tested in the health and 
construction sectors illustrate ways professionals 
work and learn together at three levels. As people work 
together, they learn how to develop different types 
of knowledge including technical knowledge (know-
what), procedural or practical knowledge (know-how), 
and scientific or theoretical knowledge (know-why) 
to help them make informed choices as to how they 
will carry out new work tasks (Attwell et al., 2013). At 
the organizational level, as people collaborate across 
different SMEs, the individual organizations share 
knowledge and learn. Thirdly, the companies are 
grouped in national clusters, so learning occurs across 
organizations (Dennerlein et al., 2015). LA tools are 
being co-developed with the professionals themselves 
and with key stakeholders. An open design library4 is 
used to store and disseminate ideas for professional 
learning while an open developer library5 hosts pro-
totype tools and codes for developers to work on. The 
principle that professionals themselves have the best 
knowledge about learning for highly specialized roles 
is central to several LA systems and tools.

Making use of Specialist Expertise
Responsive Open Learning Environments (ROLE)6 are 
being developed to enable professionals to adapt to 
and deal with change and uncertainty in their work 
and learning (Kirschenmann, Scheffel, Friedrich, 
Niemann, & Wolpers, 2010). Rather than using an 
all-encompassing, enterprise system, the learning 
environment can be personalized by each individual 
learner. Each professional can browse and select a set 
of web-based software tools with specific functions 
that support learning for a specific role. The tools can 
be combined to form new components and function-
alities. By establishing a unique combination of tools 
and resources, the professional embeds her own ex-
pertise within the environment. This combination of 
tools and resources can be reproduced and adapted 
to support other professionals with similar work and 
learning needs.

3 learning-layers.eu 
4 odl.learning-layers.eu 
5 developer.learning-layers.eu 
6 role-project.eu 
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The basic principle that underpins ROLE is well defined; 
in highly specialized roles, professionals themselves 
are best placed to decide on their learning needs 
(Kroop, Mikroyannidis, & Wolpers, 2015). However, 
from a professional learning perspective, there are 
two main overarching difficulties. First, professionals 
may not have the skills to implement their decisions. 
ROLE is based on an open framework that allows the 
development of technology tools or widgets that sup-
port specific aspects of professional learning. These 
widgets are developed through open competitions, 
where developers are encouraged to create new tools 
and functionalities. Ideally, developers who have a 
deep understanding of the job role would create the 
widgets: if the professionals themselves can write 
the algorithms for the widgets, then their expertise 
is embedded within the code. However, not all pro-
fessionals can write code, so, for many professions 
the widgets tend to be developed by people who 
don’t have a deep understanding of the job role. The 
second difficulty is that professionals have to be able 
to identify and act upon their learning needs. The 
ROLE environment includes a course on becoming a 
self-regulated learner.7 However, a problem is that while 
some aspects of self-regulation can be learned, such 
as developing strategies to set learning goals, other 
facets of self-regulation, such as self-confidence, are 
developed through lifelong experiences.

Encouraging Active Learning
Two other examples of LA systems based on self-reg-
ulated learning theory are LearnB and Mirror. LearnB 
has been piloted in the automotive industry (Siadaty, 
Gašević & Hatala, 2016). What this tool has in common 
with the previous systems is that it encourages pro-
fessionals to self-regulate their learning. The tool is 
designed around a self-regulated learning framework, 
SRL@Work, which is used to gather data on factors 
that influence self-regulation. These factors include 
how learning goals are planned and the specific range 
of activities that people engage in as they share and 
build knowledge for work. Learn B uses Social Semantic 
Web technologies to gather and analyze these data 
in order to identify and connect people with similar 
learning and development goals (Siadaty et al., 2012). 
Common goals are identified and analyzed using the 
semantic capabilities of the system. Then the system 
uses social technologies to recommend topics people 
might benefit from learning, based on the learning 
patterns of others.

The LearnB system serves as a “developmental radar” 
allowing professionals to source and assess potentially 
useful connections with other people and with rele-

7  ROLE Course in Becoming a Self-regulated Learner (http://www.
open.edu/openlearnworks/course/view.php?id=1490 

vant knowledge (Siadaty, Jovanović, Gašević, Jeremić, 
& Holocher-Ertl, 2010; Holocher-Ertl et al., 2012). It 
can be used to advise professionals on their learning 
strategies while monitoring their learning progress. 
The idea here is that people might learn effectively 
by using strategies that have been effective for other 
people with analogous experience. The system supports 
professionals not only in documenting their learning 
experiences, but also in making these experiences 
available for others who might benefit from learning 
in a similar way in the future. By documenting learning 
experiences, it is possible to share and compare with 
the performance of others or against organizational 
benchmarks. It might be useful, for example, to know 
that it takes an average of six months’ experience to 
become competent in a new procedure. On the other 
hand, it may be reassuring to know that a new skill 
can be learned in a few hours (Siadaty et al., 2012).

The Learn B trial demonstrated the importance of 
integrating the system with active development of 
professionals’ self-regulated learning skills. Profes-
sionals who used Learn B benefitted from having 
their attention directed towards useful knowledge, 
sometimes sourced from contexts or departments 
different from those in which they worked. They also 
perceived the usefulness of having access to data on 
other peoples’ informal work and learning practic-
es that helped them to understand the ways other 
people learned. They perceived that they benefitted 
from updates about their social context — knowing, 
for example, the actions other people were taking to 
learn — and by being informed about how the avail-
able learning resources were used by their colleagues 
(Siadaty, 2013). However, a critical point is that these 
professionals were operating within a traditional 
organizational culture with the sort of “top down” 
competence systems discussed by Clow (2013) where 
the organization predetermines the competencies 
needed for each job role and recommends the ways 
people demonstrate how they learn these capabilities.

Mirror8 is an analytics-based system that supports 
professionals in learning from their own and others 
experiences. Reflection is a significant component 
of self-regulated learning that may improve learning 
and performance through motivational and affective 
factors (Littlejohn & Hood, 2016). The Mirror system is 
based on a set of applications (“Mirror” apps) designed 
to facilitate informal learning during work (Kump, 
Knipfer, Pammer, Schmidt, & Maier, 2011). These apps 
were used in case worker settings to support analysis of 
individual and team actions. These reflections allowed 
both individuals and teams to learn which practices 
had the most impact within their organization. Eval-

8 www.mirror-project.eu



HANDBOOK OF LEARNING ANALYTICSPG 274 CHAPTER 23 LEARNING AND WORK: PROFESSIONAL LEARNING ANALYTICS PG 275

uation studies found a clear link between individual 
and team learning and organizational learning (linked 
to Human Resource procedures, rewards, and promo-
tions) (Knipfer, Kump, Wessel, & Cress, 2013). Without a 
parallel shift in the culture and the mindsets of people 
within the organization, new analytics systems will 
have limited impact.

Novel approaches to LA are already supporting pro-
fessionals in improving their performance. Analysis 
of these approaches point to emerging themes that 
can inform future work.

Several approaches to analytics use machine-based 
analytics to augment human intelligence. However, 
the connection between the system and the human 
is a point of risk for a number of reasons. First, pro-
fessionals must be able to identify and act upon their 
learning needs, so the ability to self-regulate learning 
is critical to the success of many analytics techniques. 
Second, without a parallel shift in the culture and the 
mindsets of people within the organization, learning 
systems based on analytics will have limited impact. 
Implementation of approaches to LA should consider 
these human elements.

Some LA techniques use network analysis to gather 
data. Workplace learning is most effective when 
learning processes are aligned with organizational 

and project goals (Kimmerle, Cress & Held, 2010; Ko-
zlowski & Klein, 2000). Network analysis should aim 
to align individual learning activities intelligently with 
organizational learning goals.

Other promising approaches to PLA are based on 
the development of software applications (or apps). 
Ideally, professionals who have the specific expertise 
would write the code. However, not all professionals 
have the ability write code, so, for many professions 
apps tend to be developed by people who do not have 
a deep understanding of the job role. This problem is 
likely to be more significant in non-technical sectors.

Many PLA methods aim to embed agile approaches 
to learning through capturing and disseminating 
expertise. There are a number of problems associated 
with this approach; for example, not all expertise can 
be codified — expertise development pathways are 
difficult to model since each individual has a unique 
baseline of prior knowledge and professionals to be 
actively involved in learning new expertise. These 
difficulties illustrate that the analytics solutions have 
to not only address the technical and practical aspects 
of expertise development, but deal with affective and 
motivational issues as well.

Although in its infancy, professional learning analytics 
is set to form a foundation for future learning and 
work. However, careful attention has to be paid to 
the alignment of the knowledge on how professionals 
learn with analytics applications.

CONCLUSION: FUTURE PROFESSION-
AL LEARNING ANALYTICS
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The importance of data and analytics for learning and 
teaching practice is strongly argued in the education 
policy and research literature (Daniel, 2015; Siemens, 
Dawson, & Lynch, 2013). The insights into teaching, 
learning, student-experience, and management activities 
that learning analytics afford are touted to be unprec-
edented in scale, sophistication, and impact (Baker & 
Inventado, 2014). Not only do learning analytics have 
the capacity to provide rich understanding of prac-
tices and activities occurring within institutions, they 
also have the potential to mediate and shape future 
activity through, for example, predictive modelling, 
personalization of learning, and recommendation 
systems (Conde & Hernández-García, 2015).

Despite increased funding opportunities, research, 
and institutional investment, there remains a paucity 
of realized large-scale implementations of learning 
analytics strategies and activities in higher education 
(Ferguson et al., 2015), thus denying the sector broad 
and nuanced understanding of the affordances and 
constraints of learning analytics implementations over 
time. Part of the explanation for the lack of enterprise 
exemplars may lie in the relative nascency of learning 
analytics as a discipline and a perceived lack of time 
for learning analytics programs and implementations 
to fully develop and mature. However, this explanation 

does not adequately capture the complexity of issues 
mediating systemic uptake of learning analytics (Arnold, 
Lynch, et al., 2014; Ferguson et al., 2015; Macfadyen, 
Dawson, Pardo, & Gašević, 2014). Although learning 
analytics is relatively new to higher education, we 
suggest there have been sufficient investments made 
in time and resources to realize the affordances such 
activities can bring to education at a whole-of-insti-
tution scale. Indeed, a small number of institutions 
have been able to implement large-scale learning 
analytics programs with demonstrable impact on 
their teaching and learning outcomes (Ferguson et al., 
2015). However, these examples remain the exception 
in a sector where, for a large number of institutions, 
organizational adoption of learning analytics either 
remains a conceptual, unrealized aspiration or, where 
operationalized, is often narrow and limited in scope 
and impact (Ferguson et al., 2015).

A burgeoning body of conceptual literature has recently 
begun to explore this vexing issue (Arnold, Lonn, & 
Pistilli, 2014; Arnold, Lynch, et al., 2014; Ferguson et 
al., 2015; Macfadyen et al., 2014; Norris, Baer, Leonard, 
Pugliese, & Lefrere, 2008). This literature proffers mul-
tiple frameworks intended to capture, and elicit insight 
into, dimensions and processes mediating learning 
analytics adoption. In addition to aiding conceptual 
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understanding, this literature also has a heuristic value, 
guiding institutions through implementation stages and 
considerations. Given the limited empirical research 
exploring learning analytics deployment (Ferguson et 
al., 2015), it is probable that many managers turn to 
this small body of conceptual literature for inspiration 
and insight when planning and administering learning 
analytics initiatives. The present chapter reviews this 
body of literature to glean from it not only insight 
into what it identifies as dimensions and processes 
important for effective institutional implementations 
of learning analytics, but also to gauge the merit of 
the models as guides for institutional managers. We 
then compare and contrast the findings of this review 
of the literature with those from a recent study that 
examined actual learning analytics implementations 
across a large cohort of Australian universities to 
proffer empirical understanding into the processes 
and factors affording them (Colvin et al., 2015).

Review of extant learning analytics implementation 
models and frameworks revealed three primary groups 
of literature: 1) those focused on the antecedents 
to learning analytics outcomes (learning analytics 
inputs models); 2) those focused on the outcomes of 
learning analytics (learning analytics outputs mod-
els); and 3) process models that sequentially map and 
operationalize tasks underpinning learning analytics 
implementations. An overview of these different models, 
and their conceptual and empirical contribution to 
understanding factors shaping institutional learning 
analytics implementations, follows.

Learning Analytics Inputs Models
Frameworks in this body of literature tend to present 
learning analytics implementations as a consequence 
of antecedent affordances incorporating dimensions 
such as leadership, governance, technology, capacity, 
and culture. Notable in this literature is the US-based 
EDUCAUSE Centre for Analysis and Research (ECAR; 
see ECAR, 2015) Analytics Maturity Index for Higher 
Education (Bichsel, 2012). Their model, informed by data 
elicited through surveys and focus group interviews 
with industry professionals, operationalizes learning 
analytics implementations across six dimensions of 
activity including culture, process, data/reporting/
tools, investment, expertise, and governance/infra-
structure. Each input dimension is scaffolded across 
a continuum of five maturity levels designed to assist 
institutions in determining their level of progress with-
in each level. The criticality of each input dimension 
for a successful learning analytics implementation 
is assumed.

Similar to the ECAR model is the Learning Analytics 
Readiness Instrument (LARI) (Arnold, Lonn, & Pistilli, 
2014; Oster, Lonn, Pistilli, & Brown, 2016), a tool de-
signed to assist institutions in assessing their level of 
“readiness” for analytics implementations. The original 
version of the instrument (Arnold, Lonn, & Pistilli, 
2014) identified five dimensions — 1) ability, 2) data, 3) 
culture and process, 4) governance and infrastructure, 
and overall 5) readiness perceptions — as essential 
for achieving “the optimal environment for learning 
analytics success” (p. 2), although it is unclear how the 
five elements were initially determined. A more recent 
factor analysis of survey data from 560 participants 
across 24 institutions was used to refine the LARI. 
The five dimensions were slightly altered, and their 
relative salience was revealed. However, salience was 
measured according to participant perception, and not 
against learning analytics implementations outcomes.

The Organizational Capacity Analytics Framework 
(Norris & Baer, 2013) is also founded on insight gleaned 
from learning analytics specialists as to dimensions 
they consider important in shaping analytics adoption. 
The authors interviewed managers from 40 institutions 
in the United States, and data collected through these 
interviews led to the generation of five dimensions 
deemed to be critical organizational capacity factors. 
These dimensions were 1) technology infrastructure, 
2) processes and practice, 3) culture and behaviours, 
4) skills and values, and 5) leadership. Notable in their 
Organizational Capacity for Analytics Framework is 
the presentation of the dimensions as interconnected 
and overlapping, thereby highlighting their interde-
pendent nature (Norris & Baer, 2013, p. 31). While the 
framework operationalizes three maturity levels for 
each of the dimensions, it does not examine their 
relative salience.

Finally, Drachsler and Greller’s model (referred to 
by the authors as an ontology; Drachsler & Greller, 
2012; Greller & Drachsler, 2012) also captures the 
interdependent and recursive nature of dimensions 
mediating learning analytics implementations. General 
morphological analysis (cf. Ritchey, 2011, in Greller & 
Drachsler, 2012) was applied to data solicited from 
media scanning, interviews with senior experts, and 
a cognitive mapping exercise. This model identifies six 
core activity areas as “critical” to “ensure an appro-
priate exploitation of learning analytics” (Drachsler 
& Greller, 2012, p. 120): 1) competences, 2) constraints 
(privacy/ethics), 3) technologies, 4) education data, 5) 
objectives, and 6) stakeholders. While Drachsler and 
Greller (2012) deem each of these six dimensions to 
be “critical,” they observe that their salience is not 
uniform, noting “some dimensions are vaguer than 
others” (p. 44).

REVIEW OF CURRENT MODELS OF 
LEARNING ANALYTICS DEPLOYMENT
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Common to many input models is the conceptualization 
of learning analytics implementations as non-linear, 
emergent from, and afforded by, the interplay of mul-
tiple, interconnected input dimensions. While often 
informed by opinion solicited through focus group and 
survey methods (Drachsler & Greller, 2012; Greller & 
Drachsler, 2012; Norris & Baer, 2013; Oster et al., 2016), 
these models are essentially conceptual. They identify 
dimensions that institutional representatives perceive 
must be considered to mount an effective learning 
analytics implementation, yet they do not empirically 
interrogate the dimensions against actual learning 
analytics implementations. Similarly, while the input 
models suggest interrelationships between antecedent 
dimensions, the nature of these interrelationships, and 
their impacts on learning analytic implementation 
outputs, are also not empirically explored. Therefore, 
while the models offer leaders charged with the task 
of implementing learning analytics programs in their 
institutions insight into the antecedent dimensions 
necessary to effect an implementation, they present 
little guidance on how such implementations could 
look in action. Further, the relative salience of each 
dimension within the models is underexplored, limit-
ing insight into how institutions might best prioritize 
actions and resources (although a limited number of 
models do accommodate gradations of maturity within 
each dimension; Arnold, Lonn, & Pistilli, 2014; Bichsel, 
2012; Norris & Baer, 2013).

Learning Analytics Outputs Models
This second body of learning analytics models and 
frameworks defines and represents learning analytics 
implementations as a linear process, unfolding over 
time, and involving different levels of readiness and 
maturity. An early model in this literature that still 
appears to have resonance in the sector is Daven-
port and Harris’s (2007) Analytics Framework, which 
conceptualizes analytics as a maturing process from 
query and reporting applications through to formal 
analytics functions such as forecasting and predic-
tive modelling. Siemens, Dawson, and Lynch’s (2013) 
Learning Analytics Sophistication Model integrates 
analytic capability and systems deployment along a 
continuum of increasing maturity. Five key stages of 
maturity are identified, each of these further oper-
ationalized into sample exemplars. For instance, an 
early stage deployment would feature basic reports 
and log data whereas a mature deployment would 
feature predictive models and personalized learning.

A primary benefit of outputs models is that they provide a 
means for institutions to objectively assess the maturity 
(or capacity) of their activities and processes against a 
matrix of desired outcomes. However, many outputs 
models are limited in scope and typically predicated 
on a uni- or bi-dimensional conceptual lens (such as 

the sophistication of analytic techniques employed). 
While outputs models advocate a vision of learning 
analytics implementations outcomes, they often fail to 
identify or critically examine all of the dimensions or 
mechanisms needed to generate the LA implementation 
outcomes they in fact advocate. Finally, a risk of many 
outputs models is that they conceptualize progression 
as a linear and hierarchical process, culminating in 
an “essentialized,” perhaps even “utopian” vision of 
learning analytics, one that is typically conceptual, 
removed from context, possibly predicated on an 
assumed universality, and not necessarily capturing 
what might be possible or desirable within the scope 
of a particular institution’s operating context.

Process Models
This third body of literature (Foreman, 2013a, 2013b; 
Norris & Baer, 2013) sequentially maps key processes 
or “steps” underpinning learning analytics imple-
mentations. It focuses on the how of implementing 
a learning analytics program, rather than what the 
outcomes should look like (outputs model) or involve 
(inputs model). Process models are both linear (Foreman, 
2013a, 2013b) or circuitous (Norris and Baer’s Action 
Plan for Analytics, 2013) and are typically focused on 
specific elements within a broader learning analytics 
implementation (for instance, the implementation of a 
learning management system (LMS; Foreman, 2013a, 
2013b), or strategy development (cf. Norris and Baer’s 
Action Plan for Analytics, 2013). However, emerging 
literature (Ferguson et al., 2015) presents processual 
models that better reflect the breadth and complexity 
of learning analytics implementations, arguing that 
the insight this conceptualization affords is critical 
for institutions wishing to apply learning analytics 
“at scale.” Most notable is Ferguson and colleagues’ 
(2015) advocacy for adopting the RAPID Outcomes 
Mapping Approach (ROMA) for a learning analytics 
implementation. This model presents inputs dimen-
sions in an operational sequence involving seven key 
steps from formulation of initial objectives through 
to final evaluation. However, Ferguson’s model, in es-
sence, is conceptually generated. While there is little 
evidence of the model’s empirical validation, it has 
been applied as a lens to describe learning analytics 
implementations at universities in Australia and the 
UK, argued by the authors to demonstrate the model’s 
potential guide and give “confidence” to institutions 
(Ferguson et al., 2015).

While reviewing these models affords insight into di-
mensions and processes that mediate learning analytics 
deployments, it also reveals the models’ conceptual 
and operational limitations. These include their adop-

WHAT DO THE MODELS TELL US? 
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tion of a limited, or unidimensional lens to scrutinize 
complex, multidimensional phenomena; their inability 
to integrate antecedent dimensions and outcomes 
in the one model; and their limited insight into the 
relative salience or criticality of each of the identified 
mediating dimensions. Simply put, while the models 
afford insight, they do not fully capture the breadth of 
factors that shape LA implementations, thus curtailing 
their ability to present managers with the nuanced, 
situated, fine-grained insight they require to guide 
them through learning analytics implementations.

Notwithstanding, a number of mediating dimensions, 
or elements, were found to be common to most 
models, suggesting them to be particularly salient. 
These included technological readiness, leadership, 
organizational culture, staff and institutional capac-
ity, and strategy. Discussion surrounding how these 
dimensions are operationalized in the models follows.

Technological Readiness
As learning analytics is essentially grounded in the 
affordance of technology to offer access and insight 
into electronic data, it is not surprising that tech-
nology features in LA implementation literature as a 
“foundational element” (Arnold, Lynch, et al., 2014, p. 
258; refer also to Greller & Drachsler, 2012; Siemens & 
Long, 2011). However, operationalizations of dimensions 
described as technological readiness vary across the 
models. For instance, some models emphasize the 
need for a robust technology infrastructure that can 
collect, store, and transform data (Arnold, Lynch, et 
al., 2014, p. 258), while others reinforce the need for 
integrated systems (Dawson, Heathcote, & Poole, 
2010; Siemens & Long, 2011), appropriate analytics 
tools (Norris & Baer, 2013), and security and privacy 
controls and processes (for instance, the ECAR Ana-
lytics Maturity Index for Higher Education Model in 
Bichsel, 2012). Empirically, the potentially militating 
role of technology as a constraining element in learn-
ing analytics implementations was noted in studies 
undertaken by Dawson and colleagues (Dawson et 
al., 2010; Macfadyen & Dawson, 2012).

Leadership
The criticality of leadership for sustainable implemen-
tations of learning analytics at scale is well recognized 
conceptually (Arnold, Lonn, & Pistilli, 2014; Arnold, 
Lynch, et al., 2014; Laferrière, Hamel, & Searson, 2013; 
Norris & Baer, 2013; Siemens et al., 2013) and empiri-
cally (Graham, Woodfield, & Harrison, 2013; Norris & 
Baer, 2013). This literature advocates the importance 
of “committed”  and “informed” leadership ground 
in a “deep scholarly understanding” of learning an-
alytics to facilitate uptake and integration (Arnold, 
Lynch, et al., 2014, p. 260). While there is an obvious 
need for committed senior leadership, particularly 

in projects of scale and complexity (Norris & Baer, 
2013), there is a lack of consensus and commentary 
regarding how such leadership is conceptualized. 
For example, Laferrière et al. (2013) operationalized 
leadership through a uni- or limited dimensionality 
lens. In contrast, Arnold, Lynch et al. (2014) recognize 
leadership as a multilayered, multidimensional phe-
nomenon. Leadership is also operationalized in the 
literature as leadership style (Owston, 2013), or lead-
ership behaviour and influence (Laferrière et al., 2013), 
while other literature refers to leadership’s structure 
(Accard, 2015; Carbonell, Dailey-Hebert, & Gijselaers, 
2013) and strength (cf. Kotter & Schlesinger, 2008, in 
Arnold, Lynch, et al., 2014). Gaining particular traction 
is research advocating complexity (Hazy & Uhl-Bien, 
2014) or distributed leadership models (Bolden, 2011) 
to aid analytics implementation and uptake.

Organizational Culture
Organizational culture, defined as an institution’s 
“norms, beliefs and values” (Carbonell et al., 2013, 
p. 30), has also been identified as a key mediator of 
learning analytics implementations (Arnold, Lonn, & 
Pistilli, 2014; Carbonell et al., 2013; Greller & Drachsler, 
2012; Macfadyen & Dawson, 2012). Prominent in this 
literature is an emphasis on staff “awareness and ac-
ceptance of data” (Arnold, Lonn, & Pistilli, 2014, p. 164), a 
recognition of the potentially militating influence of an 
institution’s “historical pedagogical [and] socio-cultural 
assumptions” vis-à-vis educational practice (Arnold, 
Lynch, et al., 2014, p. 259), organizational “routines” 
(Carbonell et al., 2013, p. 29), and even staff anxiety 
regarding organizational, pedagogical, and IT edu-
cation change (Houchin & MacLean, 2005). Empirical 
insight into the impact of an insufficiently prepared 
and receptive organizational culture has been offered 
in Macfadyen and Dawson’s (2012) research into a failed 
implementation at a large Canadian university. The 
researchers observed that the institution’s failure to 
generate a shared, willing, and receptive appreciation 
of learning analytics potential was a key reason for 
the organization’s failure to roll out a coherent and 
successful learning analytics strategy.

Staff and Institutional Capacity
“Optimal” (Greller & Drachsler, 2012, p. 51) learning 
analytics outcomes are contingent on the ability of 
staff to effectively analyse, interpret, and meaning-
fully respond to analytics intelligence (Bichsel, 2012; 
Norris & Baer, 2013). However, it cannot be assumed 
that stakeholders possess the necessary analytical or 
interpretive data skills demanded of learning analytics. 
Norris and Baer (2013) observe that “many institutional 
leaders overestimate their enterprise’s capacity in 
data, information, and analytics” (p. 40). Drachsler and 
Greller’s (2012) research into the dimensions required 
in learning analytics implementations distinguishes 
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between hard and soft dimensions: soft dimensions 
refer to the “human factors” that shape learning ana-
lytics effectiveness, notably “competences and accep-
tance” (p. 43); “hard” dimensions refer to nonhuman, 
less subjective elements, including technology, data, 
and algorithms. Distinguishing between hard and 
soft dimensions highlights the need for institutions 
to consider learning analytics implementations as 
extending beyond technical, infrastructure issues, to 
include sociocultural concerns. The successful adop-
tion of learning analytics requires capacity building 
across these two domains.

The Learning Analytics Readiness Instrument (LARI; 
Arnold, Lonn, & Pistilli, 2014) introduces a different 
conceptualization of capacity: institutional readiness 
— that is, a measure of how “ready” an institution is to 
implement a learning analytics initiative. They oper-
ationalize readiness across five dimensions: 1) ability, 
2) data, 3) culture and process, 4) governance and 
infrastructure, and 5) overall readiness perception. 
Their conceptualization highlights the multilayered 
nature of capacity, noting that it presents at macro 
(i.e., broad, whole of institution) and micro (the level of 
the individual stakeholder) levels. Finally, in contrast 
with the focus on technical, critical, and interpretative 
capacity, Siemens, Dawson, and Lynch (2013) remind 
us of the relationship between learning analytics 
and teaching and learning practice, suggesting that 
capacity should also encompass the ability of staff to 
effectively “link” pedagogy and analytics.

Strategy
Conceptual literature advocates the development of a 
clear vision and purpose of learning analytics through 
the development of policy and procedures. For example, 
Arnold, Lonn, and Pistilli’s (2014) conceptually devel-
oped Learning Analytics Readiness Instrument (LARI) 
subsumes policy into a broader category of mediating 
dimensions labelled governance and infrastructure. 
Further, Norris and Baer’s Organizational Capacity 
for Analytics model (2013) identifies “Processes and 
Practices” as one of five key mediating dimensions of 
organizational capacity for LA, operationalizing this 
as “routinized processes and workflows to leverage […] 
analytics, actions, and interventions” (p. 31). However, 
and by contrast, empirical studies stress the impor-
tance of strategy setting, and emphasize the need for 
aligned policies and objectives (Macfadyen & Dawson, 
2012; Owston, 2013), Macfadyen and Dawson (2012) 
declaring, in their analysis of a failed learning analytics 
program, that the establishment of an organizational 
strategy and vision was “critical” (p. 150) for learning 
analytics implementations.

In Sum
This brief literature review found that learning analytics 

models can provide managers with valuable insight into 
processes and dimensions shaping learning analytics 
implementations. Specifically, five dimensions were 
frequently highlighted across multiple frameworks as 
having impact on learning analytics implementation 
outcomes: technological readiness, leadership, orga-
nizational culture, staff and institutional capacity for 
learning analytics, and learning analytics strategy. 
However, as we have noted, operationalizations of 
these dimensions varied across the literature. Fur-
thermore, the models afforded little insight into the 
relative salience, or criticality, of the dimensions. We 
suggest that the differing conceptualizations and 
operationalizations of the dimensions referred to in 
the literature have the potential to mediate how insti-
tutions engage with and interpret the many learning 
analytics frameworks available to them.

Further, and significantly, the literature introduced in 
this review is predominantly conceptual. We argue that 
the lack of empirical research into learning analytics 
implementations has hindered our understanding of 
the processes and dimensions that mediate them. 
While conceptual literature affords insight, it risks 
presenting an idealized model of learning analytics 
that might not adequately capture its full complexity 
and nuance. Where empirical techniques have been 
employed (such as soliciting data through surveys 
and focus groups), there is little detail surrounding 
construct validity. Accordingly, relationships between 
the different dimensions in the models appear to be 
largely untested. As observed earlier in this chapter, 
the relative immaturity of learning analytics programs 
in higher education institutions contributes in part to 
this empirical paucity surrounding learning analytics. 
However, we argue that the burgeoning, albeit nascent 
implementations found across higher education institu-
tions provide an opportunity to empirically scrutinize 
how learning analytics implementations are currently 
being performed and mediated in context.

Recent research based in Australia has sought to ad-
dress this research gap. Colvin et al. (2015) undertook 
a large national study investigating learning analytics 
implementations across the Australian higher education 
sector. Data were solicited through qualitative inter-
views with senior leaders charged with responsibility 
for implementing learning analytics at 32 universities. 
Utilizing a mixed-method methodology, the study iden-
tified six dimensions (inductively generated) that had 
a statistically significant impact on learning analytics 
implementations (out of the 27 dimensions identified in 
the data). Largely reflective of prior literature, four of 
the dimensions found to have impact included effective 

BRINGING IN THE EMPIRICAL 
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and distributed stakeholder engagement, technological 
capacity, clear vision and strategy, and influential lead-
ership. Two other dimensions were revealed, namely 
institutional context (including an institution’s student 
and institutional profile) and conceptualization (how 
an institution constructed and understood learning 
analytics). The former of these dimensions, institutional 
context, reminds us that learning analytics is situated 
in practice, shaped by an array of social and institu-
tional structural elements unique to each institution’s 
context. By contrast, the “conceptualization” dimension 
related to an institution’s underlying epistemological 
and ontological position vis-à-vis learning analytics 
implementations. While institutions were found to have 
diverging understandings, aspirations, and visions of 
learning analytics, relationships were found between 
how learning analytics was conceptualized by an in-
stitution and how it was actually implemented. Simply, 
the findings of this study suggest that how learning 
analytics is understood, and the meaning assigned to 
it, appears to shape how it is implemented. Further, 
and significantly, cluster analysis performed in the 
research suggested the emergence of two trajectories 
of learning analytics implementation in the Australian 
higher education context. Within each of the clusters, 
there was congruence in how the conceptualization, 
readiness (antecedent), and implementation dimensions 
were performed and experienced across institutions. 
One cluster appeared to privilege a more instrumental 
conceptualization and a retention, student at-risk 
operationalization of learning analytics. By contrast, 
institutions in the second cluster were also invested 
in retention-focused learning analytics activity, but 
supplemented this with activity aimed to elicit insight 
into, and inform teaching and learning. Colvin at al.’s 
(2015) finding that there appear to be two diverging 
patterns of learning analytics implementations emerging 
in the Australian higher education context challenges 
the largely essentialist and positivist ontological and 
epistemological assumptions that underpin many 
extant learning analytics implementation frameworks 
(cf. Davenport & Harris, 2007).

Learning Analytics Implementations as 
Iterative, Dynamic, and Sustainable
Based on these findings, Colvin et al. (2015) generated 
a model of strategic capability that presents learning 
analytics as a situated, multidimensional, dynamic, 
and emergent response to inter-relationships between 
six mediating dimensions; these not only afford and 
enable learning analytics implementations, but also 
recursively shape each other over time (Figure 24.1).

Figure 24.1 presents Colvin et al.’s Model of Strategic 
Capability learning analytics implementations that 
represents the phenomena as complex, dynamically 
interconnected, and temporal, and suggests that 

actual performance of learning analytics implemen-
tations will in turn generate future capacity. In this 
respect, and observed by the authors, the tenets of 
the Minimal Viable Product (MVP) (Münch et al., 2013), 
and the Rapid Innovation Cycle (Kaski, Alamäki, & 
Moisio, 2014), with their advocacy for an ongoing, it-
erative, recursive, processual approach to product 
development and implementation, have traction in 
the learning analytics implementation space and are 
recommended to institutional leaders as possible 
implementation paradigms.

Colvin et al.’s (2015) work makes important empirical 
and methodological contributions to the research 
literature on learning analytics implementations. 
First, it provides empirical insights into the relation-
ships between antecedents (affordances) of learning 
analytics implementations and their outcomes (that 
is, how they looked). Soliciting participants’ meanings 
and understandings of actual learning analytics and 
learning analytics implementations provided fine-
grained, nuanced insight into the varied ways that 
institutional leaders conceptualized learning analytics 
implementations, and allowed relationships between 
these conceptualizations and actual operationaliza-
tions to be revealed.

The conceptualization and analysis of learning analytics 
implementations in Colvin et al.’s (2015) research as 
multidimensional phenomena resonates with tenets of 
emerging learning analytics implementation literature 
(cf. Ferguson et al., 2015; Greller & Drachsler, 2012), and 
the Model of Strategic Capability generated by their 
research offers a rich, holistic, systemic conceptual-

Figure 24.1. Model of Strategic Capability (Colvin et 
al., 2015, p. 28).

CONCLUSION
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ization of learning analytics as a temporal, situated, 
dynamic consequence of multiple, intersecting, inter-
dependent factors. Of particular significance though 
is the empirical insight Colvin et al. (2015) afford into 
the relative salience of the primary sociocultural, 
technical, and structural factors mediating learning 
analytics implementations.

Colvin et al.’s (2015) presentation of learning analytics 
diverges from many extant models, which often frame 
learning analytics as linear and/or unidimensional 
phenomena. We suggest that these latter conceptu-
alizations, through their reductionist orientation, do 
not have the potential to fully capture the complexity, 
breadth, or disruption of learning analytics implemen-
tations, and may be inadvertently militating against 
the adoption and development of sustainable and 
effective learning analytics practices and strategies. 
By contrast, Colvin et al.’s (2015) findings remind us 
that learning analytics implementations are complex, 
shaped by interdependent “soft and hard” dimensions 
(Greller & Drachsler, 2012), and have the potential to 
challenge and disrupt traditional management and 
organizational structures in universities. Their research 
provides institutional learning analytics managers 
with an empirically derived conceptual framework 

that highlights the complexity of learning analytics 
implementations, recognizes the mediating role of 
context, and can facilitate intra- and inter-institutional 
evaluation of learning analytics strategies and priorities.

It must be noted that Colvin et al.’s (2015) research has 
limitations: its data were primarily qualitative, and 
gleaned from a relatively small sample of institution 
participants (n=32) located in one higher education 
context (Australia). Therefore, any direct application 
of the findings to alternate higher education contexts 
should be undertaken with some caution. Further, 
most institutions were found to be in the very early 
stages of their learning analytics implementations: 
their programs were embryonic and still developing. 
Relationships reported between antecedent dimen-
sions and outcomes are therefore to be interpreted 
within these temporal constraints. It is recommended 
that further empirical analyses of learning analytics 
implementations are conducted over time that allow 
more nuanced insight into this critical area. Notwith-
standing, the findings of Colvin et al. (2015) offer an 
analytics framework that grounds learning analytics 
implementations in the tenets of multidimensionality 
and complexity that should have resonance with the 
broader analytics community.
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Learning analytics (LA) is a term that refers to the 
use of digital data for analysis and feedback that 
generates actionable insights to improve learning. 
LA feedback can be used in two ways: 1) to improve 
the personal learning power of individuals and teams 
in self-regulating the flow of information and data 
in the process of value creation; and 2) to respond 
more accurately to the learning needs of others. The 
growth of new types of datasets that include “trace 
data” about online behaviour; semantic analysis of 
human online communications; sensors that monitor 
“offline” behaviours, locations, bodily functions, and 
more; as well as traditional survey data collected from 
individuals, raises significant challenges about the 
sort of social and technical learning infrastructures 
that best support processes of improvement, adap-

tation and change. These challenges are located at 
the human/data interface and are as important for 
schools or universities whose purpose is to enhance 
learning and its outcomes as they are for corporate 
organizations whose purpose is the provision of a 
service or a product. Both depend on the capability 
of humans within their systems to be able to monitor, 
anticipate, regulate, and adapt productively to complex, 
rapidly flowing information and to utilize it in their 
own learning journey to achieve a purpose of value. 
Learning analytics provides formative feedback at 
multiple levels in an organization: the same datasets 
can be aggregated for individuals, teams, and whole 
organizations. When learning analytics are aligned 
to shared organizational purposes and embedded 
in a participatory organizational culture, then new 
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models of change emerge, driven by internal agency 
and agility, rather than by external regulation.

This chapter reports on a sixteen-year research pro-
gram of dispositional learning analytics that provid-
ed a rich experience in the technical, philosophical, 
and pedagogical challenges of using data to enhance 
self-regulated learning at all levels in an organization, 
rather than simply for “top down” decision making. It 
utilizes the metaphor of a “learning journey” as a 
framework for connecting different modes of learning 
analytics that together constitute a virtual learning 
ecology designed to serve a particular social vision. 
Drawing on systems thinking, it uses the themes of 
“layers,” “loops,” and “processes” as characteristics of 
complex learning infrastructures and as a way of 
approaching the design of learning analytics (Block-
ley, 2010).

The challenge of assessing learning dispositions was 
the starting point for the research program that be-
gan in 2000 at the University of Bristol in the UK. Its 
rationale was drawn from two findings from earlier 
research: 1) that data identified and collected for as-
sessment purposes drives pedagogical practice; and 
2) that high-stakes summative testing and assessment 
depresses students’ motivation for learning and drives 
“teaching to the test” (Harlen, 2004; Harlen & Deakin 
Crick, 2002, 2003). This was a design fault in educa-
tion systems that have changed little over the last 
century but that aspire to prepare students for life in 
the age of “informed bewilderment” (Castells, 2000). 
The challenge for the research program was first 
to identify, then to find a way to formatively assess, 
the sorts of personal qualities that enable people to 
engage profitably with new learning opportunities in 
authentic contexts when the “outcome was not known 
in advance” (Bauman, 2001).

Drawing on a synthesis of two concepts — 1) learning 
power (Claxton, 1999) and 2) assessment for learning 
(Broadfoot, Pollard, Osborn, McNess, & Triggs, 1998) 
— the original factor analytic studies identified seven 
“learning power” scales and the computation of new 
variables through which to measure them. These scales 
included aspects of a person’s learning that are both 
intra-personal as well as inter-personal, drawing on 
a person’s story and cultural context (Wertsch, 1985). 
Designed as a practical measure,  together they were 
referred to as “dimensions of learning power” (Yeager 
et al., 2013). The scales were validated with school age 
students (Deakin Crick, Broadfoot, & Claxton, 2004; 
Deakin Crick, McCombs, Broadfoot, Tew, & Hadden, 

2004; Deakin Crick & Yu, 2008) and with an adult 
population (Deakin Crick, Haigney, Huang, Coburn, 
& Goldspink, 2013) and in 2014 the accumulated data 
(<70K) was re-analyzed to produce a more rigorous 
and parsimonious instrument, known as the Crick 
Learning for Resilient Agency Profile (CLARA; Deakin 
Crick, Huang, Ahmed Shafi, & Goldspink, 2015).

The purpose of the research was to collect data for 
teachers that would enable them and their students 
to understand and optimize the processes of learning: 
specifically to hand over responsibility for change to 
students themselves by providing them with formative 
data and a language with which to develop actionable 
insights into their own learning journeys. The team 
used technology to generate immediate personalized 
feedback from the survey data through computing 
and representing the dimensions of learning power 
as a spider diagram. This immediate, visual analytic 
presents the learning power latent variable scores as a 
pattern to invite personal reflection. Numerical scores 
are avoided because they represent a form of analytic 
rationality (Habermas, 1973) more often used to grade 
and compare for external regulation and encourage 
entity thinking rather than integral and dynamic 
thinking (Morin, 2008). The visual analytic provides 
a framework and a language for a coaching conversa-
tion that moves between the individual’s identity and 
purpose and their learning goals and experiences. It 
provides diagnostic information to turn self-diagnosis 
into strategies for change (see Figure 25.1). This later 
became part of the definition of learning analytics 
(Long & Siemens, 2011; Buckingham Shum, 2012).

Since the first studies were completed, ongoing research 
explored learning and teaching strategies that enable 
individuals to become responsible, self-aware learners 
by responding to their Learning Power profiles (Deakin 
Crick & McCombs, 2006; Deakin Crick, 2007a, 2007b; 
Deakin Crick, McCombs, & Haddon, 2007). The focus 
was on those factors that influence learning power 
and the sorts of teaching cultures that develop it 
(Deakin Crick, 2014; Deakin Crick & Goldspink, 2014; 
Godfrey, Deakin Crick, & Huang, 2014; Willis, 2014; 
Ren & Deakin Crick, 2013; Goodson & Deakin Crick, 
2009; Deakin Crick & Grushka, 2010). Further empirical 
studies identified pedagogical strategies that support 
learning power: coaching for learning (Wang, 2013; 
Ren, 2010), authentic pedagogy (Deakin Crick & Jelfs, 
2011; Huang, 2014), teacher development (Aberdeen, 
2014), and enquiry-based learning (Deakin Crick, Jelfs, 
Huang, & Wang, 2011; Deakin Crick et al., 2010). The 
conceptual framework provided by the dimensions of 
learning power provides specificity, assessability, and 
thus practical rigour to an otherwise conceptually and 
empirically complex social process.

LEARNING ANALYTICS FOR FORMA-
TIVE ASSESSMENT OF LEARNING 
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The provision of the survey and the calculation of the 
latent variables in a web-based format afforded the 
possibility of using the same dataset for rapid feedback 
for users at four different levels in organizations. First, 
individual feedback via the visual analytic is available 
privately to the individual. Second, anonymized mean 
scores for groups are computed so that a teacher or 
facilitator can look at the learning characteristics of 
a teaching group or class and adapt their pedagogy 
accordingly. Third, anonymized mean scores combined 
with other variables from an organization’s manage-
ment information system, such as demographics and 
grouping variables, and others such as attainment or 
well-being measures, allow for a more sophisticated 
exploration of data in a whole cohort or organization 
to inform leadership decision making. Finally, with 
appropriate permissions, anonymized data can be 
harvested for exploratory research at a systems 
level. Each feedback point provides data that carries 
actionable insights — in other words new learning 
opportunities (see Figure 25.2).

 Rapid feedback of personal data about learning forms 
part of the emerging field of dispositional learning 
analytics (Buckingham Shum & Deakin Crick, 2012). It 
transgresses traditional boundaries, not only in social 
science, where the focus for research purposes is 
often on one variable at a time with a view to explor-
ing the impact of one entity on another to serve a 
research purpose. Traditional boundaries are also 
transgressed in terms of data systems, which are 
often understood as the province of system leaders 

rather than for empowering subjects themselves to 
become self-directed learners. Traditionally, data is 
collected for system leaders rather than for individ-
uals. The infrastructure for gathering data at scale, 
managing stakeholder permissions, and providing a 
range of analytics from real time summaries to ex-

Figure. 25.2. Rapid analytics feedback at four levels.

Figure 25.1. Individual Learning Power Profile visual analytic.
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ploratory research has raised challenges in terms of 
technology, the politics of power, organizational 
learning agility, and personalization.

This research program served a practical purpose in 
the development of pedagogies for personalization and 
engagement in a variety of educational and corporate 
settings. The term “dispositional learning analytics” 
was not used in until as late as 2012 (Buckingham 
Shum & Deakin Crick, 2012) and the focus on learning 
analytics was an “unintended outcome” of the original 
program. The unique interactions between technolo-
gy, computation, and human learning combined over 
time to make this approach powerful, sustainable, and 
scalable in a way that was not possible in assessment 
practices until the emergence of technology. These 
interactions are crucial to understanding and developing 
the emerging field of learning analytics since they also 
raise significant challenges as well as opportunities.

Perhaps the most significant challenge is in the intrin-
sic transdisciplinarity of this approach and the need 
for quality in three different fields — social science, 
learning analytics, and practical pedagogy, the last 
of which is highly complex and engages with many 
forms of human rationalities and relationships. The 
information explosion has changed forever the ways 
in which humans relate to information and this adds 
more complexity (Morin, 2008). These affordances 
and challenges will be addressed in the next section.

Visual Representation of Data: Making 
the Complex Meaningful
The presentation of a latent variable in data representing 
how a person responds to a self-report questionnaire 
about their learning power is complex. Learning pow-
er itself is described as “an embodied and relational 
process through which we regulate the flow of energy 
and information over time in the service of a purpose 
of value” (Deakin Crick et al., 2015, p. 114). For data to 
be useful to the individual in this context, it needs to 
be meaningful but sufficiently complex and open to 
allow for interpretation and response in an authentic 
context. The goal of learning power assessment is to 
develop people as resilient agents able to respond and 
adapt positively to risk, uncertainty, and challenge. 
As Rutter (2012) argues, the meaning of experience 
is what matters in resilience studies; resilience is an 
interactive, “plastic” concept, a state of mind, rather 
than an intelligence quotient or a temperament. Thus 
the form in which data about a person’s resilient 
agency is presented to them needs to be fit for this 
purpose — sufficiently robust to be reliable and valid 
in traditional terms but sufficiently open-ended and 

flexible to be “recognized” and responded to in a 
particular context. The visualization of the spider 
diagram achieves this goal of being precise enough 
whilst maintaining a representation of complexity, 
plasticity, and provisionality. The absence of numbers 
on the spider diagram is significant since in Western 
culture a number is often interpreted as an “entity” and 
not a “process” and can lead to a “fixed” rather than 
“growth oriented” mindset (Dweck, 2000). Technology 
makes the visualization of data more effective.

A further observation about the visualization of learn-
ing power data is that it connects with different ways 
of knowing or different “deep seated anthropological 
interests” (Habermas, 1973, 1989; Outhwaite, 1994). 
Habermas describes these as “empirical analytical 
interests,” “hermeneutical interests” and “emancipatory 
interests.” Reflecting on “my learning power” begins 
with a focus on learning identity — Is this like me? 
Am I this sort of learner? What is my purpose? How 
do I want to change? These questions connect with 
emancipatory rationality, or the drive for “autonomy” 
(Deci & Ryan, 1985) and these forms of rationality 
are simply not amenable to interpretation through 
“standardization” since each human being is unique. 
At best they may be represented through archetypes 
(Jacobi, 1980).

Image: Metaphor and Story as Carriers of 
Data
A ubiquitous finding from the studies has been the 
use of metaphor, story, and image to communicate 
the meaning of the learning power dimensions and to 
enable communal dialogue and sense-making. Most 
notable was the creation of a community story over 
a year in an Australian Indigenous community. The 
story was co-constructed with key characters as 
(sacred) animals that the community had chosen to 
represent each learning power dimension (latent 
variable) that they encountered via the learning an-
alytic. The animals locked in Taronga Zoo combined 
their learning powers to plan a breakout. The story 
articulated the community’s unique cultural history 
of oppression whilst opening up opportunities for 
engaging in forms of 21st-century learning as equals 
in a new paradigm (Goodson & Deakin Crick, 2009; 
Deakin Crick & Grushka, 2010; Grushka, 2009). Figure 
25.3 is an example of one of the graphics represented 
and used in that context: a representation of a wedge-
tailed eagle, which was one of the outcomes of months 
of community dialogue and debate, before being fi-
nally ratified by the local elders. A detailed discussion 
of this project is beyond the scope of this chapter. The 
point is that community sense-making, aligned with 
technology and dispositional analytics, can be repre-
sented by images or visualizations, which are locally 
empowering because they connect with deeper forms 

LEARNING ANALYTICS AND 
PEDAGOGY: POINTS OF TENSION 
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of narrative and tradition. Thus they enable educators 
to engage profitably and meaningfully — and in a 
time-relevant manner — with the “perezhivanie” — the 
lived experiences of communities (John-Steiner, 2000; 
John-Steiner, Panofsky, & Smith, 1994).

One Data Point and Different Ways of 
Knowing
An individual produces a learning power self-assess-
ment survey with rapid feedback designed to stimulate 
self-directed change. The emancipatory rationality 
for reflection on self and identity required will often 
take the form of narrative: it’s unique, polyvalent, 
time bound, and “open-ended” (Brueggemann, 1982). 
When that individual uses the same data to develop a 
strategy for moving forwards and achieving a learning 
purpose, then they are likely to be using “interpretive 
rationality” or, in Habermasian terms, “hermeneutical 
rationality.” They will be reflecting on a goal and making 
judgments about the best way to achieve it, collating 
qualitative data, collaborating with others and drawing 
on existing funds of knowledge. If they then develop 
a “measurement model” so that they are able to judge 
whether they have achieved their purpose, then they 
will use empirical/strategic rationality — using ana-
lytical, means-end logic to determine whether they 
have succeeded in their purpose.

Thus one useful data point can be apprehended through 
different rationalities or ways of knowing when it is 
harnessed to a personal or social purpose. When data is 
aggregated and anonymized, teachers or facilitators can 
evaluate and analyze the data quantitatively to assess 
whether their pedagogy is achieving its purpose, and 
interpret their findings in order to improve and adjust 
what they do. Here the same forms of rationality are 
in operation at an organizational level but the focus 
shifts to hermeneutical and strategic rationality in 
the service of a shared purpose. The data is used for 
leadership decision making. At a systems level, when 
the same accumulated data is analyzed in a way that 
is abstracted from context, then the modus operandi 
is predominantly strategic/analytical rationality.

Rapid Feedback at Multiple Levels: Criti-
cal for Ownership and Improvement
Technology enables easy collection, automatic com-
putation, and rapid feedback of survey data to users 
at different levels in organizations. Where an orga-
nization enables self-managing teams to operate in 
pursuit of shared organizational purpose (Laloux, 2015) 
then rapid feedback of data that informs both process 
and outcome is a crucial resource. For example, in 
a learning organization such as a school or college, 
a shared purpose is that students develop lifelong 
learning competences. In this case, CLARA data can 
be owned and used for improvement by students 
themselves, by teachers who want to evaluate how 
effectively their pedagogy is producing lifelong learning 
competences, by leaders in making decisions about 
overall college policy in relation to these outcomes, 
and by researchers who explore and analyze the data 
to produce new knowledge. Two aspects of this are 
important: first the rapid feedback and second the 
sense of ownership of data and professionalism that 
the feedback affords and requires. A time lag is no 
longer necessary between data collection, analysis, 
and feedback of survey data. Historically such time lags 
often meant that feedback arrived too late to change 
practice in the context in which data was collected. 
From a practitioner’s perspective, the research was 
“done to them” rather than owned and responded to by 
them. Closing this lifecycle gap between research and 
practice is a critical task to which learning analytics 
makes a significant contribution.

Top Down or Bottom Up?
Related to this is the sense of participation and own-
ership in improvement processes that this affords. 
The authority to interpret the data is aligned with the 
responsibility to respond to it and improve practice. 
This has profound implications for societies in which 
politically defined external regulatory frameworks 
have become anachronistic and can often work against 
quality, collaboration, evolution, and transformation. 
Typically, such frameworks are produced by politi-
cians for accountability purposes and are based on 
worldview assumptions rooted in the industrial era. 
Put simply, they often measure the wrong things and 
the purpose is political accountability and control. So 
key questions are Who does this data belong to? and 
Whose purposes are being served? Whilst there is a 
strong argument for some top-down accountability in 
learning systems — particularly where young people 
and public finance are concerned — there is an equally 
strong argument for empowerment and self-regulation at 
micro (individual) and meso (organizational) levels. This 
complexity is a key quality of self-organizing systems 
that, by definition, require forms of professionalism 
(commitment to purpose) that go beyond compliance 

Figure. 25.3. A visual graphic representing “strategic 
awareness.”

© Black Butterfly Designs
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with external regulatory frameworks.

Understanding the system as a whole is a key to learn-
ing analytics aimed at improvement (Bryk, Gomez, 
Grunrow, & LeMahieu, 2015; Bryk, Gomez, & Grunow, 
2011; Bryk, Sebring, Allensworth, Luppescu, & Easton, 
2010). Borrowing from the world of systems thinking 
in Health and Industry (Checkland, 1999; Checkland & 
Scholes, 1999; Snowden & Boone, 2007; Sillitto, 2015) 
the rigorous analysis of a system leads to the identi-
fication of improvement aims and shared purpose — 
the boundaries of the system are aligned around its 
purpose (Blockley, 2010; Blockley & Godfrey, 2000; Cui 
& Blockley, 1990). Thus an alignment around purpose 
at all levels in a system will both require and enable 
data to be owned at all levels by those responsible 
for making the change and using data for actionable 
insights (see Figure 25.4). The power, or the authorship, 
of decision-making is both inclusive and participatory. 
Technical systems and analytics need to reflect this.

Practical Data: Fitness for Purpose
A key issue in learning analytics has to do with the 
reliability and validity of data, particularly when it is 
used to judge quality of performance and/or process 
in authentic contexts. More than ever, quality is an 
ethical issue. Does this self-assessment tool measure 
what it purports to measure? Who has the authority 
to interpret the results? As Yeager et al. (2013) argue, 
“conducting improvement research requires thinking 
about the properties of measures that allow an organi-
zation to learn in and through practice” (p. 9). They go 
on to identify three different types of measures that 
serve three different purposes: 1) for accountability, 2) 
for theory development, and 3) for improvement. They 
characterize the latter as practical measures that may 
measure intermediary targets, framed in a language 

targeted to specific units of change, contextualized 
around common experiences and engineered to be 
embedded in everyday practice. Practical measures 
may be used for assessing change, for predictive 
analysis, and for priority setting.

The focus of these practical measures for Yeager and 
colleagues (2013) is on their use in change programs in 
organizations led by improvement teams or leadership 
groups. However, an additional purpose of practical 
measures is to stimulate ownership, awareness, and 
responsibility for change on the part of individual users. 
Practical measures present a theoretical challenge for 
psychometricians in terms of the need for new summary 
statistics that contribute to quality assurance where 
historically much theoretical development has been 
focused on measures for accountability and theory 
development, such as internal consistency, reliability, 
and validity. This issue of authority and responsibility 
is crucial and one response is to apply a “fitness for 
purpose” criterion. If the purpose of the measure is 
to stimulate individual awareness, ownership, and 
change then the subject of that purpose must have 
the authority to judge the validity and trustworthiness 
of the measure since, when it comes to emancipatory 
rationality and narrative data, the subject is a unique 
self-organizing system. If the purpose of the measure 
were to provide government with a measure of suc-
cess of a policy then the professional community of 
domain-specific statisticians would have the authority 
to judge the reliability, validity, and therefore trust-
worthiness of the data. In both cases, the judgement 
is about fitness for purpose.

For the emerging field of learning analytics — with its focus 
on formative feedback for improvement for individuals, 
teams, and organizations — these issues represent an 

Figure 25.4. Rapid feedback at four levels aligned to organizational purpose.
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important field for development. If an assessment tool 
sold to an institution has no scientific rigour behind 
it, then even the most sophisticated technology and 
modes of delivery will not compensate. On the other 
hand, an organization might want to serve a small 
number of questions to its community via a tool such 
as Blue Pulse1  as a “sensor mechanism” randomized to 
test the anonymized views of stakeholders about the 
direction of particular organizational strategies. How 
do they select the most useful items? What “weight 
of evidence” do they ascribe to the subsequent data?

In the context of rapid social and technological 
change, these issues are common. Tools designed for 
accountability or theory development often have no 
practical value and thus limited usefulness as learning 
analytics, whilst tools designed to support practice and 
improvement often have no theoretical or empirical 
rigour. The social and moral challenge for learning 
analytics is to combine and manage both.

The focus of this chapter so far has been on one 
particular dispositional learning analytic, CLARA, 
and the issues this has raised. However, any survey 
tool designed as a practical measure to provide rapid 
feedback of data for improvement purposes will face 
similar issues. This section focuses on some of the 
technical challenges that have framed the experience 
of the learning power assessment community through 
successive iterations of technical platforms designed 
to service the tool.

Survey Platforms
Perhaps because the popular understanding of 
“surveys” is that they belong to the researchers who 
administer them, it has been a challenge to build a 
survey platform to capture data for use at different 
levels in an organization. The purpose of the data 
captured in learning analytics is for the subject first, 
then the facilitator/teacher, then the organization, 
and finally for researchers, whose brief is to research 
the whole process or undertake blue skies research 
on the resultant anonymized datasets. This is because 
learning can only be done by the learner themselves 
(Seely Brown & Thomas, 2009, 2010; Thomas & Seely 
Brown, 2011). This turns the traditional research survey 
platform on its head. The biggest challenge lies in data 
protection and ethics and the need for the platform 
to perform the following functions:

1. Know the identity of each user in order to provide 
personalized feedback and save that identity for 
matching with other variables.

2. Protect users at higher “levels” in the organization 

1 www.eXplorance.com 

from the knowledge of the ID of each user whilst 
matching teachers and students (or employees 
and managers) where appropriate.

3. Harvest and store anonymized data for research 
purposes across projects.

What is critical is the underlying data structure 
that needs to link IDs with three types of variables: 
demographic, grouping, and survey. Without this 
flexible data structure, the opportunities presented 
by learning analytics using self-report survey data 
are severely limited.

Since 2002, learning power research and development 
teams have prototyped six platforms. The current 
solution is through a partnership with one of the 
world’s leading survey providers,  whose business 
development strategy is aligned closely with the vision 
for learning analytics to support the organizational 
improvement cycle. The Surveys for Open Learning 
Analytics (SOLA)2 platform powered by eXplorance 
Blue hosts research validated surveys and provides 
feedback at four levels: for individual users to support 
personal change; for team leaders to respond more 
accurately to the learning needs of their groups; for 
organizational leadership decision making and for 
systems-wide analysis and research. Examples of 
feedback at each level are presented in the Appendices.

Collaborative Business Models
This form of collaboration raises issues about the 
“ownership” of the model amongst the stakeholders 
who have an interest in it and the management of 
intellectual property. These include researchers, 
practitioners, policy makers, and business — both the 
“education and training” business and the “technology” 
business. Developing platforms capable of realizing 
the potential of learning analytics requires business 
models capable of supporting collaboration, evolution, 
and innovation and meeting the needs of diverse 
stakeholders. The interests of different parties have 
to be balanced in a way that serves the common good, 
rather than permitting, say, commercial interests to 
“colonize” research interests, or practitioner interests 
to “colonize” technical interests. A key factor is the 
typical lifecycle needs of these differing stakeholders 
that have to be understood and “harmonized” in order 
for each to benefit over time.3

Identity Management
ID management is a key factor for the learning ana-
lytics included in wider virtual ecologies for learning. 
The challenges of ID management are fundamentally 

2 www.learningemergence.com 
3 The Learning Emergence network that crowd-sourced the funds 
for the SOLA platform formed a Limited Liability Partnership in the 
UK as a vehicle to provide this level of flexibility, linking research, 
enterprise, and practice around the world: www.learningemer-
gence.com 

TECHNICAL CHALLENGES 
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ethical in nature — protecting individuals’ personal 
data, providing feedback that is personal and sup-
ported in appropriate ways through coaching and 
learning relationships where needed whilst enabling 
stakeholders at different levels in the system to access 
anonymized data where they have permission and to 
match datasets where that is required by research, so 
as to explore the patterns and relationships between 
variables in complex learning infrastructures.

Apart from surveys, many tools are learning analytics 
in the sense that they provide formative feedback for 
individuals to support their learning in some way. For 
example, the Assessment of Writing Analytics being 
developed by (Selvin & Buckingham Shum, 2014) or 
the iDapt4 tool for reflexive understanding of an in-
dividual’s mental models that shape their approach 
to their professional task (Goldspink & Foster, 2013). 
The former is a way of critiquing and supporting in-
dividuals in developing academic argumentation as a 
part of their knowledge generation whilst the latter 
addresses issues of identity and purpose through 
repertory grid analysis (Kelly, 1963). These are both 
critical aspects of learning journeys whose focus is on 
feedback for awareness, ownership, and responsibility 
for the process of learning on the part of the individual.

Using learning analytics to stimulate change in learning 
power inevitably invites questions about the wider 
ecology of processes and relationships that can em-
power individuals to adapt profitably to new learning 
opportunities. This is particularly important in au-
thentic contexts where the outcome is rarely known 
in advance. The metaphor of a “learning journey” was 
adopted to reflect the complex dynamics of a learning 
process that begins with forming a purpose and moves 
iteratively towards an outcome or a performance of 
some sort. Learning power enables the individual 
or team to convert the energy of purpose into the 
power to navigate the journey, to identify and select 
the information, knowledge, and data they need to 
work with to achieve that purpose (see Figure 25.5; 
Deakin Crick, 2012). When an individual or a team 
learns something without reflecting on the process of 
learning at a meta-level, this is “single loop” learning. 
Double loop learning is when the individual or team 
is able “reflexively to step back” from the process and 
learn how to learn with a view to improving the pro-
cess and doing it more effectively next time. They are 
intentionally becoming more agile and responsive in 
regulating the flow of information and data that they 
need to achieve their purpose.

4 www.inceptlabs.com.au 

This framework provides a useful model through which 
to understand the sort of learning infrastructure and 
the analytics to support learning and improvement. 
It provides a typology for learning analytics tuned to 
support learning and, critically, to enable learners to 
step back from the “job they are doing” to reflect at a 
meta-level, to monitor, anticipate, respond, and learn 
— in other words to engage in double loop learning 
(Bateson, 1972; Bruno, 2015) as depicted in Figure 25.6.

The Four Processes of a Learning Journey
A learning journey is a dynamic whole with distin-
guishable sub-processes. It has a natural lifecycle 
and is collaborative as well as individual, personal as 
well as public. Learning journeys happen all of the 
time at different levels and stages. Learning is framed 
by a purpose, an intention, or a desire that provides 
the “lens” through which the individual or team can 
identify and focus on the information that matters. 
Articulating purpose is the first stage of the “meta 
language” of learning. Without purpose, learning 
lacks direction and discipline and it is difficult to se-
lect from a welter of data the information that really 
matters. Developing personal learning power through 
which to articulate a purpose and respond to data is 
the second process. The third is the structuring and 
re-structuring of information necessary to achieve the 
particular purpose. The final process is the production 
and evaluation of the product or performance that 
achieves the original the purpose.

A learning journey is an intentional process through 
which individuals and teams regulate the flow of en-
ergy and information over time in order to achieve a 
purpose of value. It is an embodied and relational pro-
cess, which can be aligned and integrated at all levels 
in an organization, linking purpose with performance 
and connecting the individual with the collective. The 
learning power of individuals and teams converts 
the potential energy of shared purpose into change 
and facilitates the process of identifying, selecting, 
collecting, curating, and constructing knowledge in 
order to create value and achieve a shared outcome.

LEARNING ANALYTICS AND 
LEARNING JOURNEYS 

Figure. 25.5. A single loop learning journey.
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Learning Journeys as Learning 
Infrastructure
It is no longer sensible or even possible to separate 
the embodied and the virtual in learning. The future 
is both intensely personal and intensely technological. 
The challenge is to align social and personal learning 
journeys with the sorts of technologies and learning 
analytics that serve them and scaffold intentional 
“double loop” learning.

A learning journey has a generic architecture: it has 
stages that occur in a sequence, a start event, a fin-
ish event, and many transition events in between. It 
covers a particular domain; it faces inwards as well as 
outwards; it is framed by user need or purpose. It is 
iterative and cumulative. It is focused on a stakeholder 
or customer task and is ideally aligned to organizational 
target outcomes. Each stage has many “next best ac-
tions” and interactions, framed by a meta-movement 
between purpose and performance. Stakeholders use 
personal learning power and knowledge structuring 
tools to navigate their journey. Stages have transition 
rules and interaction rules and stakeholders can be 
on many journeys at the same time. A journey can be 
collaborative or individual, simple or complex, high 
value or low value. Journeys follow stakeholders across 
whatever channels they choose and they are adaptive 
to individual behaviour. They cover different territories 
with domain-specific sets of knowledge and know-how 
and they integrate knowing, doing, and being.

There are at least three distinct applications of these 
ideas for learning analytics:

1. To frame the relational, social, and technical 
learning infrastructure of an organization so 
that individuals and teams become more agile, 
responsive, and able to respond productively to 
change and innovation

2. To design models that explore and explain stake-
holder behaviour — how students or customers 
embody purpose, learning power, knowledge, 
and performance in order to communicate more 
accurately with stakeholder communities

3. To develop digital infrastructure to support 
self-directed learning and behaviour change, at 
scale, in particular domains — in other words, 
mass education, across domains as defined and 
embracing as, for example, climate change or 
financial competence

Learning Infrastructure for Living Labs: 
Learning Analytics for Learning Journeys
To be resourced at scale, learning journeys require a 
network infrastructure that accesses information and 
experience from a wide range of formal and informal 
sources, inside and beyond the organization. The in-
dividual or team relates to all of these in identifying, 
selecting, and curating what they need in terms of 
1) information and data and 2) “how to go about it” 
expertise for achieving their purpose. This network 
infrastructure is part of a wider ecosystem with plat-
forms that scaffold these relationships drawing on 
cloud technology, mobile technology, social learning 
and curating, learning analytics for rapid feedback, “big 
data” and badges — to name some key analytic genres.

There are strong synergies here with best practices 
in real-time, omni-channel customer communication 
management through the recognition that many cus-
tomer communication journeys are in fact learning 
journeys. They also involve individuals in engaging 
with information in order to achieve a purpose (Crick 
& MacDonald, 2013).

Providing and servicing this learning infrastructure 
is a specialist task that is arguably the purpose of a 
“living lab” or a “network hub” in an improvement 

Figure 25.6. Double loop learning journeys.
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community. The network (social and organizational 
relationships) and the ecosystem (technical resources 
to scaffold these relationships) provide an infrastruc-
ture with permeable boundaries between research, 
policy, practice, and commercial enterprise, facilitat-
ing engaged, trans-disciplinary, carefully structured 
improvement prototypes. Such a “hub” is sometimes 
described as a “living lab,” the purpose of which is to 
integrate engaged, user-driven improvement research 
with technology, professional learning, and the wider 
research community. It provides, and researches, 
core hub functions and expertise in partnership with 
the enterprises needed to scale and deliver learning 
services.

Supporting such a learning infrastructure requires 
sustained attention to different types of expertise 
and resource development, including the following:

• The personal and social relationships necessary 
for facilitating and leading learning journeys 
including storying, reflection, personal learning 
power, and purposing

• The organizational arrangements that support 
learning journeys as a modus operandi for im-
provement — such as rapid prototyping, coaching, 
and agile learning cultures

• The architecture of space (virtual and embodied) 
within the relevant domain of service

• The technologies, tools, and analytics that support 
the processes of learning journeys through rapid 
feedback of personal and organizational data for 
stimulating change, defining purpose, knowledge 
structuring, and value management

• The virtual learning ecosystem that facilitates 
and enhances participatory learning relationships 
across the project/s at all levels — users, practi-
tioners, and researchers

Figure 25.7 presents a high-level design for such a 
learning journey infrastructure.5

A Transition in Thinking
The idea of a learning journey is simple and intuitive. 
The metaphor facilitates an understanding of learning 
as a dynamic process; however, it does represent a fun-
damental transition in how we understand knowledge, 
learning, identity, and value. Knowledge is no longer a 
“stock” that we protect and deliver through relatively 
fixed canons and genres; it is now a “flow” in which 
we participate and generate new knowledge, drawing 
on intuition and experience. Its genres are fluid and 
institutional warrants are less valuable (Seeley Brown, 
2015). Learning power is the way in which we regulate 

5 This high level learning journey infrastructure is derived from 
customer journey architecture developed in the financial services 
market by Decisioning Blueprints Ltd. www.decblue.com 

that flow of energy and information over time in the 
service of a purpose of value — rather than a way of 
receiving and remembering “fixed” knowledge from 
experts. Millennial identity is found not in ownership 
and control, but in creating, sharing, and “remixing” — 
in agency, impact, and engagement. Value is generated 
in the movement between purpose and performance. 
Leadership is about learning our way forward together.

What Next?
A plethora of candidate tools and platforms use learning 
analytics to optimize and support learning for indi-
viduals and to improve learning contexts. Tools that 
address reflective writing (Simsek et al., 2015), sense 
making , coaching, knowledge curation and sharing 
(www.declara.com), harnessing collective intelligence 
(Buckingham Shum, 2008; Buckingham Shum & De 
Liddo, 2010; Buckingham Shum & Ferguson, 2010), and 
leadership decision making (Barr 2014) to name a few.

The big challenge for 21st-century learning professionals 
is understanding how these tools and platforms cohere 
within a learning organization, a virtual collaboratory 
or a living lab, in which the focus is on the learning of a 
whole community of interest, such as those concerned 
with renewing a city’s infrastructure, or a geograph-
ical region, or wide domains of public concern such 
as financial education or climate change. Many of the 
ideas and learning analytics practices discussed here 
have been developed and applied in different contexts 
already. What is required next is a way of integrating 
these ideas and practices in an authentic and ground-
ed context, focusing on how the whole fits and flows 
together. This requires a business model for all stake-
holders that makes collaboration — not competition 
— the modus operandi. It requires all stakeholders to 
abandon “silos” in favour of networks, and be willing 
to “learn a way forward together,” which inevitably 
also means having permission to fail. In short, these 
ideas form a starting point for the resourcing of a 
living lab or network hub, supported by a partnership 
of core providers constructing coherence from their 
four contextual perspectives: research, industry, the 
business world of “learning professionals,” and the 
personal learning of all stakeholders.

This chapter has focused on some of the challeng-
es and opportunities of the use of technology and 
computation for enhancing the processes of learning 
and improvement — rather than only the outcomes. 
Learning analytics and the affordances of technology 
have become game-changers for sustainability for 
organizations in a data-rich, rapidly changing world. 
Learning analytics are designed to provide formative 
feedback at multiple levels and these can be aggregated 

CONCLUSION 
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for individuals, teams, and whole organizations. When 
learning analytics are aligned to shared organizational 
purposes and embedded in a participatory organiza-
tional culture, new models of change emerge capable 
of integrating external regulation with internal agency 
and agility. This chapter began with an account of a 
learning analytic that focused on generating learning 
power for individuals. As its research and development 
program progressed, it became clear that learning 
power and its associated analytics were just one part 

of a more complex and dynamic learning journey. The 
learning journey is a useful metaphor for framing the 
way we think about and design learning analytics, as 
part of the sort of learning infrastructure we need 
to develop, for learning organizations and in wider 
social contexts such as living labs. The technical, 
political, commercial, and philosophical challenges 
are immense and can only be met by thinking and 
design that account for complexity and participation.

Figure 25.7. High level design for learning architecture.
© Decisioning Blueprints Ltd
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Some keen observers of higher education profess that 
learning analytics-based practices hold the potential 
to transform traditional learning (Ali, Rajan, & Ratliff, 
2016). They can also transform competence building 
that focuses on skills for employment (Weiss, 2014). 
The combination of predictive learning analytics, 
personalized learning, learning management systems, 
and effective linkages to career and workforce knowl-
edge can dramatically shape the manner in which we 
prepare for and live our lives. Learning analytics will 
be a linchpin in this multifaceted transformation.

Across the higher education landscape, learning 
analytics practices are growing. Individual faculty, 
learning analytics experiments, innovations, and pi-
lot projects — the academic innovation equivalent of 
“1,000 points of light” — are demonstrating the value 
of learning analytics in practice (Sclater, Peasgood, & 
Mullan, 2016, p. 15). Faculty are building experience in 
deploying and improving learning analytics practices 
and sharing their knowledge with their colleagues. 

Groups like the Bill & Melinda Gates Foundation have 
actively sponsored so-called “next gen” learning proj-
ects to advance such efforts.1 When they prove their 
success, these innovations are being nurtured to evolve 
into full-blown institutional initiatives. Collaborative 
efforts like the Open Academic Analytics Initiative 
(OAAI) has developed and deployed an open-source 
academic early-alert system that can predict (with 
70–80% accuracy) within the first 2–3 weeks of a term 
which students in a course are unlikely to complete the 
course successfully (Little et al., 2015). Eventually, such 
innovations may spread across the higher education 
and knowledge industry.

Learning analytics practices are also shaping a new 
generation of academic technology infrastructure. 
Literally every enterprise resource planning (ERP) 
and learning management systems (LMSs) vendor 
is embedding analytics in its products and services 

1 See Next Generation Learning Challenge: http://www.educause.
edu/focus-areas-and-initiatives/teaching-and-learning/next-gen-
eration-learning-challenges
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(Baer & Norris, 2015). Consortia like UNIZIN (Hilton, 
2014) have emerged to develop an in-the-cloud, next 
generation digital learning environment (NGDLE) 
that can accommodate loosely coupled learning ap-
plications, learning object repositories, personalized 
learning, and analytics capabilities. Learning analytics 
is a key issue in next gen technology infrastructures 
and processes.

Clearly, the elements of ubiquitous, predictive learning 
analytics are coalescing. Practitioners are striving to 
understand their meaning and how to leverage their 
impact. Individual faculty and staff, institutional leaders, 
policy makers, and employers all face different oppor-
tunities and challenges in confronting the emergence 
of learning analytics. In our work with institutions, we 
have confronted the following questions from various 
stakeholder groups and individual practitioners:

• How can individual faculty become accomplished 
learning analytics practitioners, building their 
expertise and elevating learning analytics practice, 
across courses and majors, among their peers and 
across their institution?

• How can institutional faculty and staff involved 
with student success initiatives embed learning 
analytics to support dynamic interventions and 
actions?

• How can institutional leaders and policy makers 
develop supportive policies, practices, and learn-
ing/course management tools that unleash the 
transformative power of learning analytics across 
their institutions and beyond?

• How can employers and policy makers provide 
effective linkages to career and workforce knowl-
edge that will further enhance and extend stu-
dent success to include academic, co-curricular 
development, employability, and career elements?

This chapter will help illuminate these opportunities 
and challenges and provide the context for enabling 
each of these different stakeholders to understand 
how to capitalize on the potential of learning analytics.

In The Predictive Learning Analytics Revolution, the 
ECAR-Analytics Working Group developed a highly 
simplified model of the student success process (Lit-
tle et al., 2015) illustrated in Figure 26.1. It features 
the central position of predictive learning analytics 
and action/intervention in the middle of the student 
learning process. Analytics is essential to informed 
action/intervention. Without action, analytics is merely 
reporting; and without an analytics-based foundation, 
interventions are actions shaped imperfectly by instinct 
and belief. Enhancing student success depends on this 
progression of predictive learning analytics to action, 
all in the context of organizational culture.

The ECAR-Analytics Working Group goes on to 
stipulate that “before deploying predictive learning 
analytics solutions, an institution should ensure that 
its organizational culture understands and values 
data-informed decision making processes. Equally 
important is that the organization be prepared with 
the policies, procedures and skills needed to use the 
predictive learning analytics tools and be able to 
distill actionable intelligence from their use” (Little 
et al., 2015, p. 3).

Changing the Dimensions of Organiza-
tional Culture
This is a laudable prescription. However, our experi-
ence with many institutions suggests that even when 
student success initiatives are thoughtfully launched, 
organizational culture does not change rapidly, or 
all at once. In reality, student success initiatives are 
characterized by the continuous, parallel evolution 
of organizational culture, organizational capacity, 
and specific student success projects and actions. 
Such campaigns often require five to seven years of 
implementation before yielding substantial organiza-
tional change results (Norris & Baer, 2013). Moreover, 
understanding the dimensions of the change need-
ed can shift over time; as well, institutional teams, 
through experience and reflection, develop a better 
understanding of analytics-enabled student success 
interventions in practice.

Figure 26.1. Position of predictive learning analytics in the path of student success.

EMBEDDING LEARNING ANALYT-
ICS IN INSTITUTIONAL SYSTEMS, 
PRACTICES, AND STUDENT SUCCESS 
STRATEGIES
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As President Miyares of University of Maryland Uni-
versity College points out, “Often absent from the 
dialogue is an acknowledgment of the heavy lifting 
required to leverage analytics as a strategic enabler to 
transform an institution. There is no ‘easy button’ for 
improving the financial, educational, and operational 
outcomes across an institutional enterprise. Doing 
so requires a combined commitment of technology, 
talent, and time to help high-performing colleges and 
universities leverage analytics not only for one-time 
insights but also for ongoing performance management 
and improvement guided by evidence-based decision 
making” (Miyares & Catalano, 2016).

Table 26.1 illustrates this point. The first dimension of 
cultural change needed to enable predictive learning 
analytics-based interventions for student success in-
volves the use of data in decision making. Institutions 
must change from a culture of reporting — with no im-
perative to action — to a culture of performance-based 
evidence and a commitment to action. This dimension 
is obvious to most new student success teams. But it 
takes time and experience with new approaches for 
the change to take hold and become an embedded 
practice.

The second and third dimensions of culture change — 
innovation and collaboration — are also critical. Most 
institutions of higher education support innovations 
with a lower case “I,” leaving them up to individual 
faculty and celebrating 1,000 points of light. But for 
student success initiatives to be optimized across 
the institution they must practice Innovation with 
a “capital I.” They must learn how to take successful 
innovations and interventions to scale, building on 
success, and achieving consistency in responses and 
interventions (Norris & Keehn, 2003). The traditional 
collaboration culture is based on individual faculty 
autonomy, which reinforces the individual innovation 
culture. Optimizing student success requires greater 
collaboration, not only among and between faculty, 
but involving academic support and administrative 
staff and cross-disciplinary perspectives. Institutions 

with the most successful student success initiatives 
(ECAR, 2015) make student success everyone’s job, 
and dramatically increase the network of supporting 
and intervening persons across the institution. This 
can include forming active communities of practice 
dealing with student success.

The fourth dimension of cultural change involves the 
scope of student success. While traditionally student 
success focuses on academic achievement, a 21st 

century transformed perspective on student success 
scope expands to include an integrated perspective 
of academic/curricular achievement, co-curricular 
development, work-related experiences, and do-it-
yourself (DIY) competence building. The transformation 
of this fourth dimension is developing more slowly 
than the first three, but it will accelerate when new 
mechanisms emerge to share workforce competence 
knowledge and integrate records of learner’s demon-
strated learning and competences.

Changing Organizational Context/Capac-
ity
It’s not just about culture; it’s about all aspects of or-
ganizational capacity for analytics and student success 
initiatives. Table 26.2 portrays the five dimensions of 
organizational capacity, assessed for a sample insti-
tution. Institutional teams that undertake enhancing 
or optimizing student success and making it an in-
stitutional priority have found it useful to assess the 
current state of capacity development (also called a 
readiness/maturity index), then establish the targets 
needed to enhance student success over a reasonable 
planning period, say five years. Table 26.2 illustrates 
the current capacity score, the targeted score in five 
years, and the “gap” between the two that needs to be 
closed over time (the black bars in the “Target Score” 
column). Institutional leaders need to focus on setting 
stretch goals for student success capacity that will 
position them to meet their targets.

The Community College Research Center (CCRC) studied 
five Integrated Planning and Advising Services (IPAS) 

Dimension Of Culture Traditional Institutional Culture Transformed Institutional Culture

Use of Data in Decision 
Making Culture of Reporting Culture of Evidence/Performance

Imperative of Knowing

Innovation 1,000 Points of Light Successful Innovations are Taken to 
Scale

Collaboration Individual Faculty Autonomy Student Success is Everyone’s Job
Community of Practice

Scope of Student Success Academic Achievement and Develop-
ment

Fully Integrated Success Assessment:
Academic/Curricular Achievement, 

Co-Curricular Development, Work-Re-
lated Experiences, DIY Competence 

Building, and Other Elements

Table 26.1. Changing Organizational Culture for Student Success in the 21st Century
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Dimension of Organizational Context/Capacity Current Score
1 2 3 4 5

Current Score
1 2 3 4 5

Leadership

1. Top management is committed to enhancing student success and views predictive learning analyt-
ics as essential to student success

2. Analytics has a senior-level champion who can remove barriers, champion funding

3. Top leadership is committed to and consistently practices evidence-based decision making

4. Appropriate funding and investment has been made in analytics, iPASS,*  and student success

Culture/Behaviour

1. Our institution’s culture favours performance-based evidence for decision making

2. Our culture recognizes “the imperative of knowing” and we practice “action
    analytics”

3. We assess student learning and success innovations and take successful innovations to scale

4. We emphasize collaboration in student success efforts and make student success everyone’s job

5. We define and integrate student success to include curricular, co-curricular, work, and talent devel-
opment

Technology Infrastructure/Tools/Applications

1. Capacity to: Store/access disparate data in raw/transformed form

Store/access predictive results

Deploy/measure the effects of learning interventions

Integrate numerous predictive analytics tools

2. Computing power for regular big data analyses, simulations, visualizations, and processes

3. Security protocols in place to ensure learning analytics effort is not a liability

4. Data governance yields adequate data quality

5. Integrate and unify data sources

6. Adequate iPASS Infrastructure to support analytics-driven interventions

Policies, Processes, and Practices

1. Institutional policies and data stewardship fulfill federal, state, and local laws

2. Workflows for student success processes are well documented

3. Guiding coalition and cross-disciplinary teams for student success

4. Fully integrated planning, resourcing, execution, and communication (PREC) for
  student success (eliminates fragmentation — “connects the dots”)

Skills and Talent Development

1. Student success innovation/collaboration skills

2. Specific LA Skills: Data Science: Data analysis, interpretation and visualization

Programming/Vendor product for data mining

Data Literacy — necessary for predictive models/algorithms

Research expertise and understanding of nuanced data

Intervention — time, frequency, tone, and nature

Instructional Design — for embedded predictive analytics

3. Capacity for reinvention of student life cycle processes (end-to-end) is well developed 

Legend: 1. Initial; 2. Emerging; 3. Functional; 4. Highly Functional; 5. Exemplary

Source: Adapted from the Norris/Baer framework, ECAR Maturity Index, ECAR-Analytics Working Group, & Educause Maturity and Deploy-
ment Indices (Dahlstrom, 2016).

* Individual planning and advising for student success (iPASS) systems combine student planning tools, institutional tools, and student services. iPASS 
“gives students and administrators the data and information they need to plot a course toward a credential or degree, along with the ongoing assess-
ment and nudges necessary to stay on course toward graduation. iPASS combines advising, degree planning, alerts, and interventions to help students 
navigate the path toward a credential. These tools draw on predictive analytics to help counselors and advisors determine in advance whether a student 
is at risk of dropping out or failing out and it can help assist in selecting courses” (Yanosky & Brooks, 2013). iPASS, used in conjunction with the LMS, is 
emerging as a key mechanism for delivering the analytics-informed interventions that are proving critical to student success.

Table 26.2. Institutional Context/Capacity for Analytics and Student Success, Current and Targeted



HANDBOOK OF LEARNING ANALYTICSPG 312 CHAPTER 26 UNLEASHING THE TRANSFORMATIVE POWER OF LEARNING ANALYTICS PG 313

participants to determine readiness for technology 
adoption (RTA). The RTA framework “is particularly 
focused on ensuring that technology-based reforms 
lead to end-user adoption and changed practice” 
(Karp & Fletcher, 2014, p. 13). For this to occur, colleges 
must not only have sufficient technological resources, 
they must also attend to the cultural components of 
readiness. Notably, the framework acknowledges the 
existence of various micro-cultures within an orga-
nization — groups of individuals, each with their own 
culture, norms, and attitudes toward technology (see 
Karp & Fletcher, 2014).

Crafting Strategies for Student Success
Strategy is focused, consistent behaviour over time, 
responding to ongoing changes in the environment 
(Mintzberg, Ahlstrand, & Lampel, 1998). In order to 
unleash the transformative power of learning analytics, 
institutions should craft and execute active strategies 
that enhance student success. These strategies become 
the mechanism for enhancing capacity and focusing 
attention on the strategic intent of enhancing student 
success. Active strategies achieve four outcomes: 1) set 
direction, 2) focus effort, 3) define the organization, 
and 4) provide consistency (Baer & Norris, 2016a). Table 
26.3 illustrates typical student success strategies for 
a sample institution.

Change Management Plan for Student 
Success
Optimizing student success is one of the great change 

management challenges facing institutional leaders. 
Institutions need to embark on ongoing expeditions 
to leverage predictive learning analytics (and others) 
for student success. Table 26.4 illustrates the sort of 
overarching change management plan that enables 
institutions to turn student success initiatives into 
institutional strategies that will transform culture, 
processes, and practices over time.

Effective change management interventions for student 
success can accelerate the rate at which institutions 
embed learning analytics-driven interventions into 
the organization. They can focus the attention of 
leadership at all levels on the importance of changing 
culture and communication.

What can be learned from examining institutions that 
have been embedding learning analytics into their 
processes, practices, and student success strategies? 
Let’s use two lenses: “instructive failures” and “suc-
cess stories.”

Instructive Failures
What constitutes an instructive failure in the embedding 
and leveraging of analytics in institutional processes 
and culture? In most cases, failure does not mean 
complete and abject rejection of embedded learning 
analytics. Rather, it means failure to overcome orga-

INSTRUCTIVE FAILURES AND 
SUCCESS STORIES

Strategies Description

Strategy #1: Develop Unified Data, Infor-
mation, and Predictive Learning Analytics 
for Student Success

Strategy #1 should focus on improving the data, information, and analytics capacity of the 
institution. The individual goals under this strategy should focus on technology infrastructure; 
policies, processes, and practices; and skills and talent development as indicated in Table 26.2. 
These goals should establish metrics and stretch targets for the five-year planning timeframe.

Strategy #2: Integrate Planning, Re-
sourcing, Execution, and Communication 
(PREC) for Student Success

Practical experience has shown that institutions are plagued by fragmented processes and prac-
tices for planning, resourcing, executing, and communicating (PREC) student success initiatives. 
Strategy #2 should establish the goal of integrating PREC activities across the seven dimensions 
of student success optimization: 1) managing the pipeline; 2) eliminating bottlenecks, copying 
best practices; 3) enabling dynamic intervention, 4) enhancing iPASS; 5) leveraging next gen 
learning and learning analytics; 6) achieving unified data; and 7) extending the definition of stu-
dent success to include employability and career success (Baer & Norris, 2016b). This strategy 
should establish metrics for improving practice along these seven dimensions and set stretch 
goals.

Strategy #3: Advance Individual Planning 
and Advising for Student Success 
(iPASS)

iPASS is one of the game changers in student success. Strategy #3 should focus on enhancing 
the institution’s current iPASS platform and practices. Goals should focus on integrating iPASS 
with other platforms and analytics and with new approaches to learning interventions such 
as personalized learning. Dramatically increasing the number, effectiveness, and targeting of 
interventions should be a goal and metric. See Seven Things You Should Know About IPAS  and 
iPASS Grant Recipients.

Strategy #4: Integrate Personalized 
Learning and Competence Building into 
Institutional Practice

Personalized learning also promises to be a game changer. Strategy #4 should focus on expand-
ing next gen learning innovations and taking them to scale across the institution. Introducing 
competence building will be an important differentiator for the institution in the longer term.

Strategy #5: Integrate Employability and 
Workforce Data into Institutional Practice

Strategy #5 has a longer time frame than the others but it is likely to have important long-term 
impacts. Getting started now will enable institutions to establish a competitive advantage.

Table 26.3. Crafting Active Strategies for Student Success
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nizational inertia to deploy and leverage embedded 
analytics in an effective manner that aggressively 
advances student success. Consider the following 
common examples:

• Many institutions make poor selection decisions 
in analytics tools, applications, and solutions. This 
may be due to who actually was responsible for 
purchasing the technology, better solutions that 
subsequently became available, how the campus 
systematically determined the integration of 
the tool, and ongoing investment in people and 
resources to launch and sustain the technologies. 
Even some of the most successful institutions have 
had to overcome poor selection decisions and/or 
migrate to better options that became available.

• Fundamentally, many institutions have not in-
vested sufficiently in their data and information 
foundation. Their data are fragmented and cannot 
be combined across siloed databases; data are 
literally “hiding in plain sight.” Achieving unified, 

accessible data requires persistent attention to 
data governance and is critical to leveraging an-
alytics to achieve student success.

• Even institutions that have invested in excellent 
analytics packages often sub-optimize their use 
of these capabilities. By failing to prepare staff 
and faculty for how they can use these tools to 
identify at-risk behaviour and launch interven-
tions, institutions sub-optimize their impact. 
Studies report that faculty believe they could be 
better instructors and students indicate that they 
could improve learning if they increased the use 
of the LMS (Dahlstrom, Brooks, & Bichsel, 2014). 
All of the ERP LMS and analytics vendors report 
on this problem, but do not yet provide adequate 
talent development at the implementation stage 
to overcome it.

• Many institutions that do achieve advances in 
data, information, and analytics often fail to 
“connect the dots” by integrating all of the differ-

Element Sample Description

I. Aligning the student success initiatives to institutional context

Collaboration: What sort of guiding coa-
lition and campus teams are needed?

The institution forms a guiding coalition to oversee student success. This is a cross-disciplinary 
team that evolved from integrated planning for student success. The guiding coalition will serve 
as the steward/shepherd for the execution of the student success strategy.

Culture: How can you align with institu-
tional culture and intentionally change it 
over time?

In assessing its current organizational culture and context, the institution assesses its insti-
tutional culture for using data, information, and analytics to support student success. They 
also assess the current capacity and culture to engage all staff and faculty in student success 
efforts. They express their intent to move from a culture of reporting to a culture of evi-
dence-based decision making and more aggressive interventions to build student success.

Leadership: What role does leadership 
at all levels play in optimizing student 
success?

The institution’s assessments establish that executive leadership is critical to building support 
for student success efforts, mobilizing energies, and building commitment. This is true at all 
stages of student success development. To achieve a highly functional state of student success 
achievement, leadership and talent must be developed at all levels of the organization.

II. Connecting new student success initiatives to current student success efforts and data systems/analytics

Integration: How can we “connect 
the dots” linking all student success 
initiatives?

To overcome the extreme fragmentation in its student success processes, the institution partic-
ipates in integrated strategic planning for student success. Utilizing the rubrics, strategies, and 
expedition maps emerging from this process, the guiding coalition will assure the integration and 
alignment of resourcing, execution, and communication.

Data and Analytics Resources: What 
current resources are available and what 
additional ones are needed?

The initial gap analysis of investment in student success initiatives and data, information, and 
analytics, in particular, reveal a performance gap and actions to fill the gap. Leveraging analytics 
is critical to optimizing student success and to monitoring and setting stretch goals.

Responsibility: Who is responsible for 
the elements of optimizing student 
success?

The initial assessment yields a mapping of responsibilities for all aspects of student success 
optimization. This mapping then guides the formation, composition, and functioning of the 
guiding coalition.

III. Engaging faculty, staff, and other stakeholders to change their perspectives and practices, and enable process 
and practice improvement

Communication: Who are the key stake-
holders and what kind of communication 
plan is needed?

The initial integrated planning assessment yields a mapping of the stakeholders for student 
success activities. This mapping has guided the formation, composition, and functioning of the 
guiding coalition.

Talent Development: What sort of talent 
development is needed to develop facul-
ty and staff?

Talent development needs emerge from innovation and expeditionary strategy crafting work-
shops. These drive the skills development elements of the five strategies.

Demonstrate Success: How do we 
achieve early victories and demonstrate 
value-added and ROI?

So-called “low-hanging fruit” are identified throughout the innovation and expeditionary strategy 
crafting workshops. These elements are then regularly updated and utilized by the guiding 
coalition.

Table 26.4. Change Management Plan for Student Success
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ent student success interventions and activities 
across the institution. Failing to integrate plan-
ning, resourcing, execution, and communication 
(PREC) for student success will doom institutional 
efforts to sub-optimization.

Examples of similar instructive failure experiences 
can be found at most colleges and universities that 
are moving forward, but tentatively, in the effective 
deployment of embedded learning analytics. What 
can we learn from institutions that excel in leveraging 
embedded learning analytics?

Success Stories: Institutions Getting it 
Right
A small group of institutions have displayed the vision, 
leadership, and careful execution needed to leverage 
embedded analytics to advance student success. But 
even these leaders are far from done. They all report 
that student success analytics efforts are 5–7 year 
campaigns where the standards for success are con-
tinuously shifting upward. These long slogs require 
ongoing campus learning, flexibility, and research on 
what works and what doesn’t. Consider the following 
success stories.

American Public University System (APUS) is an 
online, for-profit provider that has been a leader in 
using embedded analytics for over ten years. Ana-
lytics-driven interventions are part of their culture, 
and their student success innovations span the entire 
institution. Every week they evaluate and rank the risk 
level for all of their students and drive appropriate 
actions/interventions (Rees, 2016).

Arizona State University (ASU) has been a leader in 
the use of analytics-driven interventions in remedi-
al education, advising, degree planning, and other 
vectors of student success over a long period. Their 
president is a nationally recognized champion in the 
strategic use of analytics. They have been pursuing 
adaptive courseware pilots, run as part of the Next 
Generation Courseware Challenge funded by the Bill 
& Melinda Gates Foundation, which provide strong 
evidence of its positive effect on the learner experi-
ence. Important to the success was the development 
of data and dashboards that enhance interaction and 
communication between faculty and students (Johnson 
& Thompson, 2016).

University of Maryland University College (UMUC) 
has developed an industry-leading capability to use 
predictive analytics to lead targeted learner inter-
ventions. Their enterprise-wide effort enjoys strong 
presidential leadership. UMUC is an industry leader in 
analyzing big data to identify appropriate and effective 
learner interventions, and the Center for Innovation 
in Learning and Student Success (CILSS) is providing 

research support for these efforts to improve student 
outcomes. The university is bringing learning analytics 
to bear on the full range of student concerns, from 
selecting courses to making the best use of study time.2 

Sinclair Community College has been investing in 
data, information, and analytics for well over a decade. 
Its efforts began with merging three units to create a 
Business Intelligence Competency Center, developing 
a comprehensive data warehouse to provide “a single, 
unified version of the truth,” and practice active data 
stewardship, data integration, and data quality. These 
supported one of the first iPASS systems and aggressive 
degree planning, which were used to make analyt-
ics-driven intervention in support of student success 
a key activity across the institution (Moore, 2009).3

Colorado State University (CSU) has achieved sig-
nificant increases in graduation rates and has all but 
eliminated the minority achievement gap over the past 
decade. Its strategy for student success calls for even 
greater gains over the next decade. CSU has enhanced 
its performance by making student success a recog-
nized institutional strategy and has organized around 
that principle. They have a VP for Student Success and 
have mobilized an active network of faculty, staff, and 
others to improve academic, co-curricular, and other 
student experiences. Student success is accepted as 
being everyone’s job. Data, information, and analytics 
have been key elements of the university’s progress and 
are embedded in the highly integrated student success 
processes and practices (Lamborn & Thayer, 2014).

Even the most advanced institutions do not believe 
they are done. New tools and practices keep raising 
the bar for student success analytics and practices. 
The best is yet to come.

As institutions seek to unleash the transformative 
power of learning analytics, they must be prepared 
for an extended campaign, punctuated by carefully 
planned victories and demonstrations of how lever-
aging analytics can enhance student success. Insti-
tutional strategy for student success is an emergent 
pattern of focused, consistent behaviour over time, 
responding to changing environmental conditions 
and new trends as they present themselves (Mintzberg 
et al., 1998, p. 5). The key to optimizing student success 
is an aggressive combination of leadership, active 
strategy, and change management, as illustrated in 
2 See Predictive Analytics Leads to Targeted Learner Interventions: 
http://www.umuc.edu/innovatelearning/initiatives/analytics.cfm 
and Predictive Analytics for Student Success: Developing Da-
ta-Driven Predictive Models of Student Success: http://www.umuc.
edu/visitors/about/ipra/upload/developing-data-driven-predic-
tive-models-of-student-success-final.pdf
3 See My Academic Plan: https://www.sinclair.edu/services/ba-
sics/academic-advising/my-academic-plan-map/

CONCLUSION
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Figure 26.2.

To prepare for and leverage these developments, the 
faculty and administration should coordinate and 
focus their activities in distinctive ways, using re-
search-based decision making and developing their 
own site-specific best practices.

Individual Faculty Seeking to Become 
Accomplished Learning Analytics Practi-
tioners
Learning-analytics-based projects are not just technical 
innovations; they are adaptive innovations, requiring 
active engagement of all participants in co-creating 
the design and outcomes (Heifetz, 2014). Individual 
faculty should realize that the introduction of learning 
analytics tools challenge some of the basic, traditional 
cultures of institutions. They will require new, more 
collaborative approaches to innovation and to the 
pervasive use of shared, performance-based evidence. 
Building skills in learning analytics should be a highly 
strategic move for faculty — if such skills are recog-
nized, valued, and rewarded by academic leadership.

Communities of learning analytics practice will likely 
emerge and draw individual faculty into collaborations 
beyond their academic departments. This will also 
require a more comprehensive understanding and 
use of learning and course management systems. 
ECAR’s report on The Current Ecosystem of Learning 
Management Systems in Higher Education: Student, 
Faculty, and IT Perspectives (Dahlstrom et al., 2014) 
concluded from surveys that:

• Faculty and students value the LMS as an enhance-
ment to teaching and learning experiences, but 
relatively few use the full capacity of the systems.

• User satisfaction is highest for basic LMS features 
and lowest for collaboration and engagement 
features.

• Faculty say they could be more effective instruc-
tors and students could be better students with 
more skilled use of the LMS.

• Students and faculty want the LMS to have 
enhanced features and operational functions; 
be personalized; and use analytics to enhance 
learning outcomes.

In addition, faculty must understand the emerging 
features of next generation digital learning environ-
ments (Brown, Dehoney, & Millichap, 2015). These new, 
cloud-based platforms will be loosely coupled and will 
enable better integration of analytics, varying modes 
of learning, learning objects, and mobile learn apps.

Institutional Faculty and Staff Involved 
with Student Success Initiatives
Large-scale student success initiatives are creating 
new opportunities for individual faculty and staff to 
participate in cross-department and cross-function 
collaborations. These efforts will dramatically increase 
the number and effectiveness of interventions to en-
hance student success. Greater understanding of what 
interventions are working for which students will be 
critical. Institutions can expand the return on invest-
ments in interventions when they target the initiatives 
to students who will most benefit in a timely manner 
(Baer & Norris, 2016b). There are several approaches 
to improving student success initiatives including a 
more focused effort through a student success team. 
This approach brings multiple institutional players 
together to better integrate and collaborate on behalf 
of services to students. Service providers can better 
leverage institutional resources, jointly reviewing 
and selecting technologies to support services and 
providing ongoing evaluation of what works. 4

More specific to learning analytics is understand-
ing the following: 1) metrics to measure learning, 2) 
availability, use, and training on tools such as learning 
management systems and course management systems, 
3) an inventory of interventions or actions available as 
risky learning behaviour is identified, 4) clear policies 
and practices supported by data governance, and 5) 
ongoing linkages to skills, competencies, and workforce.

Institutional Leaders and Policy Makers 
Seeking to Unleash the Transformative 
Power of Learning Analytics
Institutional leadership must actively discharge their 
responsibility to craft the institutional strategies and 
change management plans to enhance student success 
that will ultimately unleash the power of learning ana-
lytics. In the process, they will progressively transform 
the organizational culture and context. These efforts 
will require a dynamic combination of leadership, 
4 See Elevation through Collaboration: Successful Interventions for 
Students on Probation: http://www.nacada.ksu.edu/Resources/
Academic-Advising-Today/View-Articles/Elevation-through-Col-
laboration-Successful-Interventions-for-Students-on-Probation.
aspx Hints on how to scale initiatives can be found in Scaling Com-
munity College Interventions: http://www.publicagenda.org/files/
CuttingEdge2.pdf

Figure 26.2. Unleashing the transformative power of 
learning analytics.
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active strategy, and change management to achieve 
their potential. The details are critical in policy and 
practice development around learning analytics. It is 
apparent in conversations with campuses that inter-
pretations about data privacy and protection can in 
fact hinder the adoption and deployment of learning 
analytics. Institutions must deal with the ecosystem of 
ethical issues and policy changes in order to 1) insure 
proper collection and use of data, 2) protect individual 
rights concerning the use of data, and 3) support the 
ethical and legal use of data within the institution. 
To this end, the purpose and boundaries regarding 
the use of learning analytics should be well defined 
and visible. Students should be engaged as active 
agents in the implementation of learning analytics 
(e.g., informed consent, personalized learning paths, 
and interventions.) Slade identifies gaps around policy 
for use of learning analytics in the following areas: 1) 
moral purpose; 2) purpose and boundaries; 3) informed 
consent; 4) collection, analyses, access to, and storage 
of data; 5) students as active agents, and 6) labelling 
and stereotyping (Slade, n.d.).

Employers and Policy Makers Provide Ef-
fective Linkages to Career and Workforce 
Knowledge
The addition of competence, career, and workforce 
knowledge to the information base supporting student 
success efforts will be a major breakthrough. It will 
stimulate new approaches and practices and support 
the emergence of highly effective iPASS in institutions. 
These linkages are continuing to be developed. Some 
fields are clearly mandating certification and use evi-
dence of skill competencies. Advances in the field are 
now enabling match ups of job or career needs with 
competencies demonstrated.

Put simply, learning analytics are destined to be in-
strumental in the transformation of how we prepare for 
and live our lives, guided and sustained by perpetual 
learning. They will surely impact the transformation 
of many aspects of colleges, universities, and other 
learning enterprises — and faculty, staff, students, 
and others who make them work.
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The past ten years have been interesting in the fields 
of education and learning technology, which seem to 
be in flux. Whereas past research in education relat-
ed to the educational triangle of learner, instructor, 
and course content (Kansanen & Meri, 1999; Meyer 
& Land, 2006 ), newly developed technologies put an 
emphasis on other dimensions influencing learning; 
for instance, the learning context or learning setting 
and the technologies being used (Bouchard, 2013). 
Fenwick (2015a) posits that humans and the technol-
ogies they use are not separate entities: “material and 
social forces are interpenetrated in ways that have 
important implications for how we might examine 
their mutual constitution in educational processes 
and events” (p. 14). Not only is there an interaction 
between humans and materials such as technology 
but also a symbiotic relationship.

New technologies have moved us from an era of scarcity 
of information to an era of abundance (Weller, 2011). 
Social media now make it possible to communicate 
across networks on a global scale, outside the traditional 
classroom bound by brick walls. Communication on 

such a global scale would have been unimaginable not 
long ago. Data and data storage have evolved under 
the influence of emerging technologies. Instead of 
capturing data and storing it in a database, we now 
deal with large data-streams stored in the cloud, which 
might be represented and visualized using algorithms 
and machine learning. This presents interesting op-
portunities to learn from data, revealing with it hidden 
insights but important challenges as well.

Questions have been raised about how stakeholders 
— learners, educators, and administrators — in the 
educational process might manage and access all these 
levels of information and communication effectively. 
Computer scientists have suggested opportunities for 
automated data filtering and analysis that could do 
exactly that: sift through all data available and provide 
learners with connections to and recommendations 
for their preferred information, people, and tools, 
and in doing so personalize the learning experience 
and aid learners in the management and deepening 
of their learning (Siemens, Dawson, & Lynch, 2013). In 
addition, examples of research using huge institutional 
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datasets are emerging, made possible by accessing 
data from traces left behind by learner activity (Xu & 
Smith Jaggars, 2013).

In discussing changes big data might force onto 
professional practice, Fenwick (2015b) highlights, for 
instance, the “reduction of knowledge in terms of 
decision making. Data analytics software works from 
simplistic premises: that problems are technical, com-
prised of knowable, measurable parameters, and can 
be solved through technical calculation. Complexities 
of ethics and values, ambiguities and tensions, culture 
and politics and even the context in which data is 
collected are not accounted for” (p. 70).

This is an important issue. She further emphasizes 
that the current developments involving data might 
change our everyday practice in ways that may not 
quite be understood when implemented. For instance, 
she highlights equality issues that arise when there is 
a dependence on comparison and prediction (Fenwick, 
2015b). Moreover, her research led to the conclusion 
that research methodologies taught to prospective 
educators and educational researchers are completely 
inadequate in dealing with the big datasets available 
to enhance their practice. Furthermore, she wonders 
about “the level of professional agency and account-
ability. Much data accumulation and calculation is 
automated, which opens up new questions about 
the autonomy of algorithms and the attribution of 
responsibility when bad things happen” (p. 71). These 
are serious questions that need careful consideration. 
This chapter will address some of the challenges re-
lated to educational data mining and analytics using 
large datasets in research and user data in algorithms 
for learner support. It will also explore the impact of 
automation and the possible dehumanizing effects of 
replacing human communication and engagement in 
learning with technology.

Reliability and Validity
Educational data mining (EDM) is an emerging discipline, 
concerned with developing methods for exploring the 
unique types of data that come from educational set-
tings, and using those methods to better understand 
students and the settings in which they learn (Ed Tech 
Review, 2016). Educational data mining is wider than 
its name would imply and it goes beyond the scope 
of simply mining educational data for information 
retrieval and building a better understanding of learn-
ing mechanisms. Hence, EDM also aims at developing 
methods and models to predict learner behaviours 

using machine learning and statistical approaches 
governed by scientific concerns related to validity, 
reproducibility, and generalizability.

Learning analytics (LA) is closely related to the field 
of EDM and is concerned with the measurement, col-
lection, analysis, and reporting of data about learners 
and their contexts for purposes of understanding and 
optimizing learning and the environments in which it 
occurs (Long & Siemens, 2011). EDM techniques and LA 
are being used to augment the learning process. These 
seem promising in aiding in the provision of effective 
student support, and although there is promise that 
these new developments might enhance education and 
learning, major challenges have also been identified.

To some extent, EDM is not only a research area, 
thriving due to the prolific contributions of researchers 
from all around the world, but also a science. Recently, 
Britain’s Science Council defined science as “the pur-
suit of knowledge and understanding of the natural 
and social world following a systematic methodology 
based on evidence” (British Science Council, 2009). 
Evidence is a requirement to any claim made in the 
field; as in any other scientific domain, educational data 
mining and analytics researchers require evidence to 
support or reject claims and discoveries drawn from 
or validated by educational data.

However, a common definition of what makes good 
or poor evidence is not that obvious in the EDM and 
LA research community, which has brought together 
scientists from “hard” (Computer Science) and “soft” 
sciences (Education). We will provide here some ex-
amples of inconsistencies and procedural flaws that 
we have come across during our own research. Thanks 
to data sharing, Long and Aleven (2014) were able to 
contradict learning claims of a gamified approach in 
an intelligent tutoring system. However, sometimes 
sharing datasets is not sufficient; some research work 
requires extensive preprocessing as several choices 
(biases) are made during those steps that may be hard 
to define clearly in a research paper. Another team 
trying to prepare the dataset following the same rules, 
therefore, might not manage to do so. The nature of 
the software used in preprocessing can also have an 
impact. The implementation of key methods can vary 
when using R, SPSS, Matlab, and other tools, leading 
to potentially different conclusions.

Another contentious aspect is the a priori assumption 
or “ground truth” that a statistical model would be built 
upon. This is the case, for example, in competency 
frameworks where mapping between items and skills 
defined by human experts is questionable (Durand, 
Belacel, & Goutte, 2015). Skills, like many other latent 
traits, are sometimes hard to characterize. To that 
end, PSLC Data Shop offers an incredible environment 

THE OPPORTUNITIES OF 
EDUCATIONAL DATA MINING IN 
LEARNING MANAGEMENT
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for learning experts to test their competency frame-
works, as the observed results obtained by students 
help them to improve and share their mapping. It is 
also a great tool to share datasets among EDM and 
LA practitioners since sharing datasets is valuable in 
identifying problems. Sharing should become com-
monplace and no major published results should be 
seriously considered without the possibility for other 
teams to validate the claims.

Some other issues might raise questions, such as 
considering statistical studies and particularly linear 
correlational measures. EDM gathers researchers with 
different practices and with different perspectives 
on what could or should not be used as evidence. 
While in “hard science” a significant Pearson correla-
tion below r=.5 would be systematically considered 
weak, it is usual in “soft science” to consider r=.3 
values to be strong, especially regarding personality 
traits. Psychologists even call this .3 threshold, the 
“personality coefficient” because most relationships 
between personality traits and behaviours tend to be 
around that value, including the relationship between 
competency and performance (Mischel, 1968, p. 78). 
Work done in EDM regarding sentiment analysis (Wen, 
Yang, & Rosé, 2014) provides such an example, where 
it is difficult to provide computational outcomes from 
meaningful “soft” science research results on dropout 
rates in MOOCs. It might also be suggested that the 
topic under investigation would be better researched 
through qualitative techniques. However, relationships 
in this form of quantitative EDM remain weak when 
the intent is to infer predictions. Specifically, a .3 cor-
relation that by definition explains 9% of the variance 
in the criterion may be of limited value in predictions 
in the area of sentiment analysis.

Several statistics tests can be significant as well but 
not really truthful regarding the accuracy of the re-
sults. El Emam (1998) evaluated how the Chi-Square 
test could be misleading in evaluating the predictive 
validity of a classifier, showing that same Chi-Square 
results could prove either strong or weak accuracies. 
More recently, Gonzalez-Brenes and Huang (2015) 
proposed the Leopard metric as a standard way of 
evaluating adaptive tutoring systems and increasing 
the evaluation results of the predictive accuracy of the 
system by evaluating their usefulness. They proposed 
to evaluate the amount of effort required by learners 
in those systems to achieve learning outcomes. After 
all, usefulness measures might be what the people 
using the systems are most interested in.

To that end, Ryan Baker, one of the most prominent 
researchers of the EDM community, in his MOOC en-
titled “Big Data in Education” provides examples and 
good practical advice to help researchers understand 

and check more wisely the validity of their models 
(generalizability, ecological, construct, and predictive, 
substantive, and content validity). In his course, Baker 
emphasized using Kappa and even better A’ to measure 
respectively how a “detector is better than chance” 
and “the probability a detector will correctly identify” 
a specific trait to overcome some of the flaws of other 
metrics for classifiers like accuracy, ROC, precision, 
and recall or Chi-Square (Ocumpaugh, Baker, Gowda, 
Heffernan, & Heffernan, 2014, p. 492). However, A’ and 
Kappa use seems limited in EDM publications so far.

Critically, we would like to emphasize the importance 
of research integrity. It might be appealing in EDM 
and LA to provide “made up” results. Our own work 
has shown that obtaining tangible results usually 
requires many attempts, much work is done without 
any guaranty of success, and the validation process 
appears problematic. So far, no major cases of falsifying 
results have been revealed but providing guidelines 
regarding transparency should be of greater concern to 
avoid potential future cases of fraud and misconduct, 
as observed in other scientific areas (Gupta, 2013).

We argue that in the developing fields of LA and EDM, 
the scientific ideal is ambitious and requires that re-
searchers carefully check the scientific robustness of 
their claims. Even though research is fuelled by grants 
based on promises that it will impact human learning 
in the near future, it is important to take the time to 
safeguard the scientific integrity of the emerging fields 
of LA and EDM. This requires careful consideration by 
us all of the methods used and the results obtained.

The Challenges of Qualitative Data 
Analysis
If we look at the development of educational research 
over the past decades, there is a distinct movement 
from quantitative towards qualitative research (Gergen, 
Josselson, & Freeman, 2015). Psychologists increasingly 
support the idea that the intricacies of learning and 
knowing cannot be determined by testing individuals’ 
behaviour alone. The study of the richness of learner 
actions and thinking in relation to the society they 
live in, and their communications with those in their 
knowledge networks, provides a much deeper, more 
inclusive, and critically cultural understanding of 
people’s knowledge development and learning (Chris-
topher, Wendt, Marecek, & Goodman, 2014; Denzin & 
Lincoln, 2011; Gergen et al., 2015).

The current technology-rich learning environment is 
not just a walled-in classroom but involves global net-
work communications too; these encompass reflexive 
narrative and rich imagery, challenging researchers to 
re-invent their research methodologies. Moving beyond 
end-of-course surveys to reveal student satisfaction, 
mining the data produced by learners, analyzing the 
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narrative, images, and visualizations produced during 
the online learning experience — all of these offer op-
tions for understanding the rich tapestry of learning 
interactions. Analyzing the fundamental dimensions 
in the changing assemblages of words and images on 
social media that now form part of the learning envi-
ronment might get more to the heart of the learning 
process than official course evaluations.

Research on PLENK2010 and CLOM REL 2014, two mas-
sive open online courses (MOOCs), has highlighted the 
challenges that such research involves (Fournier & Kop, 
2015; Kop, Fournier, & Durand, 2014). Previous MOOC 
research provided both bigger and richer datasets than 
ever before, with powerful tools to visualize patterns 
in the data, especially on digital social networks. The 
work of uncovering such patterns, however, provided 
more questions than answers from the pedagogical 
and technical contexts in which the data were gener-
ated. Moving towards a qualitative approach in trying 
to understand why MOOC participants produced the 
data that they did prompted a critical reflection on 
what big data, EDM, and LA could and could not tell 
us about complex learning processes and experiences.

Boyd (2010) expressed it in the following way:

Much of the enthusiasm surrounding Big Data 
stems from the opportunity of having easy 
access to massive amounts of data with the 
click of a finger. Or, in Vint Cerf’s words, “We 
never, ever in the history of mankind have had 
access to so much information so quickly and 
so easily.” Unfortunately, what gets lost in this 
excitement is a critical analysis of what this 
data is and what it means. (p. 2)

In dealing with so much data and information so 
quickly, researchers need to envisage the optimal 
processes and techniques for translating data into 
understandable, consumable, or actionable modes 
of representation in order for results to be useful 
and accessible for audiences to digest. The ability to 
communicate complex ideas effectively is critical in 
producing something of value that translates research 
findings into practice. Questions have been raised 
about how stakeholders in the educational process 
(i.e., learners, educators, and administrators) might 
access, manage, and make sense of all these levels of 
information effectively; EDM and LA methods hint at 
how automated data filtering and analysis could do 
exactly that. This can lead to potentially rich infer-
ences about learning and learners but also raise many 
new interesting research questions and challenges in 
the process. In so doing, researchers must strive to 
demonstrate how the data are meaningful, as well as 
appealing to various stakeholders in the educational 
process while engaging in responsible innovation with 

thoughtful research designs and implementations 
(Berland, Baker, & Blikstein, 2014).

Algorithms, Serendipity, and the “Human” 
in Learning: A Critical Look at Learning 
Analytics
A body of literature is slowly developing in EDM and 
LA. Essentially, it is not easy to use technology to an-
alyze learning or use predictive analytics to advance 
learning. Issues around the development of algorithms 
and other data-driven systems in education lead to 
questions about what these systems actually replace 
and whether this replacement is positive or negative. 
Secondly, who influences the content of data-driven 
systems and what value might they add to the edu-
cational process?

In online education, but also in a connectivist networked 
environment (Jones, Dirckinck-Holmfeld, & Lindström, 
2006), communication and dialogue between partici-
pants in the learning endeavor have been at the heart 
of a quality learning experience. This human touch is 
a necessary component in developing learning sys-
tems and environments (Bates, 2014). The presence 
and engagement of knowledgeable others has always 
been seen as vital to extend the ideas, creativity, and 
thinking of participants in formal learning settings, but 
also in online networks of interest (Jones et al., 2006).

When developing data-driven technologies for learning, 
it seems important to harness this human element 
somehow for the good of the learning process. This 
means that in the filtering of information, or the asking 
of Socratic questions, the aggregation of information 
should be mediated via human beings (Kop, 2012). Social 
microblogging sites such as Twitter have been shown 
to do this successfully, as “followers,” who provide 
information and links to resources, have been chosen 
by the user and are seen to be valuable and credible 
(Bista, 2014; Kop, 2012; Stewart, 2015). In algorithms, 
these judgements are difficult to achieve, but perhaps 
a combination of recommender systems, based on 
data, and support and scaffolding applications based 
on communication, would facilitate this.

It is important to consider who influences the content 
of data-driven systems and what value they might add 
to the educational process. Furthermore, not only do 
the affordances and effectiveness of new technologies 
need to be considered, but also a reflection on the ethics 
of moving from a learning environment characterized 
by human communication to an environment that 
includes technical elements over which the learner 
has little or no control.

One of the problems highlighted in the development 
of algorithms is the introduction of researcher biases 
in the tool, which could affect the quality of the rec-
ommendation or search result (Hardt, 2014). Proper 
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training of the people working with the data can make 
all the difference (Fenwick, 2015b; Boyd & Crawford, 
2012). Presently, computer scientists and mathema-
ticians, who do not necessarily have a background in 
the social sciences, produce the applications. As Boyd 
and Crawford (2012) compellingly argue:

When computational skills are positioned 
as the most valuable, questions emerge over 
who is advantaged and who is disadvantaged 
in such a context. This, in its own way, sets 
up new hierarchies around “who can read the 
numbers,” rather than recognizing that com-
puter scientists and social scientists both have 
valuable perspectives to offer. Significantly, this 
is also a gendered division. Most researchers 
who have computational skills at the present 
moment are male and, as feminist historians 
and philosophers of science have demonstrated, 
who is asking the questions determines which 
questions are asked. (p. 674)

Boyd and Crawford (2012) suggest that computer 
scientists and social scientists should work together 
to develop bias-free, high quality analytics tools, 
and that teamwork with people in different fields 
might also be fruitful for the mining and analysis of 
big data. Of course, the expansion and availability of 
data has also made it attractive to make use of them, 
but there are again some challenges. Human beings 
for the most part get their information from sourc-
es that they trust, but as Fenwick (2015b) suggests, 
the use of new techniques might change “everyday 
practice and responsibilities in ways that may not be 
fully recognised” (p. 71). She highlights, for instance, 
that a reliance on comparison and prediction “can be 
self-reinforcing and reproductive, augmenting path 
dependency and entrenching existing inequities,” 
especially if the people producing the algorithms are 
not aware of the reinforcement of stereotypes when 
big data is not used carefully.

Furthermore, we should not underestimate the fact 
that most of the algorithms currently in use were pro-
duced for economic gain and not to enhance deeper 
levels of learning or add value to society. As argued 
by Kitchin (2015), “Software is not simply lines of code 
that perform a set of instructions, but rather needs 
to be understood as a social product that emerges 
in contingent, relational and contextual ways, the 
outcome of many minds situated with diverse social, 
political and economic relations” (p. 5). Clearly, the 
development of automated algorithm systems has 
another inherent problem wherein it might be hard 
to point a finger towards who is responsible when 
things go wrong.

Some Ethical Considerations
Open learning environments combined with powerful 
data analysis tools and methods bring new affordances 
and support for learning but also highlight important 
ethical issues and challenges that move learners from 
an environment characterized by human communi-
cation to one that includes technical elements over 
which the learner has little or no control. Much of the 
commercial effort in Web development is informed by 
big data and is lacking in any innovative educational 
insights (Atkinson, 2015). We agree that “It is the schol-
arship and research informed learning design itself, 
grounded in meaningful pedagogical and andragogical 
theories of learning that will ensure that technology 
solutions deliver significant and sustainable benefits” 
to education (Atkinson, 2015, p. 7).

The dynamic pace of technological innovation, including 
EDM and LA, also requires the safeguarding of privacy 
in a proactive manner. In order to achieve this goal, 
researchers and system designers in the fields of EDM 
and advanced analytics must practice responsible inno-
vation that integrates privacy-enhancing technologies 
directly into their products and processes (Cavoukian 
& Jonas, 2012). According to Oblinger (2012), “Analytics 
is a matter of culture — a culture of inquiry: asking 
questions, looking for supporting data, being honest 
about strengths and weaknesses that the data reveals, 
creating solutions, and then adapting as the results of 
those efforts come to fruition” (p. 98).

With this in mind, we strongly recommend that those 
designing and building next generation analytics 
ensure that they are informed by Privacy by Design. 
This entails mindfulness and responsible practice 
involving accountability, research integrity, data 
protection, privacy, and consent (Cavoukian & Jonas, 
2012; Cormack, 2015). The line between private and 
public data is increasingly becoming blurred as more 
opportunities to participate in open learning envi-
ronments are created and as data about participants, 
their activities, their interactions, and their behaviours 
are made accessible through social media, such as 
Facebook, Twitter, Google, and potentially any other 
social media tool available online. In the context of 
big data, we agree with the European Data Protection 
Supervisor (2015) who states that “People want to 
understand how algorithms can create correlations 
and assumptions about them, and how their combined 
personal information can turn into intrusive predica-
tions about their behaviour” (p. 10).
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CONCLUSION

Significant questions about truth, control, transparency, 
and power in big data studies also need to be addressed. 
Pardo and Siemens (2014) maintain that keeping too 
much data (including student digital data, privacy-sen-
sitive data) for too long may actually be harmful and 
lead to mistrust of the system or institution that has 
been entrusted to protect personal data. Discussions 
around big data ethics have underscored important 
methodological concerns related to data cleaning, data 
selection and interpretation (Boyd & Crawford, 2012), 
the invasive potential of data analytics, as well as the 

potential dehumanizing effects of replacing human 
communication and engagement with automated ma-
chine-learning algorithms and feedback. Researchers 
and developers must be mindful of the affordances 
and limitations of big data (including data mining and 
predictive learning analytics) in order to construct 
useful future directions (Fenwick, 2015b). Researchers 
should also work together in teams to avoid some of 
the inherent fallacies and biases in their work, and to 
tackle the important issues and challenges in big data 
and data-driven systems in order to add value to the 
educational process.
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First, a caveat: the descriptions in this chapter should 
not be used as a guide to compliance, since legal re-
quirements are constantly changing. It instead provides 
ways to think about the issues that people discuss 
under the banner of “student privacy” and the broader 
issues often neglected. In the United States, privacy 
rules vary across sectors. Traditional approaches to 
student privacy, most notably the Family Educational 
Rights and Privacy Act (FERPA),1 rely on regulating how 
schools share and allow access to personally identi-
fiable student information maintained in education 
records. They use informed consent and institutional 
oversight over data disclosure as a means to ensure 
that only actors with legitimate educational interests 
can access personally identifiable student information. 
This approach aligns with the Fair Information Practice 
Principles — typically notice, choice, access, and right 
1 Family Educational Rights and Privacy Act (2014): see https://
www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html?src=rn and 
https://www2.ed.gov/policy/gen/guid/fpco/pdf/ferparegs.pdf 

to amend — that have been at the core of most privacy 
regulation since the early 1970s. These early privacy 
rules also focus primarily on disclosure of student 
information without addressing educators’ collection, 
use, or retention of education records.

Newer approaches to student privacy tend to simply 
prohibit certain practices or require them to serve 
“educational” purposes. Blunt prohibitions are often 
crafted too crudely to work within the existing edu-
cation data ecosystem, let alone support growth and 
innovation. “Education” purpose restrictions may limit 
explicit “commercial” use of student data, but they 
do not deal with the more nuanced issues raised by 
learning analytics and educational data mining even 
when used by educators for educational purposes. 
They do not consider the ways that using big data to 
serve education may not serve the interests of all ed-
ucational stakeholders. It is difficult for categorically 
prohibitive legislation to be sufficiently flexible to match 
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the fast pace of technological change and the highly 
contextualized decision making in learning spaces. 
Data scientists and decision makers using learning 
analytics and education data mining must go beyond 
mere compliance through deliberate foresight, trans-
parency, and accountability to ensure that data-driven 
tools achieve their goals, benefit the education system, 
and promote equity in broader society.

The first wave of student privacy panic occurred 
in the late 1960s and early 1970s. Schools began to 
collect a wider array of information about students. 
Educators and administrators routinely shared student 
information on an ad hoc and often undocumented 
basis (Divoky, 1974).

FERPA’s Default against School 
Disclosure
In response, Congress passed the primary federal 
statute governing student data, FERPA, in 1974. FERPA 
gives three rights to parents and “eligible students” over 
18 or enrolled in postsecondary education (“parents,” 
as shorthand). Federally funded schools, districts, 
and state education agencies must provide parents 
with access to education records maintained by the 
education institution or agency (“education actors,” as 
shorthand) and the ability to challenge their accuracy. 
Education actors must also get parents’ permission 
before sharing personally identifiable student infor-
mation, subject to many exceptions that allow schools 
to consent on their behalf.2

FERPA focuses on limiting the disclosure of person-
ally identifiable student information by educational 
institutions and agencies to approved recipients with 
legitimate educational interests. To meet FERPA’s 
requirements, schools must obtain parents’ written 
consent before sharing personally identifiable infor-
mation maintained in a student’s educational record 
unless one of several exceptions applies. In practice, 
the exceptions swallow the rule, and educators, not 
parents or students, make most privacy decisions 
(Zeide, 2016a).

Schools Authorizing Disclosure to Serve 
“Educational” Interests
The school official exception delegates the bulk of 
data-related decision making to schools and districts. 
Schools can share student personally identifiable stu-
dent information without prior consent if the recipient 
is 1) performing services on their behalf and 2) has a 
“legitimate educational interest” in accessing such 
2 Family Education Rights and Privacy Act (FERPA), 20 U.S.C. § 1232g; 
34 CFR Part 99 (2014); 34 CFR § 99.31 (exceptions): https://www.law.
cornell.edu/uscode/text/20/1232g; https://www2.ed.gov/policy/
gen/guid/fpco/pdf/ferparegs.pdf. 

information; and, ostensibly, 3) has taken reasonable 
measures to exercise direct control over the infor-
mation.3 Educators decide what qualifies someone to 
be a school official and what constitutes a legitimate 
educational interest, but do not have to define these 
terms in any substantive detail (US Department of 
Education, n.d.). As a result, most rely on criteria 
so broad as to encompass almost any circumstance 
(Zeide, 2016a). Schools rarely take active measures 
to control recipients’ detailed information practic-
es, relying instead on terms of service or contracts 
between the parties as the means of “direct control” 
(Reidenberg et al., 2013).

Researchers Barred from Repurposing 
Student Data
FERPA places more stringent requirements on how 
educational actors share information with researchers. 
Under the studies exception, they must do so pursu-
ant to a written contract with specific terms. Studies 
must be for the purpose of “developing, validating, or 
administering predictive tests; administering student 
aid programs; or improving instruction.”4 Researchers 
may only use personally identifiable student informa-
tion for specified purposes and destroy the data once 
it is no longer needed.

Compliance-Oriented Enforcement
Educational actors have no direct accountability for 
FERPA violations. The statute is about putting a struc-
ture into place rather than preventing specific privacy 
violations. As a result, it does not impose consequences 
for individual instances of noncompliance. Students and 
educators cannot sue for violations under the statute 
(US Supreme Court, 2002). Instead, the US Depart-
ment of Education (ED) has the power to withdraw 
all federal funding, including support in the form of 
federal student loans, if an educational institution or 
agency has a “policy or practice” of noncompliance.5 
However, the Department has never taken this dramatic 
action since the statute’s enactment over forty years 
ago (Zeide, 2016b; Daggett, 2008). Since such a drastic 
measure would hurt the very students FERPA seeks to 
protect, the agency instead focuses on bringing edu-
cation institutions into compliance. It is unlikely ED 
will ever pursue such a “nuclear” option (Solove, 2012).

For almost forty years, stakeholders predominantly 
accepted FERPA’s protection as sufficient despite min-
imal transparency, individual control over information, 
or consequences for specific violations in practice. 
FERPA’s regulatory mechanisms no longer provide 

3 Id. § 99.31(a)(1) (School Official Exception). 
4 Id. § 99.31(a)(6) (Studies Exception). 
5 20 U.S.C. § 1232g(b)(1)–(2) (Policies or Practice Provision). 
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sufficient reassurance for stakeholders, in part because 
it regulates education records, not student data. The 
statute provides only narrow protection in terms of 
the information it covers, the actions it relates to, and 
the entities to which it applies in an age of big data.

From Education Records to Student Data
Low-cost storage, instantaneous transfer over con-
nected networks, and cloud-based servers create an 
unprecedented volume, velocity, and variety of “big 
data” (Mayer-Schönberger & Cukier, 2014). Student 
information no longer means paper “education records” 
locked away in school filing cabinets, but rather in-
teroperable, instantly transferable data stored on cloud 
servers. Interactive educational tools and platforms 
generate more information about students with more 
detail than has previously been possible. Data-mined 
information from out-of-classroom sources, like school 
ID geolocation and social media, goes far beyond 
traditional expectations regarding education records 
(Alamuddin, Brown, & Kurzweil, 2016). Even when 
mined student information is publicly available, many 
stakeholders find the notion of systematic collection 
and analysis of student data unsettling (Watters, 
2015). The automatic capture of clickstream-level data 
about students, the permeability of cloud computing 
networks, and the infinite utility of big data prompts 
new privacy concerns (Singer, 2013).

FERPA’s reliance on parental, student, or school over-
sight of recipients’ information practices may not be 
possible, let alone practical or meaningful, given the 
quantity and complexity of big data and the automated 
transmission of information in interactive, digitally 
mediated environments. The statute does not even 
address schools’ own privacy practices or cover new 
independent education providers, like massive open 
online courses (MOOCs), which collect information 
directly from users in “learning environments” but 
receive no federal funding. Stakeholders have little 
idea about what information schools and companies 
collect on students and how they use them (Barnes, 
2014). They can’t be sure that educators and data 
recipients even adhere to the privacy promises they 
make — especially when FERPA imposes no direct 
accountability for non-compliance.

Proliferation of New Student Privacy Pro-
tections
Since 2013, state policymakers responded to stakeholder 
panic by introducing over 410 student privacy bills: 36 
states have passed 73 of these into law. On the federal 
level, legislators proposed amendments to FERPA and 
bills that would directly regulate the companies and 
organizations receiving student information. The vast 
majority of protective measures apply to federally 
funded P–12 public schools, but there is no consensus 

about what concerns matter and what “student priva-
cy” means. This is clear from the incredible variety of 
ways districts, researchers, institutions, companies, 
states, and federal policymakers propose to protect 
student data (Center for Democracy and Technology, 
2016; DQC, 2016; Vance, 2016).

Almost all reform measures reflect the need for more 
transparency, accountability, and baseline data safety, 
security, and governance protocols. Many simply con-
tinue FERPA’s focus on how schools share information 
with third-party vendors and education researchers. 
Several explicitly prohibit school collection of certain 
types of information or from outside sources like 
social media. Some measures regulate data-reliant 
service providers directly (Center for Democracy and 
Technology, 2016; DQC, 2016; Vance, 2016).

Self-Regulation Supplements
More flexible approaches to privacy governance involve 
self-regulation. Over 300 companies have signed a 
Student Privacy Pledge,6 created by the Future of Pri-
vacy Forum and the Software & Information Industry 
Association, which includes ten principles such as not 
selling student data. Signatories risk FTC enforcement 
if they do not abide by their promises (Singer, 2015). 
The US Department of Education, education organiza-
tions, and privacy experts are continuously releasing 
new best practice guidelines and privacy toolkits 
(Krueger, 2014; Privacy Technical Assistance Center, 
2014). For stakeholders to have sufficient trust in these 
rules, however, there must be sufficient transparency 
about information practices, consideration regarding 
learning analytics purposes and potential outcomes, 
and accountability for noncompliance.

While the latest round of student privacy regulation 
has prompted much more explicit governance of stu-
dent data and some sorely needed transparency, most 
reform measures still suffer from many of FERPA’s 
flaws. Most students and stakeholders still have no 
concrete sense of what information is contained in 
education records, vague notions of how data can be 
used to their benefit, and minimal reassurance about 
what protections are in place (Prinsloo & Rowe, 2015; 
Rubel & Jones, 2016; Zeide, 2016a).

Minimal Meaningful Consent and 
Oversight
FERPA and similar rules rely on parental or school 
oversight of disclosure as a way to ensure that only 
appropriate recipients can access student data. This 
may not be possible, let alone practical or meaningful, 
given the quantity and complexity of big data and the 
automated transmission of information in interactive, 
6 http://studentprivacypledge.org/?page_id=45 
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digitally mediated environments. Contractual provisions 
create some more structure, but require schools to 
monitor third-party information practices and bring 
expensive lawsuits for enforcement. Finally, limiting 
disclosure doesn’t work as well to prevent inappro-
priate use of student information since recipients 
who initially use this data for “legitimate education 
interests” often serve corporate or research interests 
at the same time (Young, 2015; Zeide, 2016a).

Crude Categorical Prohibitions
Some regulations attempt to address this problem by 
completely barring specific data collection, use, and 
repurposing. This often leads to problematic outcomes 
that conflict with current data use in the education 
system and unnecessarily restricts promising learning 
analytics and educational data mining. In Florida, for 
example, a ban on collecting biometric information 
conflicted with existing practices and legal obligations 
regarding special education students. As a result, 
many states have had to suspend or amend their initial 
attempts at ensuring student privacy. Erasure rules 
severely limit the potential for longitudinal studies and 
frequently often conflict with other record-keeping 
obligations imposed by state law (Vance, 2016).

Limits of Education Purpose 
Limitations
Many new laws follow the model of California’s Stu-
dent Online Personal Information Protection Act 
(SOPIPA), which covers entities providing education 
(K–12) services. They regulate how these actors use 
student information directly, rather than trying to do 
so through school oversight. Online providers of such 
services must have contracts with schools, erase student 
information upon request, and cannot create learner 
profiles that don’t serve specified “K–12 purposes.”7

Regulations that limit student data to “educational” use 
or purposes attempt to prevent commercial misuse 
by for-profit entities. Purpose limitations, however, do 
not address more nuanced issues raised by learning 
analytics and education data mining. Purpose limita-
tion rules rest on the assumption of a consensus about 
what constitutes an “educational” purpose. They do not 
consider ways that institutions or researchers might 
prioritize goals other than the immediate educational 
interests of learner data subjects while still legitimately 
using data to manage institutional resources, improve 
the education system, or shed insight on learning sci-
ence. Schools might, for example, use predictive data 

7 The statute does, however, include a carve out indicating that 
it “does not limit the ability of an operator to use information, 
including covered information, for adaptive or personalized student 
learning purposes.” § 22584(l). As of the writing of this chapter, it 
is not clear how these rules will work in practice. Student Online 
Personal Information Protection Act (SOPIPA), CAL. BUS. & PROF. 
CODE §§ 22584–22585 (2014), https://leginfo.legislature.ca.gov/
faces/billNavClient.xhtml?bill_id=201320140SB1177. 

to exclude, rather than encourage, marginal students 
to save resources or improve rankings (Ashman et al., 
2014; Drachsler & Greller, 2016; Rubel & Jones, 2016; 
Selwyn, 2014; Slade, 2016).

Leaving Out Learner Data
Most new laws do not address information held in 
higher education institutions. They do not address 
“learner” information collected by virtual learning 
environments independent of traditional, federally 
funded education institutions. Instead, the more 
permissive commercial privacy regime governs data 
collected and used by these private entities (in the 
absence of applicable state law). This means that use 
and disclosure of this “learner” data is limited by con-
sumer privacy policies, which are notorious for being 
incomprehensible, overly broad, and open to change 
without notice (Jones & Regner, 2015; Polonetsky & 
Tene, 2014; Young, 2015; Zeide, 2016a).

Society grapples with these issues across sectors, 
but they are particularly acute in education environ-
ments. As individuals who seek to improve education 
experiences and operate with integrity, it is easy 
to lose sight of how revolutionary the information 
practices involved in learning analytics and education 
data mining are compared to traditional education 
information practices and norms about student data. 
Students rarely have a realistic choice to opt out of 
mainstream data-driven technologies. Education data 
subjects are more vulnerable than those in typical 
consumer contexts, not only because they might be 
children, but also because learning requires some 
degree of risk-taking for intellectual growth. There 
are still unresolved issues about whether these tools 
may inadvertently reduce, rather than expand equi-
table opportunities, undermine the broader goals of 
the education system, and give students less agency 
and make them more, not less, vulnerable (Prinsloo 
& Slade, 2016; Siemens, 2014).

Equitable Outcomes
It is important for those working with student data 
to consider how consequences may play out in an 
inevitably flawed reality rather that the neutral space 
of theoretical and technological models. Algorithmic 
models may inadvertently discriminate against mi-
norities or students of lower socioeconomic status. 
They may have disparate impacts. Tools that predict 
student success could repeat past inequities instead 
of promoting more achievement and upward mobility. 
Ostensibly neutral policies can create deeply inequi-
table outcomes due to uneven implementation (boyd 
& Crawford, 2011; Citron & Pasquale, 2014; Barocas & 
Selbst, 2014).

EDUCATION DATA ETHICS
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Broader Education Effects
Continuously collecting detailed information in class-
rooms, from cameras, or from sensors can have broader 
consequences. Ubiquitous surveillance and embedded 
assessment may have a chilling effect on student par-
ticipation and expression (Boninger & Molnar, 2016; 
Vance & Tucker, 2016). While these practices reduce 
reliance on periodic high-stakes tests, they also put 
every moment of the learning process under scrutiny. 
This may ultimately undermine trust in data-driven 
education tools and practitioners, chilling the intel-
lectual risk-taking required in learning environments.

Inadvertently Shifting Authority
Learning analytics and educational data mining changes 
not only how, but who makes pedagogical and academic 
decisions. Traditionally, the individuals who evaluated 
and made decisions about students were close at hand 
and relied on personal, contextualized observation and 
knowledge. Parents, students, or administrators with 
concerns about particular outcomes could go directly 
to the relevant decision maker for explanation. This 
created transparency, and an easy avenue to seek 
redress, thereby providing accountability.

In adopting data-driven education tools, educators 
change what goes into measuring learning, what goals 
we seek to achieve through education, and who gets 
to make those decisions. Automated and algorithmic 
pedagogical and institutional decision-making shifts 
the locus of authority from a traditional, physically 
present human to obscure technologies or remote 
companies and researchers. Data-driven education 
changes who gets to make important decisions that 
shape lives and the education system overall. It does 
so without the shift being obvious, and, in many cases, 
deliberate. This shift in who can access and use data 
shifts power relationships as well. As security expert 
Bruce Schneier (2008) notes, “Who controls our data 
controls our lives” (paragraph 5). We must explicitly 
consider the handoff of authority that goes with the 
handoff of data.

Under the current and emerging regulatory frame-
work, learning analytics and education data mining 
practitioners and consumers will have much of that 
power. They will accordingly bear the responsibility of 
defining what student privacy means. Their decisions 
about technological structures, conceptual models, 
and learning outcomes craft the rules that apply in 
practice to information in learning environments. 
These decisions need to be made thoughtfully and 
deliberately. It also benefits learning analytics and 
educational data mining as a field by cultivating the 
trust required for individual participation, institutional 

implementation, and policymaker support for learning 
analytics and educational data mining overall.

I recommend going beyond mere compliance to take 
a more proactive approach. Ideally, this involves not 
only anticipating potential problems, but also putting 
protocols in place to determine practices if they arise 
and open communication with data subjects and stake-
holders. Key components of proactive student privacy 
practices include 1) considering ethical implications; 
2) creating explicit protocols for review; 3) actively 
communicating with data subjects and stakeholders 
about data practices, purposes, and protection; and 
4) ensuring algorithmic accountability.

Ethical Scrutiny
Learning analytics and educational data mining projects 
should include deliberate, proactive consideration of 
potential benefits and their distribution across society 
and time, unintended outcomes related to learning 
and broader society, and ethical questions regarding 
experiment protocols and ultimate priorities. These 
reflect important considerations regarding human 
subject experiments promulgated in the Belmont Report 
in 1978 and later codified and institutionalized through 
Institutional Review Boards (IRBs) that must approve 
of academic research. However, data use only inside 
institutions, activities categorized as “optimization” 
instead of research, and company practices rarely un-
dergo similarly explicit consideration of fundamental 
ethical principles.

Learning analytics and educational data mining prac-
titioners, consortia, and supporters have promulgated 
ethical principles to guide information practices. These 
raise important issues, including the importance and 
difficulty of user notice and consent to how data is 
collected, stored, processed, and shared in learning 
systems, given the volume of information and com-
plexity of algorithmic analysis. They also include more 
abstract notions of justice and beneficence that take 
into account whether experimental results serve the 
“greater good” (Drachsler & Greller, 2016; Open Uni-
versity, 2017; Pardo & Siemens, 2014; Sclater & Bailey, 
2015; Slade, 2016; Asilomar, 2014).

Explicit Review
Privacy and ethical considerations should be incorpo-
rated from the first stages of technology and experi-
mental design. At a minimum, data-driven education 
tools should be audited for unintended bias, disparate 
impact, and disproportionate distribution of risk and 
benefits across society. A best practice would create 
proactive measures to address possible, but foresee-
able, problematic outcomes ahead of time. Is there a 
point, for example, when the discrepancy between 
two experimental groups is so high that researchers 
and educators should stop A/B testing?

GOING BEYOND COMPLIANCE
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 Projects should have predetermined points for explicit 
accountability and ethical review. Many companies, for 
example, have begun to employ their own “consumer 
review boards” to take data subjects’ and broader soci-
ety’s interests into account before moving forward on 
experiments and again before publication (Calo, 2013; 
Jackman & Kanerva, 2016; Tene & Polonetsky, 2015).

Aggressive Transparency
Ideally, learning analytics and education data mining 
tools and technologies should also provide mean-
ingful transparency and algorithmic accountability. 
Transparency is important on both the micro- and 
the macro-level. Disclosing information practices 
helps reassure stakeholders who might panic in an 
absence of sufficiently specific and readily available 
information about learning analytics and educational 
data mining data practices.

Transparency and outreach about the ways that data 
analysis may benefit current learners — and not some 
future student in a land far, far, away — helps ameliorate 
stakeholder fears. Open and early communication also 
helps reduce the impression that a small elite group 
of scientists have tremendous control over student 
experiences and outcomes, and that their actions are 
shrouded in secrecy. It helps to recruit institutional 
resources to find ways to reach out to data subjects 
and the wider community.

Algorithmic Accountability
Transparency, however, is not enough to ensure ap-
propriate information practices. It is a prerequisite. 
Documentation and accountability are also important 
given the stakes at issue and the obscurity of algorith-
mic decision making. Learners and stakeholders will 
want to know what evidence backs up pedagogical 
and institutional decision making. Ideally, learning 
analytics and education data mining practitioners 
should implement tools for algorithmic accountability. 
These include audits to double check that algorith-
mic tools perform as intended and actually promote 
promised outcomes.

A key piece of algorithmic accountability that will 
become increasingly important in affecting learners’ 
future opportunities is the need to document algorith-
mic and institutional decision making to allow for due 
process (Diakopoulos, 2016; Kobie, 2016; Kroll et al., 
2017). Learners, educators, and institutions will want 
to see the evidence and know about the systems that 
impact their academic progress and credentialing and 
examine the decisions that affect them (Zeide, 2016a; 
see also Citron & Pasquale, 2014; Crawford & Schultz, 
2014). Data scientists and data-driven decision makers 
should be prepared to facilitate forensic examination 
of important decisions. Parents, for example, will want 
an explanation as to why their child was or was not 
promoted to the next grade. “Because the algorithm 
said so” will not be a sufficient response.

Trust is crucial to learning environments, which seek 
to foster intellectual experimentation and growth. 
As noted in a 2014 White House report on big data, 
“As learning itself is a process of trial and error, it is 
particularly important to use data in a manner that 
allows the benefits of those innovations, but still allows 
a safe space for students to explore, make mistakes, 
and learn without concern that there will be long 
term consequences for errors that are part of the 
learning process.”

By going beyond mere compliance, those entrusted 
with education data can guard against potential unin-
tended consequences of even the most well-meaning 
projects that might undermine the very goals they seek 
to achieve. The readers of this handbook entrusted 
with the wealth of student data should take a proac-
tive approach that aims not at mere compliance, but 
goes beyond to consider broader social, ethical, and 
political implications. Doing so will promote trust 
in data-driven education and ensure that learning 
analytics and educational data mining achieve their 
revolutionary potential.

CONCLUSION
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Learning analytics (LA)1 and educational data mining 
(EDM)2 have gained increasing popularity in recent 
years. However, large-scale take-up in educational 
practice as well as significant progress in LA research 
is strongly dependent on the quantity and quality of 
available data. Being able to interpret and understand 
data about learning activities, including respective 
knowledge about the learning domain, subjects, or 
skills is a prerequisite for carrying out higher-level 
analytics. However, data as generated through learning 
environments is often ambiguous and highly specific 
to a particular learning scenario and use case, often 
using proprietary terminologies or identifiers for both 
understanding and interpreting learning-related data 
within the scenario, and even more, across organiza-
tional and application boundaries.

LD principles (Bizer, Heath, & Bernes-Lee, 2009) have 
emerged as a de facto standard for exposing data on 
the Web and have the potential to improve both the 
quantity and quality of LA data substantially by 1) en-
abling interpretation of data and 2) Web-wide sharing 

1 http://solaresearch.org
2 http://www.educationaldatamining.org 

of datasets across scenarios and institutional bound-
aries. Facilitated through established W3C standards 
such as RDF and SPARQL, LD has gained significant 
popularity throughout the last decade, with over 
1000 datasets in the recent Linked Open Data Crawl3  
alone. LD and its offspring see widespread adoption 
through all sorts of entity-centric approaches, such 
as the use of knowledge graphs for facilitating Web 
search, a common practice in major search engines 
such as Google or Bing, or the increasing adoption of 
Microdata and RDFa4 for annotating Web pages with 
structured facts. This also led to the emergence of a 
growing Web of educational data (d’Aquin, Adamou, & 
Dietze, 2013), substantially facilitated by the availability 
of shared vocabularies for educational purposes and 
knowledge graphs such as DBpedia5 or Freebase6 for 
enriching and disambiguating data.

We argue that LD principles can act as a fundamental 
facilitator for scaling up LA research (d’Aquin, Dietze, 

3 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/
state/ 
4 https://www.w3.org/TR/xhtml-rdfa-primer/
5 http://dbpedia.org 
6 http://freebase.org 
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Herder, Hendrik, & Taibi, 2014), as well as improving 
performance of LA tools and methods by enabling 1) 
the non-ambiguous interpretation of learning data 
(d’Aquin & Jay, 2013) and 2) the widespread sharing of 
the data used for evaluating and assessing LA meth-
ods and tools in research and educational practice. 
After a brief summary of LD use in education, we will 
introduce the successful application of LD principles 
in the LA context of the LAK dataset.7 The LAK dataset 
represents, on the one hand, a representative example 
of successfully applying LD principles to facilitate 
research in LA and, on the other, constitutes an im-
portant resource in its own right by providing access 
to a near-complete corpus of LA and EDM research. 
This is followed by a set of examples that demonstrate 
the benefits of applying LD principles by showcasing 
how new insights can be generated from such a corpus 
and, at the same time, provide insights into observable 
trends and topics in LA and EDM.

Distance teaching and openly available educational 
data on the Web are becoming common practices with 
public higher education institutions as well as private 
training organizations realizing the benefits of online 
resources. This includes data 1) about learning resourc-
es, ranging from dedicated educational resources to 
more informal knowledge resources and content, and 
2) data about learning activities.

LD principles (Heath & Bizer, 2011) offer significant 
opportunities for sharing, interpreting, or enriching 
data about both resources and activities in learning 
scenarios. Essentially, LD principles rely on a common 
graph-based representation format, the so-called 
Resource Description Framework (RDF),8 a common 
query language (SPARQL9) and most notably, the use 
of dereferenceable URIs to name things (i.e., enti-
ties). This last feature is a key facilitator for LD as it 
enables the unique identification of any entity in any 
dataset across the Web, and hence links data across 
different datasets. This facilitates, for instance, an 
entity representing LA in the DBpedia dataset10 being 
linked with co-references in non-English DBpedias11 
or co-references in other datasets such as Freebase.12

These principles have enabled the emergence of a 
global graph of LD on the Web, including cross-domain 
data such as DBpedia, WordNet RDF,13 or the data.gov.
uk  initiative, as well as domain-specific expert vocab-
7 http://lak.linkededucation.org 
8 http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/ 
9 http://www.w3.org/TR/rdf-sparql-query/ 
10 http://dbpedia.org/page/Learning_analytics 
11 http://fr.dbpedia.org/resource/Analyse_de_l’apprentissage 
12 http://rdf.freebase.com/ns/m.0crfzwn 
13 http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/

ularies, for instance, of data about cultural heritage 
(e.g., the Europeana dataset14). This has also led to the 
creation of an embryonic “Web of Educational Data” 
(see d’Aquin et al., 2013; Taibi, Fetahu, & Dietze,  2013; 
and Dietze et al., 2013, for an overview) including data 
from institutions such as the Open University (UK)15 
or the National Research Council (Italy),16 as well as 
publicly available educational resources, such as the 
mEducator — Linked Educational Resources (Dietze, 
Taibi, Yu, & Dovrolis, 2015). Initiatives such as LinkedE-
ducation.org,17 LinkedUniversities.org,18 and LinkedUp19 
have provided first efforts to bring together people 
and works in this area. In this context, the LinkedUp 
Catalog20  is an unprecedented collection of publicly 
available LD relevant to educational scenarios, contain-
ing data about dedicated open educational resources 
(OER), such as Open Courseware (OCW) or mEducator 
datasets, data about bibliographic resources, or meta-
data about other knowledge resources.

While data about learning activities is not frequently 
available and data sharing even less so, LD has been 
adopted to facilitate representation of social and activity 
or attention data (Dietze, Drachsler, & Giordano, 2014); 
Ben Ellefi, Bellahsene, Dietze, and Todorov (2016) provide 
a thorough overview. In the field of LA, LD principles 
can substantially improve the disambiguation, inter-
pretation, and understanding of data (as documented 
by d’Aquin & Jay, 2013; d’Aquin et al., 2014). Reference 
knowledge graphs, domain-specific or cross-domain, 
can significantly improve the interpretation and ana-
lytical processes of captured learning analytics data 
by disambiguating and enriching data, for instance, 
about subjects or competencies. This can improve the 
performance of learning analytics methods and tools 
within specific scenarios (d’Aquin & Jay, 2013).

Certain limitations are apparent, however, when 
dealing with reasoning-based approaches such as 
Semantic Web technologies. Given the computational 
demands of interpreting and reasoning on knowledge 
representations, LD-based approaches are known to be 
less scalable than traditional RDBMS-based21 methods. 
However, given the maturity of existing RDF storage 
and reasoning engines, this applies specifically to very 
large-scale datasets, which are less frequent in LA and 
EDM settings. Other issues include the lack of links, 
the misuse of schema terms, or the lack of semantic 
and syntactic quality of exposed data. However, these 
issues are by no means exclusive or specific to LD-
based datasets but prevail across data management 
14 http://ckan.net/package/europeana-lod 
15 http://data.open.ac.uk 
16 http://data.cnr.it 
17 http://linkededucation.org 
18 http://linkeduniversities.org 
19 http://linkedup-project.eu 
20 http://data.linkededucation.org/linkedup/catalog/ 
21 Relational database management system. 

LINKED DATA IN LEARNING AND 
EDUCATION
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technologies of all kinds.

Hence, sharing LA data according to LD principles has 
the potential to boost the adoption and improvement 
of LA tools and methods significantly by enabling their 
evaluation across a range of real-world datasets and 
scenarios.

In order to provide a best-practice example of adopting 
LD principles for sharing LA data, we introduce the 
LAK dataset,  a joint effort of an international consor-
tium consisting of the Society for Learning Analytics 
Research (SoLAR), ACM, the LinkedUp project, and 
the Educational Technology Institute of the National 
Research Council of Italy (CNR-ITD). The LAK dataset 
constitutes a near complete corpus of collected re-
search works in the areas of LA and EDM since 2011, 
where LD principles have been applied to expose both 
metadata and full texts of articles (Dietze, Taibi, & 
d’Aquin, 2017). As such, the corpus enables unprec-
edented research on the scope and evolution of the 
LA community. Here, Table 29.1 reports an overview 
of the publications included in the LAK dataset. Giv-
en the variety of sources, the data is split into four 
subgraphs (last column of Table 29.1 where different 
license models apply).22

To ensure wide interoperability of the data, we have 
adapted LD best practices23 and investigated widely 
used vocabularies for the representation of scientific 
publications. The scope of our data model is not cov-
22 Data from graphs http://lak.linkededucation.org/openaccess/* 
are available under CC-BY licence. For data in graphshttp://lak.
linkededucation.org/acm/*, we have negotiated a formal agree-
ment with ACM to publish, share, and enable reuse of the data 
for research purposes. https://creativecommons.org/licenses/
by/2.0/
23 http://www.w3.org/TR/ld-bp/#VOCABULARIES

ered by a single vocabulary alone. For this reason, we 
opted for using established vocabularies such as BIBO, 
FOAF,24 SWRC, and Schema.org for all represented 
terms and included mappings between the chosen 
vocabularies as well as other overlapping ones. 25 The 
choice of vocabulary terms was influenced by the 
Web-wide adoption and maturity of the used schemas 
and their overlap with our data model. Table 29.2 
reports the concepts represented in the LAK dataset 
and their population while Table 29.3 summarizes the 
most frequently populated properties.

Exploiting inherent features of LD, the LAK dataset 
is enriched with entity links to other datasets, for 
instance to provide links to author and publication 
venue co-references and complementary information. 
In particular, links with the Semantic Web Dog Food 
(SWDF)26 dataset and DBLP provide additional infor-
mation about authors and venues in the LAK dataset, 
24 http://xmlns.com/foaf/spec/ 
25 The currently implemented schema is available at http://lak.
linkededucation.org/schema/lak.rdf While this URL always refers 
to the latest version of the schema, current and previous versions 
are also accessible, for instance, via http://lak.linkededucation.org/
schema/lak-v0.2.rdf 
26 http://data.semanticweb.org/ 

THE LAK DATASET: A LINKED DATA 
CORPUS FOR THE LEARNING 
ANALYTICS COMMUNITY

Table 29.2. Entity Population in the LAK Dataset

Concept Type #

Reference schema:CreativeWork 7885

Author swrc:Person 1214

Conference Paper swrc:InProceedings 697

Organization swrc:Organization 365

Journal Paper swrc:Article 45

Conference Proceedings swrc:Proceedings 15

Journal Issue bibo:Issue 9

Journal bibo:Journal 2

Publication Venue # Papers Type Named Graph URI

Proceedings of the ACM International Confer-
ence on Learning Analytics and Knowledge 
(LAK) (2011–2014)

166 ACM
http://lak.linkededucation.org/acm

http://lak.linkededucation.org/acm/body

Proceedings of the International Conference 
on Educational Data Mining (EDM) (2008–
2014)

463 Open 
Access

http://lak.linkededucation.org/openaccess
http://lak.linkededucation.org/openaccess/body

Special 2012 issue on “Learning and Knowl-
edge Analytics” edited by George Siemens & 
Dragan Gašević: Educational Technology & 
Society, 15(3), 1–163.

10 Open 
Access

Journal of Educational Data Mining (2009–
2014) 29 Open 

Access

Journal of Learning Analytics (2014) 16 Open 
Access

Proceedings of the LAK data Challenge 
(2013–2014) 13 Open 

Access

Table 29.1. Edited Excerpt of Discourse Data Coded in ENA Format
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such as their wider scientific activity and impact. This is 
useful, for instance, to complement the highly focused 
nature of the LAK dataset, which by definition has a 
narrow scope (LA and EDM) and would otherwise limit 
research to activities within that very community. On 
the other hand, such established links complement 
existing corpora with data contained in the LAK dataset 
by 1) enriching the limited metadata with additional 
properties and 2) containing additional publications 
not reflected in DBLP or the Semantic Web Dog Food, 
creating a more comprehensive knowledge graph of 
Computer Science literature as a whole.

Additional outlinks were created to DBpedia as ref-
erence vocabulary. To allow for a more structured 
retrieval and clustering of publications according to 
their topic-wise similarity, we have linked keywords, 
provided by authors, to their corresponding entities in 
DBpedia, thereby using DBpedia as reference vocab-

ulary for paper topic annotations. Figure 29.1 depicts 
the links of resolved or enriched LAK entities.

Given the nature of LD, establishing such links has 
been merely a matter of looking up LAK dataset en-
tities and adding owl:sameAs statements, which refer 
to the IRIs of co-referring entities in DBLP, SW Dog 
Food, and DBpedia. Hence, this process is enabled by 
fundamental principles of LD, such as using URIs to 
identify things and using SPARQL queries to demon-
strate the key motivation: the creation of a global data 
graph rather than isolated datasets.

To illustrate the exploitation of LD principles imple-
mented in the LAK dataset, we introduce some simple 
analysis enabled through the inherent links within 
the dataset, as described above. While a wide range 
of additional investigations can be found in the appli-
cations and publications of the LAK Data Challenge,27  
here we focus on a set of very simple investigations and 
research questions. These can be answered merely by 
combining SPARQL queries on the LAK dataset and 
interlinked datasets, and by exploiting the links be-
tween co-references described in the earlier section. 
These analyses are primarily aimed at demonstrating 
the ease of answering complex research questions by 
combining data from different sources. In particular, 
we investigate questions related to the following:

1. The research background and focus of researchers 
in the LA community, in order to shape a picture 
of the constituting disciplines and areas of this 
comparably new research area: This investigation 

27 See the application and publication sections at http://lak.linkede-
ducation.org

LINKED DATA-ENABLED INSIGHTS 
INTO THE LAK CORPUS: SCOPE AND 
TRENDS OF LEARNING ANALYTICS 
RESEARCH

Figure 29.1. Interlinking the LAK dataset.

Domain Property Range #

schema:Article schema:citation schema:CreativeWork 10828

swrc:InProceed-
ings dc:subject literal 3392

foaf:Agent foaf:made swrc:InProceedings 2199

foaf:Person rdfs:label literal 1583

foaf:Agent foaf:sha1sum literal 1341

swrc:Person swrc:affiliation swrc:Organization 1293

foaf:Person foaf:based_near geo:SpatialThing 1243

schema:Article schema:article-
Body literal 698

bibo:Article bibo:abstract literal 697

bibo:Issue bibo:hasPart bibo:Article 45

swrc:Proceedings swc:relatedToEvent swc:ConferenceEvent 14

bibo:Journal bibo:hasPart bibo:Issue 9

Table 29.3. Entity Population in the LAK Dataset
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exploits information about LA researchers’ publi-
cation activity in other areas by using DBLP data.

2. The importance of key topics in the LA field and 
their evolution over time: This investigation exploits 
the topic (or category) mapping of LA keywords 
(or entities) in DBpedia and their relationships.

3. The apparent links between the LA and LD com-
munities that can be derived from the data.

In both cases, our analysis has been conducted by 
taking into account all the publications of the LAK 
conferences from 2011 to 2014, available in the LAK 
dataset, in order to study the evolution of LA research 
over the years.

Who Makes Up the Learning Analytics 
Community?Publication Activities of LA 
Researchers
The development of LA has been influenced by the 
intersection of numerous academic disciplines such 
as machine learning, artificial intelligence, education 
technology, and pedagogy (Dawson, Gašević, Siemens, 
& Joksimović, 2014). For this reason, since its first 

edition, the LAK conference has drawn the attention 
of researchers from different scientific fields, each 
contributing their definitions, terminologies, and 
research methods, and thereby shaping the definition 
of what LA is. The core data of the LAK dataset, being 
limited to LA-related publication activities exclusively, 
does not enable any analysis into the origin and re-
search background of contributing researchers. The 
LD nature of the corpus, however, provides meaningful 
connections that can be exploited to infer such new 
knowledge. In fact, by linking the resources represent-
ing the authors in the LAK dataset with the authors 
in the DBLP dataset, it is feasible with a few SPARQL 
queries to extract further information about the fields 
of interest of the authors.28 

For all LAK authors in each year from 2011 to 2014, 
we analyzed the number of publications in previous 
conferences and journals by first 1) obtaining all au-
thors of a respective year in the LAK dataset and 2) 
retrieving their previous publication venues (journals, 

28 The 36% of the 1214 authors in the LAK dataset is linked with the 
correspondent resource in the DBLP (86%) and SWDF datasets 
(14%).

Conference or Journal DBLP resource %

Intelligent Tutor Systems Conference http://dblp.l3s.de/d2r/resource/conferences/its 24.49

Educational Data Mining Conference http://dblp.l3s.de/d2r/resource/conferences/edm 12.05

Artificial Intelligence in Education Conference http://dblp.l3s.de/d2r/resource/conferences/aied 11.15

European Conference on Technology En-
hanced Learning http://dblp.l3s.de/d2r/resource/conferences/ectel 7.31

International Conference on Advanced Learn-
ing Technologies http://dblp.l3s.de/d2r/resource/conferences/icalt 5.51

AAAI Conference on Artificial Intelligence http://dblp.l3s.de/d2r/resource/conferences/aaai 4.36

UM conference http://dblp.l3s.de/d2r/resource/conferences/um 4.36

IEEE International Conference on Data Mining http://dblp.l3s.de/d2r/resource/conferences/icdm 3.72

Conference on Knowledge Discovery and Data 
Mining http://dblp.l3s.de/d2r/resource/conferences/kdd 3.59

International Journal of Artificial Intelligence 
in Education http://dblp.l3s.de/d2r/resource/journals/aiedu 2.56

ETS journals http://dblp.l3s.de/d2r/resource/journals/ets 2.31

Conference on Computer Supported Collabora-
tive Learning http://dblp.l3s.de/d2r/resource/conferences/cscl 2.31

International Conference on Machine Learning http://dblp.l3s.de/d2r/resource/conferences/icml 2.31

Journal of Universal Computer Science http://dblp.l3s.de/d2r/resource/journals/jucs 2.18

International Conference of the Learning 
Sciences http://dblp.l3s.de/d2r/resource/conferences/icls 2.18

ACM CHI Conference http://dblp.l3s.de/d2r/resource/conferences/chi 2.18

World Wide Web conference http://dblp.l3s.de/d2r/resource/conferences/www 2.18

AH conference http://dblp.l3s.de/d2r/resource/conferences/ah 1.92

International Joint Conference on Artificial 
Intelligence http://dblp.l3s.de/d2r/resource/conferences/ijcai 1.67

Machine Learning Journal http://dblp.l3s.de/d2r/resource/journals/ml 1.67

Table 29.4. Top 20 Conferences and Journals in which LAK 2011 Conference Authors Previously Published
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conferences) from DBLP. The top 20 conferences and 
journals for 2011 are reported in Table 29.4. This table 
highlights that, in its first edition, the LAK conference 
has mainly involved authors with previous publications 
related to the Intelligent Tutor Systems, Educational 
Data Mining, Artificial Intelligence, and Technology 
Enhanced Learning conferences. From a technical 
point of view, interlinks between the LAK and DBLP 
datasets were created as follows: LAK authors are 
linked with their co-references in the DBLP dataset 
through the owl:sameAs property The DBLP authors 
in turn are connected with their publications in pre-
vious conferences and journals respectively through 
the swrc:series and the swrc:journal properties. The 
execution of a federated query involving the two 
datasets allows us to deduce information about the 
number of publications of LAK authors in previous 
conferences and journals.

In Figure 29.2, we report the rank of the top 10 confer-
ences and journals in which LAK authors have published 

from 2011 to 2014. The top three positions are clearly 
occupied by the ITS (Intelligent Tutor Systems), EDM 
(Educational Data Mining), and AIED (Artificial Intelli-
gence in Education) conferences/journals. Starting in 
2013, the LAK conference appears in the top 10, growing 
in importance in 2014, indicating the constitution of 
a significant community in its own right. That same 
year saw an increasing number of papers published 
in the FLAIRS (Florida Artificial Intelligence Research 
Society) conference proceedings. Publications from EC-
TEL (European Conference on Technology Enhanced 
Learning) and ICALT (International Conference on 
Advanced Learning Technologies) conferences also 
appear at the top of the list, with a slight inflection 
in the last year.

Which Topics Make Up the LA Field?
How Does Topic Distribution Change Over 
Time?
In contrast to the previous investigations, interlinking 
LAK conference publications with relevant DBpedia 

Figure 29.2. Interlinking the LAK dataset.

Figure 29.3.  Interlinking publications and DBPedia.
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entities allows us to investigate the semantics of 
topics covered by analyzing the DBpedia knowledge 
graph and the inherent links of entities and categories. 
This, for instance, enables us to identify the overlap of 
LAK papers with other disciplines, such as Computer 
Science, Statistics, Technology Enhanced Learning, 
or Data Analysis.

As described in the previous section, links between 
the LAK dataset and DBpedia entities were established 
by disambiguating terms (keywords) through state-
of-the-art NER (Name Entity Recognition) methods 
(DBpedia Spotlight). This allowed us to link keywords 
— for instance, “computer-based testing” and “formative 

evaluation” — respectively to the corresponding DBpedia 
entities, http://dbpedia.org/resource/E-assessment 
and http://dbpedia.org/resource/Formative_assess-
ment29 (see Figure 29.3). Each DBpedia entity, in turn, 
is connected through the dc:subject property, to its 
corresponding DBpedia categories; for instance, the 
category Educational_assessment_and_evaluation is 
the dc:subject of DBpedia resources: Formative_as-
sessment, E-assessment, Peer_assessment, and Ed-
ucational_evaluation, just to name a few. In this way, 
papers can be clustered according to their structural 
similarity within the DBpedia graph. The list of top 10 
DBpedia categories with the highest frequency value 
in the LAK dataset is shown in Figure 29.4.30

Starting from this set of top-10 most frequent cate-
gories over 2011 to 2014, we evaluated the distances 
between all the DBpedia categories extracted for 
each conference year and the categories included in 
this set of “base categories.” The SKOS31 properties 
used by the DBpedia category graph to represent 
relationships between categories were exploited to 
compute this distance. For example, the distance 
between E-Learning and Educational_technology is 
2, since Educational_technology is skos:broader of 
Distance_education and, in turn, Distance_education 
is skos:broader of E-learning.

The relation between DBpedia categories and LAK con-
ference papers also makes it easier to trace the trend 
of topics covered by LAK publications over the years. 
The radar chart in Figure 29.5 provides an overview of 
the calculated average distance between all categories 
extracted for each conference year and each category 
included in the “base category” set. From the analysis 
of the figure, the following considerations arise:

• Educational_technology played a key role in 2012 
but in other years more specialized categories 

29 See the following papers: http://data.linkededucation.org/re-
source/lak/conference/lak2011/paper/54 and http://data.linkede-
ducation.org/resource/lak/conference/lak2014/paper/616 
30 References to DBpedia categories are in the form: http://dbpedia.
org/page/Category:Educational_psychology, http://dbpedia.org/
page/Category:Educational_technology and so on.  
31 http://www.w3.org/TR/2008/WD-skos-reference-20080829/
skos.html 

Figure 29.6. Evolution of selected categories, 
2011–2014.

Figure 29.5. Evolution of the top-10 categories over 
time.

Figure 29.7. Percentage of LAK authors represented 
within DBLP and Semantic Web Dog Food.Figure 29.4. Top-10 DBPedia categories for the LAK 

dataset (publications from 2011-2014).
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gained importance

• The fairly broad categories of Learning and Eval-
uation have had the greatest relevance in all years

• The relevance of Evaluation has an increasing 
trend over the years, with a sensitive increment 
from 2011 to 2012.

• Statistical_models peaked in 2011 and decreased 
in subsequent years.

To better understand trends for selected catego-
ries, Figure 29.6 reports the normalized frequency, 
calculated for three arbitrarily selected categories, 
as the actual number of occurrences of a particular 
category minus the mean of all frequencies divided by 
the standard deviation. The Semantic_Web category 
appeared in LAK publications in 2013 and a slight 
increment can be observed between 2013 and 2014. 
The analysis of the trend for the Discourse_Analysis 
category reveals a positive increment over the years 
with a remarkable increment registered in the last 
year. On the contrary, we observe a negative trend for 
the Social_networks category; in fact, the relevance 
of this category decreased substantially from 2011 to 
2013, with a slightly increment in 2014.

Is There a Link Between the LD and LA 
Communities?
As indicated above, the analysis of authors contributing 
to the LAK community and the topic coverage of LAK 
publications provides clues about the influence of 
Semantic Web on researchers in the LAK community, 
a question of relevance to the scope of this article. 
Figure 29.7 shows the percentage of authors linked with 
either DBLP or the Semantic Web Dog Food dataset, 
showing a positive trend related to the increment of 
authors from the Semantic Web community. This can 
be attributed either to SW researchers publishing more 
strongly in the LA community or that LA researchers 
began publishing in SW-related venues.

To investigate this further, the links between the au-
thors of the LAK dataset and the Semantic Web Dog 

Food have been exploited to determine the number 
of Semantic Web-related publications by LA authors. 
These have been measured by the number of pub-
lications in the SWDF dataset by LA authors. As we 
already know from Figure 29.2, SW conferences are 
not in the top 10 list of previous publications for LAK 
authors, but the percentage of papers published by 
LA authors in SW conferences shows a positive trend 
over the years, even if the total number reduced in 
2014, as reported in Figure 29.8.

While some of these insights are hardly surprising, 
the ease with which they could be generated is worth 
highlighting: in all cases, data was fetched with a few 
SPARQL queries, where the previously established 
links between co-references across different datasets 
(LAK, DBpedia, DBLP, SWDF) allows the correlation 
of data from these different sources to answer more 
complex questions.

Applying LD principles when dealing with LA data, or 
any kind of data, has benefits specifically for under-
standing and interpreting data. As a key component 
of LD principles, one of the enabling building blocks 
is the use of global URIs for identifying entities and 
schema terms across the Web, which provides the 
foundations for cross-dataset linkage and querying, 
essentially creating a global knowledge graph.

In order to demonstrate the opportunities arising from 
adopting LD principles in LA and present some insights 
into the state and evolution of the LA community 
and discipline, we have introduced the LAK dataset, 
together with a set of example questions and insights. 
These include investigations into the composition of 
the LA community as well as the significant topics 
and trends that can be derived from the LAK dataset 
when considering other LD sources, such as DBLP or 
DBpedia, as background knowledge.

While these insights were not meant to provide a 
thorough investigation of the state of the LA field, 
they provide a glimpse into the opportunities arising 
from following LD principles and exploiting external 
data sources for interpreting data and investigating 
more complex research questions, which would not 
be feasible by looking at isolated data sources.

In this regard, a number of best practices emerge when 
sharing and reusing data on the Web, concerning 1) 
the data publishing side and 2) the data analysis side. 
Regarding the former, previous work (Dietze, Taibi, 
& d’Aquin, 2017) describes the practices and design 
choices applied when building and publishing the 
LAK dataset. Here, next to the general LD principles, 

CONCLUSIONS AND LESSONS 
LEARNED

Figure 29.8. Trend of previous publications of LAK 
authors in SW conferences.
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we paid particular attention to designing a schema 
from established and well-used vocabulary terms. 
We considered a range of criteria, including the wide 
adoption of the used vocabulary terms, their coverage 
and match with the data model of the LAK dataset, as 
well as their inherent compatibility. We applied similar 
criteria when choosing linking candidates, such as 
DBLP or DBpedia, to enable more meaningful analysis 
of the LA community and its scientific output. While 
finding candidate datasets for the linking task is an 
inherently difficult problem, automated approaches 
(Ben Ellefi et al., 2016) can be applied to aid dataset 

providers.

While our initial analysis of the LAK dataset only 
provided a limited perspective on certain aspects of 
the LAK community and its evolution, it illustrates the 
ease with which particular research questions can 
be investigated using a well-defined and interlinked 
dataset, as opposed to a traditional database. More 
thorough studies of the LA community have been car-
ried out as part of the LAK Data Challenge, in which 
researchers have been invited to develop applications 
aimed at providing innovative exploration of the data 
contained in the LAK dataset.
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The emergence of massive open online courses (MOOCs) 
and the open data initiative have led to a change in the 
way educational opportunities are offered by shifting 
from a university-centric model to a multi-platform 
and multi-resource model. In fact, today's learning 
environments include not only diverse online learn-
ing platforms, but also social media applications (e.g., 
SlideShare, YouTube, Facebook, Twitter, or LinkedIn) 
where learners connect, communicate, and exchange 
data and resources. Henceforth, learning is now 
occurring in various forms and settings, both at the 
formal (university courses) and informal (social media, 
MOOC) levels. This has led to a dispersion of learner 
data across various platforms and tools, and brought 
a need for efficient means of connecting learner data 
across various environments for a comprehensive 
insight into the learning process. One salient example 
of the need for data exchange across platforms is the 
connectivist MOOC (cMOOC). In cMOOCs, learning, 
by definition, does not take place in a single platform, 
but relies on a range of dedicated online learning 
applications as well as social media and networking 

applications for sharing information and resources 
among learners (Siemens, 2005). These developments 
led to new requirements and imposed new challenges 
for both data collection and use. 

From the perspective of data collection, the emergence 
of cloud services and the rapid development of scalable 
web architectures allow for pulling and mashing data 
from various online applications. This is supported by 
the development of large-scale interfaces (APIs) by 
major Web stakeholders such as Facebook, LinkedIn, 
or Twitter, and by MOOC providers such as Coursera 
and Udacity. From the perspective of data use, the 
plethora of resources and interactions occurring in 
educational platforms requires analytic capabilities, 
including the ability to handle different types of data. 
Various kinds of data are generated, some of which 
capture learners' interactions in learning and social 
media platforms (learners' logs/traces), whereas others 
take the form of unstructured content, ranging from 
course content and learners' blogs to discussion forum 
posts. This multitude of kinds and sources of data pro-
vides fertile ground for the field of learning analytics 
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and its overall objectives to better understand learners 
and the learning process, provide timely, informative, 
and adaptive feedback, and foster lifelong learning 
(Gaešvić, Dawson, & Siemens, 2015). 

Challenges associated with the collection, integration, 
and use of data originating from heterogeneous sources 
are often dealt with, in the educational community, 
by developing a standardized data model that allows 
for integration and leveraging of heterogeneous data 
(Dietze et al., 2013). This chapter focuses on linked data 
(LD) as one potential approach to the development and 
use of such a data model in both formal and informal 
online learning settings. In particular, the use of LD 
principles (Bizer, Heath, & Berners-Lee, 2009) allows 
for establishing a globally usable network of informa-
tion across learning environments (d'Aquin, Adamou, 
& Dietze, 2013), leading to a global educational graph. 
Similar graphs could be created at the individual level, 
for each particular learner, connecting all the data 
and resources associated with their learning activi-
ties. The educational potentials and benefits of such 
graphs have already been examined and discussed. For 
instance, Heath and Bizer (2011) propose an educational 
graph across UK universities, comprising knowledge 
extracted from the content of learning resources. 
Given the development and use of knowledge graphs 
by an increasing number of major companies such as 
Google, Microsoft, and Facebook, the potential and 
possibilities opened up by such graphs for learning 
should be examined (Zablith, 2015). 

This chapter describes the current state of the art of 
LD usage in education, focusing primarily on existing 
and potential applications in the learning analytics 
(LA)/educational data mining (EDM) field. After a brief 
introduction to LD principles in the next section, the 
chapter analyzes the potential of LD along two par-
ticular dimensions: 1) the data integration dimension 
and 2) the data analysis and interpretation dimension. 
Finally, we discuss some potentials and challenges 
associated with the use of LD in LA/EDM. 

Linked data has the potential to become a de facto 
standard for sharing resources on the Web (Kessler, 
d'Aquin, & Dietze, 2013). It uses URIs to uniquely identify 
entities, and the RDF data model1  to describe entities 
and connect them via links with explicitly defined 
semantics. In particular, LD relies on four principles: 

1. Use URIs as names for things; for instance, his-
torical novel "Paris" is uniquely identified by its 
ISBN (a kind of URI): 0385535309

2. Provide the ability to look up names through HTTP 

1 Resource Description Framework, http://www.w3.org/RDF/

URIs; while an ISBN does uniquely identify a book, 
it cannot be used to provide direct access to it on 
the Web, so HTTP URIs should be used instead; 
the book from our example could be looked up via 
the following HTTP URI: <http://www.worldcat.
org/oclc/827951628>

3. Upon URI look up, return useful information using 
the standards RDF and SPARQL2; for instance, 
we can state, in a machine-processable manner, 
that the resource identified by the <http://www.
worldcat.org/oclc/827951628> URI is of the type 
book and belongs to the genre of historical fiction: 
<http://www.worldcat.org/oclc/827951628> rdf:type 
schema:Book ; schema:genre "Historical fiction".

4. Include links to other entities uniquely identified 
by their URIs; for instance, we can connect the 
book from our example with its author: <http://
www.worldcat.org/oclc/827951628> schema:author 
<http://viaf.org/viaf/34666> where the latter URI 
uniquely identifies the writer Edward Rutherfurd.

Thanks to the simplicity of these principles, LD 
represents an elegant framework for modelling and 
querying data at a global scale. It is usable in various 
applications and domains, and can constitute a re-
sponse to the interoperability and data management 
challenges that have long faced the educational com-
munity (Dietze et al., 2013). 

Billions of data items have been published on the web 
as linked data, forming a global open data space — the 
linked open data cloud (LOD)3 — that includes open 
data from various domains such as government data, 
scientific knowledge, and data about a variety of 
online communities. Huge cross-domain knowledge 
bases have also emerged on the LOD such as DBpedia4,  
Yago5,  and Wikidata6.  As such, LD has the potential 
to enable a global shift in how data is accessed and 
utilized, offering access to data from various sources, 
through various kinds of data access points, including 
Web services and Web APIs, and allowing for seamless 
creation of dynamic data mashups (Bizer et al., 2009). 
In fact, one salient feature of LD is that it establish-
es semantic-rich connections between items from 
different data sources, and thus opens up data silos 
(e.g., traditional databases) for more seamless data 
integration and reuse. 

Despite all these potential benefits, the LD formalism 
and technologies have had a slow adoption in the area of 
technology-enhanced learning; initiatives that employ 
LD technologies have only emerged recently (Dietze et 
al., 2013). We can identify several application scenarios 
2 https://www.w3.org/TR/sparql11-query/
3 http://lod-cloud.net/
4 http://lod-cloud.net/
5 http://bit.ly/yago-naga
6 http://bit.ly/wikidata-main

LINKED DATA IN EDUCATION
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in the LA/EDM field that would benefit from the LOD, 
including 1) resource discovery (e.g., faceted search) 
and content enrichment (e.g., augmenting content 
with data from LOD datasets) (Maturana, Alvarado, 
López-Sola, Ibáñez, & Elósegui, 2013); 2) content 
analysis based on semantic annotation (Joksimovi et 
al., 2015); 3) resource and service integration (Dietze 
et al., 2012); 4) personalization (Dietze, Drachsler, & 
Giordano, 2014); and 5) interpretation of EDM results 
(d'Aquin et al., 2013). 

One of the most salient benefits of LD lies in its data 
integration potential. This is particularly relevant 
for the LA/EDM field since it requires the collection 
and management of learner and content data from a 
variety of sources (applications and services) used in 
informal and life-long learning (Santos et al., 2015). 
In particular, to build a comprehensive learner mod-
el, one needs to integrate learner data recorded in 
different learning platforms/tools the learner has 
interacted with (Desmarais & Baker, 2012). Therefore, 
the challenges associated with handling multiple data 
formats and the overall lack of data interoperability, 
are becoming a key issue (Chatti, Dyckhoff, Schroeder, 
& Thüs, 2012; Duval, 2011). More generally, the ease 
of data transfer, pre-processing, use, combination 
and analysis without loss of meaning across learning 
platforms are becoming important factors for the 
efficiency of LA/EDM (Cooper, 2013). 

Several domains have been successful in exploiting LD 
for data integration issues such as the biomedical domain 
(Belleau, Nolin, Tourigny, Rigault, & Morissette, 2008), 
pharmacology (Groth et al., 2014), and environmental 
sciences (Lausch, Schmidt, & Tischendorf, 2015). All of 
this suggests that LD technologies could provide the 
solid data integration layer that LA/EDM necessitates.

Previous Initiatives in Data Integration in 
the Educational Community
The technology enhanced learning research community 
has long recognized the importance of data integration, 
which eventually resulted in multiple standardization 
efforts. Cooper (2013) provides a valuable overview of 
various standards related to learning. Mainly, these 
standards relate to the representation of data about 
learners and their activities, as well as learning con-
tent and services. 

At the learner level, standards focus on facts about 
individuals and their history, their connections and 
interactions with other persons, and interactions 
with resources offered by learning environments 
(person and learning activities dimensions). Various 

specifications exist to model learners (e.g., FOAF7), and 
learner activities and interactions (e.g., Contextualized 
Attention Metadata [Schmitz, Wolpers, Kirschenmann, 
& Niemann, 2011], Activity Streams8, or ADL xAPI9).

At the content level, previous initiatives such as IEEE 
Learning Object Metadata (LOM)10 and ADL SCORM11 
attempted to create vocabularies and standards that 
would unify the description of online educational 
resources or the specification of computer-based 
assessment (e.g., IMS QTI12). Other efforts targeted 
the mapping between various data models, such as 
the work of Niemann, Wolpers, Stoitsis, Chinis, and 
Manouselis (2013) who aimed at aggregating sets of 
social and interaction data. Finally, several interfaces 
were proposed to provide guidelines for the imple-
mentation of services compliant with these standards 
(Dietze et al., 2013).

Based on different viewpoints, these efforts led to 
multiple competing projects and thus created sub-com-
munities with various technologies, languages, and 
models, and very little interoperability among them. 
The LD philosophy provides a solution to these interop-
erability issues by allowing a multiplicity of models on 
the Web, bridging these models using Web-accessible 
semantic links. Thus semantically similar models that 
are differently represented can still be aligned using 
typed links that establish meaningful connections 
between concepts originating from different models; 
for instance, equality connections (owl:sameAs), or hi-
erarchical connections (rdfs:subclassOf or skos:broader).

Current Data Integration Initiatives Us-
ing Linked Data
Integration based on LD requires the availability of 
Web-accessible LD vocabularies that describe the 
types of entities in specific subject domains, entities' 
attributes, and the kinds of connections among the 
entities. It also depends on the availability of services 
that allow for exploiting multiple datasets for a given 
task, as well as services that expose data as LD. This 
section introduces some of the available vocabularies 
in the educational domain, and efforts aimed at ex-
posing educational data as LD. A more comprehensive 
overview of education-related vocabularies can be 
found in Dietze et al. (2014). The section also gives 
examples of services exploiting the integration of 
multiple LD datasets.     

An increasing number of educational institutions have 
been exposing their data following LD principles, such 
as the Open University in the UK or the University 

7 http://www.foaf-project.org/
8 http://activitystrea.ms/
9 http://www.adlnet.gov/tla/experience-api
10 http://ieeeltsc.org/wg12LOM/
11 http://www.adlnet.org/
12 http://www.imsglobal.org/question/
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of Münster13  in Germany. One prominent effort in 
exposing educational data as LD was the LinkedUp 
project14, which resulted in a catalog of datasets relat-
ed to education and encouraged the development of 
competitions such as the LAK Data Challenge15,  whose 
aim was to expose LA/EDM publications as LD and 
promote their analysis by researchers. While these 
initiatives represent a step in the adoption of LD by the 
educational community, their impact remains limited. 
For example, the data representation and use in MOOC 
platforms — one of the most striking developments 
in today's technology-enhanced learning — has not 
been based on LD principles or technologies to date. 
Still, few recent initiatives (Kagemann & Bansal, 2015; 
Piedra, Chicaiza, López, & Tovar, 2014) showed some 
interest in describing and comparing MOOCs using 
an LD approach. For example, MOOCLink (Kagemann 
& Bansal, 2015) aggregates open courseware as LD 
and exploits these data to retrieve courses around 
particular subjects and compare details of the cours-
es' syllabi. Recently, there has also been an initiative 
that relies on schema.org16 to create a vocabulary for 
course description17 with the purpose of facilitating 
the discovery of any type of educational course. 
Schema.org is a structured data markup schema (or 
vocabulary) supported by major Web search engines. 
This schema is then used to annotate Web pages and 
facilitate the discovery of relevant information. Given 
its adoption by major players on the Web, this is a 
welcome initiative that might have some long-term 
impact in the educational community. Similarly, some 
authors worked on providing an RDF representation 
(binding) of educational standards. For example, an 
RDF binding of the Contextualised Attention Metadata 
(CAM) (Muñoz-Merino et al., 2010) and an RDF binding 
of the Atom Activity Streams18 were developed. This 
enabled data integration and interoperability both at 
syntax and semantic levels.

Finally, with the current shift towards RESTful (rep-
resentational state transfer) services on the cloud, 
education-related services based on LD have started 
to emerge. At a conceptual level, we can identify 
two main types of services based on LD currently 
being investigated in research: 1) services for course 
interlinking within a single institution and across 
institutions, and 2) services for integrating learners’ 
log data based on a common model. 

For example, Dietze et al. (2012) proposed an LD-based 
framework to integrate existing educational repos-
itories at the service and data levels. Zablith (2015) 

13 http://lodum.de/
14 http://linkedup-project.eu/
15 http://lak.linkededucation.org/
16 https://schema.org/
17 https://www.w3.org/community/schema-course-extend/
18 http://xmlns.notu.be/aair/

suggested the use of LD as a conceptual layer around 
higher education programs to interlink courses in a 
granular and reusable manner. Another work links 
ESCO19-based skills to MOOC course descriptions to 
create enriched CVs (Zotou, Papantoniou, Kremer, 
Peristeras, & Tambouris, 2014). Interestingly, the au-
thors are able to identify similar skills taught in the 
Coursera and Udacity MOOC platforms, thus providing 
implicit links between courses of two different MOOC 
platforms. One can envisage exciting opportunities for 
life-long learning based on a cross-platform MOOC 
course recommendation service.

Another indicator of the growing importance of LD 
in the realm of education in general, and LA/EDM 
in particular, is the adoption of LD concepts and 
technologies into xAPI specifications20. With xAPI, 
developers can create a learning experience tracking 
service through a predefined interface and a set of 
storage and retrieval rules. De Nies, Salliau, Verborgh, 
Mannens, and Van de Walle (2015) propose to expose 
data models created using the xAPI specification as 
LD. This proposal provides an interoperable model of 
learning traces data, and allows for seamless expos-
ing of learners' traces as semantically interoperable 
LD. Similarly, Softic et al. (2014) report on the use of 
Semantic Web technologies (RDF, SPARQL) to model 
learner logs in personal learning environments.

Based on the scalability of the Web as the base infra-
structure, and using the interoperability of the W3C 
standards RDF and SPARQL, we believe that similar 
initiatives can further contribute to the development 
of decentralized and adaptable learning services.

Given the rapid growth of unstructured textual content 
on various online social media and communication 
channels, as well as the ever-increasing amount of 
dedicated learning content deployed on MOOCs, there 
is a need to automate the discovery of items relevant 
to distance education, such as topics, trends, and 
opinions, to name a few. In fact, analytics required 
for the discovery and/or recommendation of relevant 
items can be improved if the regular input data (e.g., 
learners' logs) is enriched with background information 
from LOD datasets (e.g., data about topics associated 
with the course) (d'Aquin & Jay, 2013). The use of LOD 
cross-domain knowledge bases such as DBpedia and 
Yago, alone or in combination with traditional content 
analysis techniques (e.g., social network analysis, 
text mining, latent semantic indexing), represent 
a promising avenue for advancing content analysis 
19 European Commission, "ESCO: European Skills, Competencies, 
Qualifications and Occupations," https://ec.europa.eu/esco
20 https://github.com/adlnet/xAPI-Spec
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and information retrieval in educational settings, as 
outlined in the following sections. 

Content Analysis Using Semantic 
Annotation
One important development in the LD field has been 
the rapid expansion and adoption of semantic an-
notators (Jovanović et al., 2014) - services that take 
unstructured text as input and annotate/tag it with 
LOD concepts (i.e., entities defined in LOD knowledge 
bases such as DBpedia, Wikidata,21 and Yago). The latter 
are general, cross-domain knowledge bases storing 
Wikipedia-like knowledge in well-structured formats 
with explicitly defined semantics. Several of these LD 
annotators offer interfaces (APIs) that target the ex-
traction of various types of concepts, such as named 
entities (e.g., people and places), domain concepts 
(e.g., protein, gene), and themes or keywords, though 
the diversity of possible annotations is continuously 
expanding. Examples of these annotators, both from 
academia and industry, include DBpedia Spotlight,22 
AlchemyAPI,23 and TagMe.24

Given the plethora of unstructured texts from formal 
courses, MOOCs, and social media, the capacity of 
such annotators to produce explicit semantic rep-
resentations of text makes them valuable for various 
analytic services. However, very few research works 
have yet leveraged the power of semantic annotation 
for learning analytics. Recent research by Joksimović et 
al. (2015) uses a mixed-method approach for discourse 
analytics in a cMOOC based on LD and social network 
analysis (SNA). The aim of the study was to explore 
the main topics emerging from learners' posts within 
various social media (i.e., Facebook, Twitter, and blogs) 
and to analyze how those topics evolve throughout 
the course (Joksimović et al., 2015). Instead of rely-
ing on some of the commonly used topic modelling 
algorithms (e.g., latent Dirichlet allocation [LDA]), 
the researchers utilized tools for automated concept 
extraction (i.e., semantic annotators) along with SNA 
to identify emerging topics (groups of concepts). Spe-
cifically, for each week of the course, concepts were 
extracted from the posts generated in each of the 
media analyzed. Further, the authors created graphs 
based on the co-occurrence of concepts within a 
single post. Finally, the authors applied modularity 
algorithm for community detection (Newman, 2006) 
in order to identify the most prominent groups of 
concepts (i.e., latent topics). The main advantage of 
such an approach, over "traditional" topic-modelling 
algorithms, is possibility to extract compound words 
(e.g., "complex adaptive systems") that are further linked 

21 https://www.wikidata.org/
22 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
23 http://www.alchemyapi.com/
24 https://tagme.d4science.org/tagme/

to knowledge bases (e.g., DBpedia), allowing for easier 
interpretation of the extracted topics.

Analysis of Scientific Publications in the 
LA/EDM Field
Another application domain powered by LD and related 
to the educational context is semantic publishing (e.g., 
releasing library catalogues as LD) and meta-analy-
sis of scientific publications. In fact, one of the main 
successes of LD technologies has been their early 
adoption by various content publishers such as BNF25 
and scientific-based publishing initiatives such as 
DBLP.26 This has led to a plethora of LOD vocabularies 
and datasets related to scientific publications. These 
datasets provide grounds for various scientometric 
computations that identify trending topics, influencing 
researchers, and describe the research community at 
large (Mirriahi, Gašević, Dawson, & Long, 2014; Ochoa, 
Suthers, Verbert, & Duval, 2014). They also directly 
help professionals (researchers, students, librarians, 
course producers) from the educational sector to 
locate relevant information. 

In the LA/EDM domain, the Learning Analytics and 
Knowledge (LAK) Dataset (Taibi & Dietze, 2013) rep-
resents a corpus of publications from the LA/EDM 
communities. The LAK Dataset contains both the 
publications' content and metadata (e.g., keywords, 
authors, conference). It represents a data integration 
effort as it relies on various established LOD vocabu-
laries and constitutes a successful application of LD 
technologies. The analysis of the LAK Dataset has 
been encouraged since 2013 through the annual LAK 
Data Challenge, whose goal was to foster research and 
analytics on the LA/EDM publications. This dataset 
has been further exploited for the development of 
data analytics and content analysis applications. One 
particularly valuable application is the identification 
of topics and relations between topics in the dataset, 
per year, per community (LA versus EDM), per publi-
cation, and overall. For example, the work of Zouaq, 
Joksimović, and Gašević (2013) employed ontology 
learning techniques on the LAK Dataset to identify 
salient topics and relationships between them. Oth-
er techniques applied for discovering topics include 
latent Dirichlet allocation (LDA; Sharkey & Ansari, 
2014) and clustering (Scheffel, Niemann, Leon Rojas, 
Drachsler, & Specht, 2014). While these approaches 
offered a text-based content analysis, other works went 
further in their data integration efforts by relying on 
the LOD knowledge bases (e.g., DBpedia) and semantic 
annotators to identify topics of interest. For example, 
Milikić, Krcadinac, Jovanović, Brankov, and Keca (2013) 
and Nunes, Fetahu, and Casanova (2013) relied on 
TagMe and DBpedia Spotlight services, respectively, 
25 http://www.bnf.fr/en/tools/a.welcome_to_the_bnf.html
26 http://datahub.io/dataset/l3s-dblp
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to identify topics and named entities in publications. 
The benefit of LD in this case was highlighted by 1) 
the ability to enrich the dataset with LOD concepts, 
keywords, and themes, and 2) the ability to develop 
advanced services such as potential collaborator de-
tection (Hu et al., 2014), dataset recommendations, or 
more general semantic searches (Nunes et al., 2013). 

Interpretation of Data Mining Results
Several research works have provided insights, pat-
terns, and predictive models by analyzing learners' 
interaction and discussion data (e.g., identifying the 
link between learners' discourse and position and 
their academic performance (Dowell et al., 2015) or 
course registration data (d'Aquin & Jay, 2013). However, 
most of these analyses remain limited to a closed or 
silo dataset, and are often hard to interpret on large 
datasets. 

In general, pattern discovery in LA/EDM requires a 
model and a human analyst for the meaningful interpre-
tation of results according to several dimensions (e.g., 
topics, student characteristics, learning environments, 
etc.) (d'Aquin & Jay, 2013). The work by d'Aquin & Jay 
(2013) provides new insights into the usefulness of LD 
for enriching and contextualizing patterns discovered 
during the data-mining process. In particular, they 
propose annotating the discovered patterns with LD 
URIs so that these patterns can be further enriched 
with existing datasets to facilitate interpretation. The 
authors illustrate the idea by a case study of student 
enrollment in course modules across time. They 
extract frequent course sequences and enrich them 
by associating them, via course URIs, with course 
descriptions, i.e., a set of properties describing the 
course. The (chain of) properties provide(s) analyti-
cal dimensions that are exploited in a lattice-based 
classification (e.g., the common subjects of frequent 
course sequences) and as a navigational structure. 
As illustrated in this case study, LD can help discover 
new analytical dimensions by linking the discovered 
patterns to external knowledge bases and exploiting 
LOD semantic links to infer new knowledge. This is 
especially relevant in multidisciplinary research where 
various factors can contribute to a pattern or phenom-
enon. Given the complexity of learning behaviours, 
one can imagine the utility of having this support in 
the interpretation of LA/EDM results. 

The overall analytical approach to learning expe-
rience requires state-of-the-art data management 
techniques for the collection, management, querying, 
combination, and enrichment of learning data. The 
concept and technologies of LD — the latter based on 
W3C standards (RDF, SPARQL) — have the potential to 

contribute to all these aspects of data management. 
First, one of the primary objectives behind LD tech-
nologies is to make the data easily processable and 
reusable, for a variety of purposes, while preserving 
and leveraging the semantics of the data. Second, LD 
allows for a decentralized approach to data management 
by enabling the seamless combination and querying 
of various datasets. Third, large-scale knowledge 
bases available as linked open data on the Web pro-
vide grounds for a variety of services relevant for the 
analytic process; e.g., semantic annotators for content 
analysis and enrichment. Fourth, data exposed as LD 
on the Web can provide on-demand ( just-in-time) 
data/knowledge input required in different phases 
of the analytic process, as this knowledge cannot be 
always fully anticipated in advance. Potential benefits 
also include representing the resulting analytics in 
a semantic-rich format so that the results could be 
exchanged among applications and communicated 
to interested parties (educators, students) in differ-
ent manners, depending on needs and preferences 
(e.g., different visual or narrative forms). Moreover, 
through its inference capabilities over multiple data 
sources, originating in semantic-rich representation 
of data items and their mutual relationships, LD-based 
methods could be a relevant addition to the existing 
analytical methods for discovering themes and topics 
in textual content. More generally, while statistical 
and machine-learning methods are widespread in 
the LA/EDM community, other kinds of data analysis 
methods and techniques — those based on explicitly 
defined semantics of the data — and open knowledge 
resources (especially open, Web-based knowledge) can 
make the traditional analytical approaches even more 
powerful. Some of the potential enrichments provided 
by LD include semantic vector-based models (e.g., bags 
of concepts instead of bags of words), semantic-rich 
social network analysis with explicitly defined seman-
tics for edges and nodes, or recommendations based 
on semantic similarity measures. 

Finally, LD technologies can be useful in dealing with 
the heterogeneity of learning environments and social 
media platforms. In particular, one can query and as-
semble various datasets that do not share a common 
schema. This aspect in itself represents a more flexible 
and practical approach than previous approaches that 
required compliance to a common model/schema.

However, there are also several challenges related to 
the use of LD in terms of the following: 

1. Quality: The quality of the LOD datasets is a 
concern (Kontokostas et al., 2014), and linking 
learning resources and traces to external data-
sets and knowledge bases might introduce noisy 
data. Although there are some initiatives for data 

DISCUSSION AND OUTLOOK
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cleaning, this issue is far from being resolved. 

2. Alignment: Besides the use of common Web URIs 
among schemas, there is often a need to seman-
tically align vocabularies and models, which is a 
challenging task. Current alignment approaches 
are often based on syntactic matching, which 
does not deal well with ambiguities. One way to 
mitigate the alignment issue is to be aware and 
re-use major LD vocabularies27 whenever possible 
(e.g., foaf:name is a property depicting the name 
of a person in the FOAF specification and could 
be used instead of creating a new property); 

3. Privacy: Data within MOOCs and learning plat-
forms is often siloed for privacy reasons. Merging 

27 http://lov.okfn.org/dataset/lov/

information between learning and social platforms 
would require, for example, that learners grant 
access to their data and provide log-in information 
for the different services they use for learning. 

Despite the challenges indicated above - and given 
the use of LOD datasets and knowledge bases in some 
major initiatives such as Google knowledge graph or 
Facebook graph search and their increasing adoption 
in educational institutions - LD is a promising techno-
logical backbone for today's learning platforms. It also 
provides a useful formalism for facilitating the overall 
learning analytic process, from raw data collection 
and storage, to data exploitation and enrichment, to 
interpretation of the analytics results. 
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