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ABSTRACT

Massive open online courses (MOOCSs) generate a granular record of the actions learners
choose to take as they interact with learning materials and complete exercises towards
comprehension. With this high volume of sequential data and choice comes the potential to
model student behaviour. There exist several methods for looking at longitudinal, sequential
data like those recorded from learning environments. In the field of language modelling,
traditional n-gram techniques and modern recurrent neural network (RNN) approaches
have been applied to find structure in language algorithmically and predict the next word
given the previous words in the sentence or paragraph as input. In this chapter, we draw an
analogy to this work by treating student sequences of resource views and interactions in
a MOOC as the inputs and predicting students’ next interaction as outputs. Our approach
learns the representation of resources in the MOOC without any explicit feature engineering
required. This model could potentially be used to generate recommendations for which
actions a student ought to take next to achieve success. Additionally, such a model auto-
matically generates a student behavioural state, allowing for inference on performance and
affect. Given that the MOOC used in our study had over 3,500 unique resources, predicting
the exact resource that a student will interact with next might appear to be a difficult clas-
sification problem. We find that the syllabus (structure of the course) gives on average 23%
accuracy in making this prediction, followed by the n-gram method with 70.4%, and RNN
based methods with 72.2%. This research lays the groundwork for behaviour modelling of
fine-grained time series student data using feature-engineering-free techniques.
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Today’s digital world is marked with personalization
based on massive logs of user actions. In the field of
education, there continues to be research towards
personalized and automated tutors that can tailor
learning suggestions and outcomes to individual users
based on the (often-latent) traits of the user. In recent
years, higher education online learning environments
such as massive open online courses (MOOCs) have
collected high volumes of student-generated learning
actions. In this chapter, we seek to contribute to the
growing body of research that aims to utilize large
sources of student-created data towards the ability
to personalize learning pathways to make learning
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as accessible, robust, and efficient as desired. To do
so, we demonstrate a strand of research focused on
modelling the behavioural state of the student, distinct
from research objectives concerned primarily with
performance assessment and prediction. We seek to
consider all actions of students in a MOOC, such as
viewing lecture videos or replying to forum posts,
and attempt to predict their next action. Such an
approach makes use of the granular, non-assessment
data collected in MOOCs and has potential to serve
as a source of recommendations for students looking
for navigational guidance.

Utilizing clickstream data across tens of thousands of
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students engaged in MOOCs, we ask whether general-
izable patterns of actions across students navigating
through MOOCs can be uncovered by modelling the
behaviour of those who were ultimately successful
in the course. Capturing the trends that successful
students take through MOOCSs can enable the devel-
opment of automated recommendation systems so
that struggling students can be given meaningful and
effective recommendations to optimize their time spent
trying to succeed. For this task, we utilize generative
sequential models. Generative sequential models can
take in a sequence of events as an input and generate
a probability distribution over what event is likely to
occur next. Two types of generative sequential models
are utilized in this work, specifically the n-gram and
the recurrent neural network (RNN) model, which
have traditionally been successful when applied to
other generative and sequential tasks.

This chapter specifically analyzes how well such models
can predict the next action given a context of previous
actions the student has taken in a MOOC. The purpose
of such analysis would eventually be to create a system
whereby an automated recommender could query the
model to provide meaningful guidance on what action
the student can take next. The next action in many cases
may be the next resource prescribed by the course but
in other cases, it may be a recommendation to consult
aresource from a previous lesson or enrichment mate-
rial buried in a corner of the courseware unknown to
the student. These models we are training are known
as generative, in that they can be used to generate
what action could come next given a prior context of
what actions the student has already taken. Actions
can include things such as opening a lecture video,
answering a quiz question, or navigating and replying
to a forum post. This research serves as a foundation
for applying sequential, generative models towards
creating personalized recommenders in MOOCs with
potential applications to other educational contexts
with sequential data.

RELATED WORK

In the case of the English language, generative models
are used to generate sample text or to evaluate the
plausibility of a sample of text based on the model’s
understanding of how that language is structured. A
simple but powerful model used in natural language
processing (NLP) is the n-gram model (Brown, De-
souza, Mercer, Pietra, & Lai, 1992), where a probability
distribution is learned over every possible sequence
of n terms from the training set. Recently, recurrent
neural networks (RNNs) have been used to perform
next-word prediction (Mikolov, Karafiat, Burget,
Cernocky, & Khudanpur, 2010), where previously seen

words are subsumed into a high dimensional continuous
latent state. This latent state is a succinct numerical
representation of all of the words previously seen in
the context. The model can then utilize this repre-
sentation to predict what words are likely to come
next. Both of these generative models can be used to
generate candidate sentences and words to complete
sentences. In this work, rather than learning about the
plausibility of sequences of words and sentences, the
generative models will learn about the plausibility of
sequences of actions undertaken by students in MOOC
contexts. Then, such generative models can be used
to generate recommendations for what the student
ought to do next.

In the learning analytics community, there is related
work where data generated by students, often in MOOC
contexts, is analyzed. Analytics are performed with
many different types of student-generated data, and
there are many different types of prediction tasks.
Crossley, Paquette, Dascalu, McNamara, and Baker
(2016) provide an example of the paradigm where raw
logs, in this case also from a MOOC, are summarized
through a process of manual feature engineering. In our
approach, feature representations are learned directly
from the raw time series data. This approach does not
require subject matter expertise to engineer features
and is a potentially less lossy approach to utilizing the
raw information in the MOOC clickstream. Pardos and
Xu (2016) identified prior knowledge confounders to
help improve the correlation of MOOC resource usage
with knowledge acquisition. In that work, the pres-
ence of student self-selection is a source of noise and
confounders. In contrast, student selection becomes
the signal in behavioural modelling. In Reddy, Labu-
tov, and Joachims (2016), multiple aspects of student
learning in an online tutoring system are summarized
together via embedding. This embedding process maps
assignments, student ability, and lesson effectiveness
onto a low dimensional space. Such a process allows
for lesson and assignment pathways to be suggested
based on the model’s current estimate of student ability.
The work in this chapter also seeks to suggest learning
pathways for students, but differs in that additional
student behaviours, such as forum post accesses and
lecture video viewings, are also included in the model.
Additionally, different generative models are employed.

In this chapter, we are working exclusively with event
log data from MOOCs. While this user clickstream
traverses many areas of interaction, examples of
behaviour research have analyzed the content of the
resources involved in these interaction sequences.
Such examples include analyzing frames of MOOC
videos to characterize the video's engagement level
(Sharma, Biswas, Gandhi, Patil, & Deshmukh, 2016),
analyzing the content of forum posts (Wen, Yang, &
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Rosé, 2014; Reich, Stewart, Mavon, & Tingley, 2016), can be represented as a sequence of actions from a
and analyzing the ad-hoc social networks that arise  fixed action state space, LSTMs could potentially be
from interactions in the forums (Oleksandra & Shane, used to capture complex patterns that characterize
2016). We are looking at all categories of possible  successful learning. In previous work, modelling of
student events at a more abstract level compared to ~ student clickstream data has shown promise with
these content-focused approaches. methods such as n-gram models (Wen & Rosé, 2014).

In terms of cognition in learning analytics and EDM,
much work has been done to assess the latent knowl- DATASET

edge of students through models such as Bayesian The dataset used in this chapter came from a Statis-

knowledge tracing (BKT; Corbett & Anderson, 1994), ;. perkeleyX MOOC from Spring 2013. The MOOC
including retrofitting the model to a MOOC (Pardos, ran for five weeks, with video lectures, homework

Bergner, Seaton, & Pritchard, 2013) using superficial assignments, discussion forums, and two exams. The
COI.HSG structure as .a soqrce of knowl.edge components. original dataset contains 17 million events from around
This t.ype of model%n}g views the actions of students as 31,000 students, where each event is a record of a
learning opportunities to model stud.er.1t latent knowl— user interacting with the MOOC in some way. These
ed.ge. Student knowledge is noF explicitly modelled in interactions include events such as navigating to a
this chapter, though tk}e Yvork is related. Instead, our particular URL in the course, up-voting a forum thread,
models focus on predlictmlg the complfement of this answering a quiz question, and playing a lecture video.
performance data, which is the behavioural data of The data is processed so that each unique user has
the student. all of their events collected in sequential order: 3,687
Deep knowledge tracing (DKT; Piech et al., 2015) uses types of events are possible. Every row in the dataset
recurrent neural networks to create a continuous latent is converted to a particular index that represents the
representation of students based on previously seen action taken or the URL accessed by the student.
assessment results as they navigate online learning
environments. In that work, recurrent neural networks
summarize all of a student’s prior assessment results
by keeping track of a complex latent state. That work
shows that a deep learning approach can be used to
represent student knowledge, with favourable accu-
racy predictions relative to shallow BKT. Such results,
however, are hypothesized to be explained by already
existing extensions of BKT (Khajah, Lindsey, & Mozer,
2016). The use of deep learning to approach knowl-
edge tracing still finds useful relationships in the data
automatically, but potentially does not find additional
representations relative to already proposed extensions
to BKT. The work in this chapter is related to the use
of deep networks to represent students, but differs in
that all types of student actions are considered rather
than only the use of assessment actions.

Thus, every unique user’s set of actions is represent-
ed by a sequence of indices, of which there are 3,687
unique kinds. Our recorded event history included
students navigating to different pages of the course,
which included forum threads, quizzes, video pages,
and wiki pages. Within these pages, we also recorded
the actions taken within the page, such as playing
and pausing a video or checking a problem. We also
record JavaScript navigations called sequential events.
In this rendition of our pre-processing, we record
these sequence events by themselves, without ex-
plicit association with the URL navigated to by the
sequential event. Table 1 catalogs the different types
of events present in the dataset as well as whether
we chose to associate the specific URL tied to the
event or not. In our pre-processing, some of these
events are recorded as URL-specific, meaning that the
Specifically, in this chapter we consider using both model will be exposed to the exact URL the student is
the n-gram approach and a variant of the RNN known  accessing for these events. Some events are recorded
as the long short-term memory (LSTM) architecture ~ as non-URL-specific, meaning that the model will
(Hochreiter & Schmidhuber, 1997). These two both only know that the action took place, but not which
model sequences of data and provide a probability URL that action is tied to in the course. Note that any
distribution of what token should come next. The use of ~ event that occurred fewer than 40 times in the origi-
LSTM architectures and similar variants have recently =~ nal dataset was filtered out. Thus, many of the forum

achieved impressive results in a variety of fields involv- events are filtered out, since they were URL-specific,
ing sequential data, including speech, image, and text ~ but did not occur very frequently. Seq goto, seq next,
analysis (Graves, Mohamed, & Hinton, 2013; Vinyals, and seq prev refer to events triggered when students
Kaiser, et al., 2015; Vinyals, Toshev, Bengio, & Erhan, select navigation buttons visible on the browser page.
2015), in part due to its mutable memory that allows Seq next and seq prev will move to either the next or
for the capture of long- and short-range dependen- the previous content page in the course respectively,

cies in sequences. Since student learning behaviour ~ while a seq goto represents a jump within a section
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to any other section within a chapter.

Table 19.1. Logged Event Types and their Specificity

Course Page Events

Page View (URL-Specific)

Seq Goto (Non-URL-Specific)

Seq Next (Non-URL-Specific)

Seq Prev (Non-URL-Specific
Wiki Events

Page View (URL-Specific)

Video Events

Video Pause (Non-URL-Specific)

Video Play (Non-URL-Specific)

Problem Events

Problem View (URL-Specific)

Problem Check (Non-URL-Specific)

Problem Show Answer (Non-URL-specific)

Forum View (URL-Specific)

Forum Close (filtered out)

Forum Create (filtered out)

Forum Delete (filtered out)

Forum Endorse (filtered out)

Forum Follow (URL-Specific)

Forum Reply (URL-Specific)

Forum Search (Non-URL-specific)

Forum Un-follow (filtered out)

Forum Un-vote (filtered out)

Forum Update (filtered out)

Forum Up-vote (URL-Specific)

Forum View Followed Threads (URL-Specific)

Forum View Inline (URL-Specific)

Forum View User Profile (URL-Specific)

For example, if a student accesses the chapter 2, sec-
tion 1 URL, plays a lecture video, clicks on the next
arrow button (which performs a JavaScript navigation
to access the next section), answers a quiz question,
then clicks on section 5 within the navigation bar
(which performs another JavaScript navigation), that
student’s sequence would be represented by five
different indices. The first would correspond to the
URL of chapter 2, section 1, the second to a play video
token, the third to a navigation next event, the fourth
to a unique identifier of which specific problem within
the course the student accessed, and the fifth to a
navigation goto event. The model would be given a
list of these five indices in order, and trained to pre-
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dict what should come after. The indices therefore
represent the sequence of actions the student took.
The length of five is not required; generative models
can be given sequences of arbitrary length.

Of the 31,000 students, 8,094 completed enough
assignments and scored high enough on the exams
to be considered “certified” by the instructors of the
course. Note that in other MOOC contexts, certifi-
cation sometimes means that the student paid for a
special certification, but that is not the case for this
MOOC. The certified students accounted for 11.2 mil-
lion of the original 17 million events, with an average
of 1,390 events per certified student. The distinction
between certified and non-certified is important for
this chapter, as we chose to train the generative models
only on actions from students considered “certified,”
under the hypothesis that the sequence of actions that
certified students take might reasonably approximate
a successful pattern of navigation for this MOOC.

Each row in the dataset contained relevant information
about the action, such as the exact URL of what the
user is accessing, a unique identifier for the user, the
exact time the action occurs, and more. For this chap-
ter, we do not consider time or other possibly relevant
contextual information, but instead focus solely on the
resource the student accesses or the action taken by
the student. Events that occurred fewer than 40 times
throughout the entire dataset were removed, as those
tended to be rarely accessed discussion posts or user
profile visits and are unlikely to be applicable to other
students navigating through the MOOC.

METHODOLOGY

In this work, we investigate the use of two generative
models, the recurrent neural network architecture, and
the n-gram. In this section, we detail the architecture
of the recurrent neural network and the LSTM exten-
sion, the model we hypothesize will perform best at
next-action prediction. Other “shallow” models, such
as the n-gram, are described afterwards.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural
network models designed to handle arbitrary length
sequential data. Recurrent neural networks work by
keeping around a continuous, latent state that persists
throughout the processing of a particular sequence.
This latent state captures relevant information about
the sequence so far, so that prediction at later parts
of the sequence can be influenced by this continuous
latent state. As the name implies, RNNs employ the
computational approach utilized by feed forward neural
networks while also imposing a recurring latent state
that persists between time steps. Keeping the latent
state around between elements in an input sequence




is what gives recurrent neural networks their sequen-
tial modelling power. In this work, each input into the
RNN will be a granular student event from the MOOC
dataset. The RNN is trained to predict the student’s
next event based on the series of events seen so far.
Figure 19.1 shows a diagram of a simple RNN, where
inputs would be student actions and outputs would
be the next student action from the sequence. The
equations below show the mathematical operations
used on each of the parameters of the RNN model:
ht represents the continuous latent state. This latent
state is kept around, such that the prediction at xt+1
is influenced by the latent state ht. The RNN model is
parameterized by an input weight matrix Wx, recurrent
weight matrix Wh, initial state h0, and output matrix
Wy: bh and by are biases for latent and output units,
respectively.

h,=tanh(W x, +W h_ +b) 1
Y, =o(W h +b) )

»®®» W
t 1t 1 t
ho{ hi[> hy»{ hs] = | h,

®®E ©

Figure 19.1. Simple recurrent neural network

LSTM Models

A popular variant of the RNN is the long short-term
memory (LSTM; Hochreiter & Schmidhuber, 1997)
architecture, which is thought to help RNNs learn
long-range dependencies by the addition of “gates”
that learn when to retain meaningful information
in the latent state and when to clear or “forget” the
latent state, allowing for meaningful long-term in-
teractions to persist. LSTMs add additional gating
parameters explicitly learned in order to determine
when to clear and when to augment the latent state
with useful information. Instead, each hidden state
hi is replaced by an LSTM cell unit, which contains
additional gating parameters. Because of these gates,
LSTMs have been found to train more effectively than
simple RNNs (Bengio, Simard, & Frasconi, 1994; Gers,
Schmidhuber, & Cummins, 2000). The update equations
for an LSTM are as follows:

f.=o(W x, + W h_ +b) ®)

fht-1

1t - G(Wixxr + Wihht—l + b1) (4)

C, = tanh(W_x, + W ,h_ +b) (5)

Ch "t-1

Ct=ftxct—l+ixc (6)
0,=c(W_x,+W_h_ +b) (7)
h, = o, x tanh(Ct) (8)

Figure 19.2 illustrates the anatomy of a cell, where the
numbers in the figure correspond to the previously
mentioned update equations for the LSTM: ft, it, and
ot represent the gating mechanisms used by the LSTM
to determine “forgetting” data from the previous cell
state, what to “in-put” into the new cell state, and
what to output from the cell state. Ct represents the
latent cell state for which information is removed from
and added to as new inputs are fed into the LSTM. C™t
represents an intermediary new candidate cell state
gated to update the next cell state.

t
6 rCt
[ ~Q
3 4 5 7
| | | 1t R
ht—1 )'( 'ht

Figure 19.2. The anatomy of a cell with the num-
bers corresponding to the update equations for the
LSTM.

LSTM Implementation

The generative LSTM models used in this chapter were
implemented using Keras (Chollet, 2015), a Python
library built on top of Theano (Bergstra et al., 2010;
Bastien et al., 2012). The model takes each student
action represented by an index number. These indi-
ces correspond to the index in a 1-hot encoding of
vectors, also known as dummy variabilization. The
model converts each index to an embedding vector,
and then consumes the embedded vector one at a
time. The use of an embedding layer is common in
natural language processing and language modelling
(Goldberg & Levy, 2014) as a way to map words to a
multi-dimensional semantic space. An embedding
layer is used here with the hypothesis that a similar
mapping may occur for actions in the MOOC action
space. The model is trained to predict the next student
action, given actions previously taken by the student.
Back propagation through time (Werbos, 1988) is used
to train the LSTM parameters, using a softmax layer
with the index of the next action as the ground truth.
Categorical cross entropy is used calculating loss, and
RMSprop is used as the optimizer. Drop out layers
were added between LSTM layers as a method to curb
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overfitting (Pham, Bluche, Kermorvant, & Louradour,
2014). Drop out randomly zeros out a set percentage
of network edge weights for each batch of training
data. In future work, it may be worthwhile to evaluate
other regularization techniques crafted specifically
for LSTMs and RNNs (Zaremba, Sutskever, & Vinyals,
2014). We have made a version of our pre-processing
and LSTM model code public,! which begins with ex-
tracting only the navigational actions from the dataset.

LSTM Hyperparameter Search

As part of our initial investigation, we trained 24 LSTM
models each with a different set of hyperparameters
for 10 epochs each. An epoch is the parameter-fitting
algorithm making a full pass through the data. The
searched space of hyperparameters for our LSTM
models is shown in Table 19.2. These hyperparameters
were chosen for grid search based on previous work
that prioritized different hyperparameters based on
effect size (Greff, Srivastava, Koutnik, Steunebrink, &
Schmidhuber, 2015). For the sake of time, we chose not
to train 3-layer LSTM models with learning rates of
.0001. We also performed an extended investigation,
where we used the results from the initial investiga-
tion to serve as a starting point to explore additional
hyperparameter and training methods.

Because training RNNs is relatively time consuming,
the extended investigation consisted of a subset of
promising hyperparameter combinations (see the
Results section).

Table 19.2. LSTM Hyperparameter Grid

Hidden Layers 1 2 3
Nodes in Hidden Layer 64 128 256
Learning Rate (_) 0.01 0.001 .00071*

Cross Validation

To evaluate the predictive power of each model, 5-fold
cross validation was used. Each model was trained on
80% of the data and then validated on the remaining
20%; this was done five times so that each set of student
actions was in a validation set once. For the LSTMs,
the model held out 10% of its training data to serve
as the hill climbing set to provide information about
validation accuracy during the training process. Each
row in the held out set consists of the entire sequence
of actions a student took. The proportion of correct
next action predictions produced by the model is
computed for each sequence of student actions. The
proportions for an entire fold are averaged to gener-
ate the model’s performance for that particular fold,
and then the performances across all five folds are
averaged to generate the CV-accuracy for a particular

! https: //github.com/CAHLR /mooc-behavior-case-study

LSTM model hyperparameter set.

Shallow Models

N-gram models are simple, yet powerful probabilistic
models that aim to capture the structure of sequences
through the statistics of n-sized sub-sequences called
grams and are equivalent to n-order Markov chains.
Specifically, the model predicts each sequence state
xi using the estimated conditional probability P(x-
1.|xi7(nfl), ..., X,_,), which is the probability that xi follows
the previous n-1 states in the training set. N-gram
models are both fast and simple to compute, and have
a straightforward interpretation. We expect n-grams
to be an extremely competitive standard, as they are
relatively high parameter models that essentially assign
a parameter per possible action in the action space.

For the n-gram models, we evaluated those where n
ranged from 2 to 10, the largest of which corresponds to
the size of our LSTM context window during training. To
handle predictions in which the training set contained
no observations, we employed backoff, a method that
recursively falls back on the prediction of the largest
n-gram that contains at least one observation. Our
validation strategy was identical to the LSTM models,
wherein the average cross-validation score of the same
five folds was computed for each model.

Course Structure Models

We also included a number of alternative models aimed
at exploiting hypothesized structural characteristics
of the sequence data. The first thing we noticed when
inspecting the sequences was that certain actions are
repeated several times in a row. For this reason, it is
important to know how well this assumption alone
predicts the next action in the dataset. Next, since
course content is most often organized in a fixed
sequence, we evaluated the ability of the course syl-
labus to predict the next page or action. We accom-
plished this by mapping course content pages to
student page transitions in our action set, which
yielded an overlap of 174 matches out of the total 300
items in the syllabus. Since we relied on matching
content ID strings that were not always present in our
action space, a small subset of possible overlapping
actions were not mapped. Finally, we combined both
models, wherein the current state was predicted as
the next state if the current state was not in the syl-
labus.

RESULTS

In this section, we discuss the results from the previ-
ously mentioned LSTM models trained with different
learning rates, number of hidden nodes per layer, and
number of LSTM layers. Model success is determined
through 5-fold cross validation and is related to how
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well the model predicts the next action. N-gram
models, as well as other course structure models, are
validated through 5-fold cross validation.

LSTM Models

Table 19.3 shows the CV-accuracy for all 24 LSTM
models computed after 10 iterations of training. For
the models with alearning rate of .01, accuracy on the
hill climbing sets generally peaked at iteration 10. For
the models with the lower learning rates, it would be
reasonable to expect that peak CV-accuracies would
improve through more training. We chose to simply
report results after 10 iterations instead to provide
a snapshot of how well these models are performing
during the training process. We also hypothesize that
model performance is unlikely to improve drastically
over the .01 learning rate model performances in the
long-run, and we need to maximize the most prom-
ising explorations to run on limited GPU computation
resources. The best CV-accuracy for each learning
rate is bolded for emphasis.

One downside of using LSTMs is that they require
a GPU and are relatively slow to train. Thus, when
investigating the best hyperparameters to use, we
chose to train additional models based only on a
subset of the initial explorations. We also extend the
amount of context exposed to the model, extending
past context from 10 elements to 100 elements. Table
4 shows these extended results. Each LSTM layer has
256 nodes and is trained for either 20 or 60 epochs,
as opposed to just 10 epochs in the previous hyper-
parameter search results. The extended results show
alarge improvement over the previous results, where
the new accuracy peaked at .7223 compared to .7093.

Figure 19.3 shows validation accuracy on the 10%
hill-climbing hold out set during training by epoch for
the 1and 2 layer models from the initial exploration.
Each data point represents the average hill-climbing
accuracy among all three learning rates for a particular
layer and node count combination. Empirically, having
a higher number of nodes is associated with a higher
accuracy in the first 10 epochs, while 2 layer models
start with lower validation accuracies for a few epochs
before approaching or surpassing the corresponding 1
layer model. This figure provides a snapshot for the first
10 epochs; clearly, for some parameter combinations,
more epochs would result in a higher hill-climbing
accuracy, as shown by the additional extended LSTM
search. Extrapolating, 3-layer models may also follow
the trend that the 2-layer models exhibited where
accuracies may start lower initially before improving
over their lower-layer counterparts.
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Table 19.3. LSTM Performance (10 Epochs)

Learn Rate Nodes Layers Accuracy
0.01 64 1 0.7014
0.01 64 2 0.7009
0.01 64 3 0.6997
0.01 128 1 0.7046
0.01 128 2 0.7064
0.01 128 3 0.7056
0.01 256 1 0.7073
0.01 256 2 0.7093
0.01 256 3 0.7092

0.001 64 1 0.6941
0.001 64 2 0.6968
0.001 64 3 0.6971
0.001 128 1 0.6994
0.001 128 2 0.7022
0.001 128 3 0.7026
0.001 256 1 0.7004
0.001 256 2 0.7050
0.001 256 3 0.7050
0.0001 64 1 0.6401
0.0001 64 2 0.4719
0.0001 128 1 0.6539
0.0001 128 2 0.6648
0.0001 256 1 0.6677
0.0001 256 2 0.6894

Table 19.4. Extended LSTM Performance (256 Nodes,

100 Window Size

Learn Rate Epoch Layers Accuracy
0.01 20 2 0.7190

0.01 60 2 0.7220

0.01 20 3 0.7174

0.01 60 3 0.7223

0.001 20 2 0.7044

0.001 60 2 0.7145

0.001 20 3 0.7039

0.001 60 3 0.7147

Course Structure Models

Model performance for the different course structure
models is shown in Table 19.5. Results suggest that
many actions can be predicted from simple heuristics
such as stationarity (same as last), or course content
structure. Combining both of these heuristics (“syllabus
+repeat”) yields the best results, although none of the
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alternative models obtained performance within the
range of the LSTM or n-gram results.
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\
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Layers Nodes
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g
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256
256

NN

2 3 1 ] 3 7 ] 9 10
Epoch

Figure 19.3. Average accuracy by epoch on hill
climbing data, which comprised 10% of each
training set.

Table 19.5. Structural Models

repeat 0.2908
syllabus 0.2339
syllabus + repeat 0.4533

N-gram Models

Model performance is shown in Table 19.6. The best
performing models made predictions using either the
previous 7 or 8 actions (8-gram and 9-gram respec-
tively). Larger histories did not improve performance,
indicating that our range of n was sufficiently large.
Performance in general suggests that n-gram models
were competitive with the LSTM models, although
the best n-gram model performed worse than the
best LSTM models. Table 19.7 shows the proportion
of n-gram models used for the most complex model
(10-gram). More than 62% of the predictions were
made using 10-gram observations. Further, fewer than
1% of cases fell back on unigrams or bigrams to make
predictions, suggesting that there was not a significant
lack of observations for larger gram patterns.

Table 19.6. N-gram Performance

N-gram Accuracy

2-gram 0.6304
3-gram 0.6658
4-gram 0.6893
5-gram 0.6969
6-gram 0.7012
7-gram 0.7030
8-gram 0.7035
9-gram 0.7035
10-gram 0.7033
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Table 19.7. Proportion of 10-gram prediction by n
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—
o
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Still, about 6% fewer data points looks to be predicted
by successively larger n-grams.

Validating on Uncertified Students

We used the best performing “original” LSTM model
after 10 epochs of training (.01 learn rate, 256 nodes,
2 layers) to predict actions on streams of data from
students who did not ultimately end up certified. Many
uncertified students only had a few logged actions, so
we restricted analysis to students who had at least 30
logged actions. There were 10,761 students who met
these criteria, with a total of 2,151,662 actions. The
LSTM model was able to predict actions correctly
from the uncertified student space with .6709 accu-
racy, compared to .7093 cross-validated accuracy for
certified students. This difference shows that actions
from certified students tend to be different than actions
from uncertified students, perhaps showing potential
application in providing an automated suggestion
framework to help guide students.

Table 19.8. Cross Validated Models Comparison

N-gram Correct N-gram Incorrect
LSTM Correct 7,565,862 577,683
LSTM Incorrect 367,960 2,735,702

CONTRIBUTIONS

In this work, we approached the problem of modelling
granular student action data by modelling all types of
interactions within a MOOC. This differs in approach
from previous work, which primarily focuses on mod-
elling latent student knowledge using assessment
results. In predicting a student’s next action, the best
performing LSTM model produced a cross-validation
accuracy of .7223, which was an improvement over the
best n-gram model accuracy of .7035: 210,000 more



correct predictions of the total 11-million possible.
Table 8 shows the number of times the two models
agreed or disagreed on a correct or an incorrect
prediction during cross validation. Both LSTM and
n-gram models provide significant improvement over
the structural model of predicting the next action by
syllabus course structure and through repeats, which
shows that patterns of student engagement clearly
deviate from a completely linear navigation through
the course material.

To our knowledge, this chapter marks the first time
that behavioural data has been predicted at this level
of granularity in a MOOC. It also represents the first
time recurrent neural networks have been applied to
MOOC data. We believe that this technique for rep-
resenting students’ behavioural states from raw time
series data, without feature engineering, has broad
applicability in any learning analytics context with high
volume time series data. While our framing suggests
how behavioural data models could be used to suggest
future behaviours for students, the representation
of their behavioural states could prove valuable for
making a variety of other inferences on constructs
ranging from performance to affect.

FUTURE WORK

Both the LSTM and the n-gram models have room for
improvement. In particular, our n-gram models could
benefit from a combination of backoff and smoothing
techniques, which allow for better handling of unseen
grams. Our LSTM may benefit from a broader hyper-
parameter grid search, more training time, longer
training context windows, and higher-dimensional
action embeddings. Additionally, the signal-to-noise
ratio in our dataset could be increased by removing less
informative or redundant student actions, or adding
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