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education, there continues to be research towards 

learning suggestions and outcomes to individual users 

based on the (often-latent) traits of the user. In recent 

years, higher education online learning environments 

such as massive open online courses (MOOCs) have 

collected high volumes of student-generated learning 

actions. In this chapter, we seek to contribute to the 

sources of student-created data towards the ability 

so, we demonstrate a strand of research focused on 

modelling the behavioural state of the student, distinct 

from research objectives concerned primarily with 

performance assessment and prediction. We seek to 

consider all actions of students in a MOOC, such as 

viewing lecture videos or replying to forum posts, 

approach makes use of the granular, non-assessment 

data collected in MOOCs and has potential to serve 

as a source of recommendations for students looking 

for navigational guidance.

Chapter 19: Predictive Modelling of Student 

Behavior Using Granular Large-Scale Action 

Data

Massive open online courses (MOOCs) generate a granular record of the actions learners 

comprehension. With this high volume of sequential data and choice comes the potential to 

traditional n-gram techniques and modern recurrent neural network (RNN) approaches 

given the previous words in the sentence or paragraph as input. In this chapter, we draw an 

analogy to this work by treating student sequences of resource views and interactions in 

required. This model could potentially be used to generate recommendations for which 

-

matically generates a student behavioural state, allowing for inference on performance and 

-

accuracy in making this prediction, followed by the n-gram method with 70.4%, and RNN 

based methods with 72.2%. This research lays the groundwork for behaviour modelling of 
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students engaged in MOOCs, we ask whether general-

through MOOCs can be uncovered by modelling the 

behaviour of those who were ultimately successful 

in the course. Capturing the trends that successful 

students take through MOOCs can enable the devel-

opment of automated recommendation systems so 

that struggling students can be given meaningful and 

take in a sequence of events as an input and generate 

a probability distribution over what event is likely to 

the recurrent neural network (RNN) model, which 

have traditionally been successful when applied to 

other generative and sequential tasks.

actions the student has taken in a MOOC. The purpose 

of such analysis would eventually be to create a system 

whereby an automated recommender could query the 

model to provide meaningful guidance on what action 

in other cases, it may be a recommendation to consult 

a resource from a previous lesson or enrichment mate-

rial buried in a corner of the courseware unknown to 

the student. These models we are training are known 

as generative, in that they can be used to generate 

what actions the student has already taken. Actions 

can include things such as opening a lecture video, 

to a forum post. This research serves as a foundation 

for applying sequential, generative models towards 

with sequential data.

In the case of the English language, generative models 

understanding of how that language is structured. A 

simple but powerful model used in natural language 

-

distribution is learned over every possible sequence 

of n terms from the training set. Recently, recurrent 

neural networks (RNNs) have been used to perform 

Cernocky, & Khudanpur, 2010), where previously seen 

words are subsumed into a high dimensional continuous 

latent state. This latent state is a succinct numerical 

representation of all of the words previously seen in 

-

sentation to predict what words are likely to come 

generate candidate sentences and words to complete 

sentences. In this work, rather than learning about the 

plausibility of sequences of words and sentences, the 

generative models will learn about the plausibility of 

sequences of actions undertaken by students in MOOC 

to generate recommendations for what the student 

In the learning analytics community, there is related 

work where data generated by students, often in MOOC 

many different types of student-generated data, and 

there are many different types of prediction tasks. 

through a process of manual feature engineering. In our 

approach, feature representations are learned directly 

from the raw time series data. This approach does not 

help improve the correlation of MOOC resource usage 

with knowledge acquisition. In that work, the pres-

ence of student self-selection is a source of noise and 

confounders. In contrast, student selection becomes 

the signal in behavioural modelling. In Reddy, Labu-

together via embedding. This embedding process maps 

assignments, student ability, and lesson effectiveness 

onto a low dimensional space. Such a process allows 

for lesson and assignment pathways to be suggested 

based on the model’s current estimate of student ability. 

The work in this chapter also seeks to suggest learning 

pathways for students, but differs in that additional 

student behaviours, such as forum post accesses and 

lecture video viewings, are also included in the model. 

Additionally, different generative models are employed.

log data from MOOCs. While this user clickstream 

resources involved in these interaction sequences. 

RELATED WORK



CHAPTER 19 PREDICTIVE MODELLING OF STUDENT BEHAVIOUR USING GRANULAR LARGE-SCALE ACTION DATA PG 225

from interactions in the forums (Oleksandra & Shane, 

student events at a more abstract level compared to 

these content-focused approaches.

much work has been done to assess the latent knowl-

edge of students through models such as Bayesian 

knowledge tracing (BKT; Corbett & Anderson, 1994), 

course structure as a source of knowledge components. 

This type of modelling views the actions of students as 

learning opportunities to model student latent knowl-

this chapter, though the work is related. Instead, our 

models focus on predicting the complement of this 

performance data, which is the behavioural data of 

the student.

recurrent neural networks to create a continuous latent 

representation of students based on previously seen 

assessment results as they navigate online learning 

environments. In that work, recurrent neural networks 

shows that a deep learning approach can be used to 

represent student knowledge, with favourable accu-

racy predictions relative to shallow BKT. Such results, 

-

to BKT. The work in this chapter is related to the use 

of deep networks to represent students, but differs in 

that all types of student actions are considered rather 

than only the use of assessment actions.

the n-gram approach and a variant of the RNN known 

as the long short-term memory (LSTM) architecture 

(Hochreiter & Schmidhuber, 1997). These two both 

model sequences of data and provide a probability 

LSTM architectures and similar variants have recently 

-

2015), in part due to its mutable memory that allows 

for the capture of long- and short-range dependen-

cies in sequences. Since student learning behaviour 

can be represented as a sequence of actions from a 

successful learning. In previous work, modelling of 

student clickstream data has shown promise with 

methods such as n-gram models (Wen & Rosé, 2014).

The dataset used in this chapter came from a Statis-

tics BerkeleyX MOOC from Spring 2013. The MOOC 

original dataset contains 17 million events from around 

31,000 students, where each event is a record of a 

user interacting with the MOOC in some way. These 

interactions include events such as navigating to a 

particular URL in the course, up-voting a forum thread, 

The data is processed so that each unique user has 

types of events are possible. Every row in the dataset 

action taken or the URL accessed by the student.

Thus, every unique user’s set of actions is represent-

unique kinds. Our recorded event history included 

students navigating to different pages of the course, 

and wiki pages. Within these pages, we also recorded 

the actions taken within the page, such as playing 

and pausing a video or checking a problem. We also 

In this rendition of our pre-processing, we record 

-

plicit association with the URL navigated to by the 

sequential event. Table 1 catalogs the different types 

of events present in the dataset as well as whether 

event or not. In our pre-processing, some of these 

accessing for these events. Some events are recorded 

only know that the action took place, but not which 

URL that action is tied to in the course. Note that any 

event that occurred fewer than 40 times in the origi-

and seq prev refer to events triggered when students 

select navigation buttons visible on the browser page. 

the previous content page in the course respectively, 

while a seq goto represents a jump within a section 

DATASET
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to any other section within a chapter.

-

then clicks on section 5 within the navigation bar 

student’s sequence would be represented by five 

URL of chapter 2, section 1, the second to a play video 

navigation goto event. The model would be given a 

-

dict what should come after. The indices therefore 

represent the sequence of actions the student took. 

can be given sequences of arbitrary length.

Of the 31,000 students, 8,094 completed enough 

-

cation sometimes means that the student paid for a 

-

lion of the original 17 million events, with an average 

this chapter, as we chose to train the generative models 

under the hypothesis that the sequence of actions that 

a successful pattern of navigation for this MOOC.

Each row in the dataset contained relevant information 

-

ter, we do not consider time or other possibly relevant 

resource the student accesses or the action taken by 

the student. Events that occurred fewer than 40 times 

throughout the entire dataset were removed, as those 

tended to be rarely accessed discussion posts or user 

students navigating through the MOOC.

In this work, we investigate the use of two generative 

models, the recurrent neural network architecture, and 

the n-gram. In this section, we detail the architecture 

-

as the n-gram, are described afterwards.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are a family of neural 

network models designed to handle arbitrary length 

sequential data. Recurrent neural networks work by 

keeping around a continuous, latent state that persists 

throughout the processing of a particular sequence. 

This latent state captures relevant information about 

the sequence so far, so that prediction at later parts 

latent state. As the name implies, RNNs employ the 

networks while also imposing a recurring latent state 

that persists between time steps. Keeping the latent 

state around between elements in an input sequence 

Table 19.1. Logged Event Types and their Sp

Course Page Events

Wiki Events

Video Events

Forum Events

METHODOLOGY
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is what gives recurrent neural networks their sequen-

tial modelling power. In this work, each input into the 

RNN will be a granular student event from the MOOC 

dataset. The RNN is trained to predict the student’s 

Figure 19.1 shows a diagram of a simple RNN, where 

inputs would be student actions and outputs would 

equations below show the mathematical operations 

used on each of the parameters of the RNN model: 

ht represents the continuous latent state. This latent 

Wy: bh and by are biases for latent and output units, 

respectively.
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LSTM Models
A popular variant of the RNN is the long short-term 

memory (LSTM; Hochreiter & Schmidhuber, 1997) 

architecture, which is thought to help RNNs learn 

that learn when to retain meaningful information 

latent state, allowing for meaningful long-term in-

teractions to persist. LSTMs add additional gating 

when to clear and when to augment the latent state 

with useful information. Instead, each hidden state 

hi is replaced by an LSTM cell unit, which contains 

additional gating parameters. Because of these gates, 

LSTMs have been found to train more effectively than 

Schmidhuber, & Cummins, 2000). The update equations 

for an LSTM are as follows:
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Figure 19.2 illustrates the anatomy of a cell, where the 

mentioned update equations for the LSTM: ft, it, and 

ot represent the gating mechanisms used by the LSTM 

what to output from the cell state. Ct represents the 

latent cell state for which information is removed from 

and added to as new inputs are fed into the LSTM. C˜t 

represents an intermediary new candidate cell state 

LSTM Implementation
The generative LSTM models used in this chapter were 

library built on top of Theano (Bergstra et al., 2010; 

Bastien et al., 2012). The model takes each student 

-

and then consumes the embedded vector one at a 

time. The use of an embedding layer is common in 

natural language processing and language modelling 

multi-dimensional semantic space. An embedding 

layer is used here with the hypothesis that a similar 

mapping may occur for actions in the MOOC action 

action, given actions previously taken by the student. 

Back propagation through time (Werbos, 1988) is used 

Categorical cross entropy is used calculating loss, and 

were added between LSTM layers as a method to curb 

Figure 19.1. Simple recurrent neural network

Figure 19.2. The anatomy of a cell with the num-
bers corresponding to the update equations for the 

LSTM.
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of network edge weights for each batch of training 

data. In future work, it may be worthwhile to evaluate 

2014). We have made a version of our pre-processing 

and LSTM model code public,1 -

tracting only the navigational actions from the dataset.

LSTM Hyperparameter Search
As part of our initial investigation, we trained 24 LSTM 

models each with a different set of hyperparameters 

algorithm making a full pass through the data. The 

searched space of hyperparameters for our LSTM 

models is shown in Table 19.2. These hyperparameters 

were chosen for grid search based on previous work 

Schmidhuber, 2015). For the sake of time, we chose not 

to train 3-layer LSTM models with learning rates of 

where we used the results from the initial investiga-

hyperparameter and training methods.

Because training RNNs is relatively time consuming, 

promising hyperparameter combinations (see the 

Results section). 

Cross Validation
To evaluate the predictive power of each model, 5-fold 

cross validation was used. Each model was trained on 

80% of the data and then validated on the remaining 

actions was in a validation set once. For the LSTMs, 

the model held out 10% of its training data to serve 

as the hill climbing set to provide information about 

validation accuracy during the training process. Each 

row in the held out set consists of the entire sequence 

of actions a student took. The proportion of correct 

computed for each sequence of student actions. The 

proportions for an entire fold are averaged to gener-

ate the model’s performance for that particular fold, 

1 https://github.com/CAHLR/mooc-behavior-case-study 

LSTM model hyperparameter set.

Shallow Models
N-gram models are simple, yet powerful probabilistic 

models that aim to capture the structure of sequences 

through the statistics of n

grams and are equivalent to n-order Markov chains. 

P(x-

i
|x

i n
, ..., x

the previous n-1 states in the training set. N-gram 

models are both fast and simple to compute, and have 

n-grams 

relatively high parameter models that essentially assign 

a parameter per possible action in the action space.

For the n-gram models, we evaluated those where n 

ranged from 2 to 10, the largest of which corresponds to 

handle predictions in which the training set contained 

no observations, we employed backoff, a method that 

recursively falls back on the prediction of the largest 

n-gram that contains at least one observation. Our 

validation strategy was identical to the LSTM models, 

wherein the average cross-validation score of the same 

Course Structure Models
We also included a number of alternative models aimed 

inspecting the sequences was that certain actions are 

repeated several times in a row. For this reason, it is 

important to know how well this assumption alone 

sequence, we evaluated the ability of the course syl-

-

plished this by mapping course content pages to 

student page transitions in our action set, which 

yielded an overlap of 174 matches out of the total 300 

items in the syllabus. Since we relied on matching 

action space, a small subset of possible overlapping 

actions were not mapped. Finally, we combined both 

models, wherein the current state was predicted as 

-

labus.

In this section, we discuss the results from the previ-

ously mentioned LSTM models trained with different 

learning rates, number of hidden nodes per layer, and 

number of LSTM layers. Model success is determined 

through 5-fold cross validation and is related to how 

RESULTS

2

Learning Rate (_)

Table 19.2.
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models, as well as other course structure models, are 

validated through 5-fold cross validation.

LSTM Models

models computed after 10 iterations of training. For 

the models with a learning rate of .01, accuracy on the 

hill climbing sets generally peaked at iteration 10. For 

the models with the lower learning rates, it would be 

improve through more training. We chose to simply 

report results after 10 iterations instead to provide 

a snapshot of how well these models are performing 

model performance is unlikely to improve drastically 

over the .01 learning rate model performances in the 

-

rate is bolded for emphasis.

One downside of using LSTMs is that they require 

investigating the best hyperparameters to use, we 

chose to train additional models based only on a 

as opposed to just 10 epochs in the previous hyper-

a large improvement over the previous results, where 

the new accuracy peaked at .7223 compared to .7093.

Figure 19.3 shows validation accuracy on the 10% 

hill-climbing hold out set during training by epoch for 

Each data point represents the average hill-climbing 

accuracy among all three learning rates for a particular 

layer and node count combination. Empirically, having 

a higher number of nodes is associated with a higher 

start with lower validation accuracies for a few epochs 

before approaching or surpassing the corresponding 1 

10 epochs; clearly, for some parameter combinations, 

more epochs would result in a higher hill-climbing 

accuracies may start lower initially before improving 

over their lower-layer counterparts.

Course Structure Models
Model performance for the different course structure 

models is shown in Table 19.5. Results suggest that 

many actions can be predicted from simple heuristics 

such as stationarity (same as last), or course content 

Learn Rate Nodes Layers Accuracy

2

2

2 0.7093

2

2

2 0.7050

0.7050

2

2

2 0.6894

Table 19.3.

Table 19.4.

Learn Rate Epoch Layers Accuracy

20 2

2

20

0.7223

20 2

2

20

0.7147
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alternative models obtained performance within the 

range of the LSTM or n-gram results.

N-gram Models

performing models made predictions using either the 

previous 7 or 8 actions (8-gram and 9-gram respec-

tively). Larger histories did not improve performance, 

were competitive with the LSTM models, although 

the best n-gram model performed worse than the 

best LSTM models. Table 19.7 shows the proportion 

made using 10-gram observations. Further, fewer than 

1% of cases fell back on unigrams or bigrams to make 

lack of observations for larger gram patterns.

by successively larger n-grams.

Validating on Uncertified Students

2 layers) to predict actions on streams of data from 

we restricted analysis to students who had at least 30 

LSTM model was able to predict actions correctly 

-

racy, compared to .7093 cross-validated accuracy for 

application in providing an automated suggestion 

framework to help guide students.

In this work, we approached the problem of modelling 

granular student action data by modelling all types of 

interactions within a MOOC. This differs in approach 

from previous work, which primarily focuses on mod-

elling latent student knowledge using assessment 

performing LSTM model produced a cross-validation 

accuracy of .7223, which was an improvement over the 

best n-gram model accuracy of .7035: 210,000 more 

CONTRIBUTIONS

Figure 19.3. Average accuracy by epoch on hill 
climbing data, which comprised 10% of each 

training set.

Table 19.5. Structural Models

Structural Model Accuracy

Table 19.6.

N-gram Accuracy

0.7035

0.7035

Table 19.7.

n % Predicted by

2

4

7 0.0624

0.0615

0.6229

Table 19.8.

N-gram Correct N-gram Incorrect
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correct predictions of the total 11-million possible. 

Table 8 shows the number of times the two models 

agreed or disagreed on a correct or an incorrect 

prediction during cross validation. Both LSTM and 

n

syllabus course structure and through repeats, which 

shows that patterns of student engagement clearly 

deviate from a completely linear navigation through 

the course material.

that behavioural data has been predicted at this level 

time recurrent neural networks have been applied to 

MOOC data. We believe that this technique for rep-

resenting students’ behavioural states from raw time 

series data, without feature engineering, has broad 

volume time series data. While our framing suggests 

how behavioural data models could be used to suggest 

future behaviours for students, the representation 

of their behavioural states could prove valuable for 

making a variety of other inferences on constructs 

ranging from performance to affect.

Both the LSTM and the n-gram models have room for 

improvement. In particular, our n-gram models could 

techniques, which allow for better handling of unseen 

-

parameter grid search, more training time, longer 

action embeddings. Additionally, the signal-to-noise 

ratio in our dataset could be increased by removing less 

informative or redundant student actions, or adding 

additional tokens to represent time between actions.

The primary reason for applying deep learning models 

to large sets of student action data is to model student 

behaviour in MOOC settings, which leads to insights 

about how successful and unsuccessful students 

navigate through the course. These patterns can be 

leveraged to help in the creation of automated rec-

ommendation systems, wherein a struggling student 

can be provided with transition recommendations 

to view content based on their past behaviour and 

performance. To evaluate the possibility of such an 

application, we plan to test a recommendation sys-

tem derived from our network against an undirected 

work should assess performance of similar models 

course-general patterns can be learned using a single 

model. The models proposed in this chapter maintain a 

computational model of behaviour. It was demonstrat-

computational model was able to detect these patterns, 

what can the model tell us about student behaviours 

the model tracks a hidden behavioural state for the 

and correlated with other attributes of the students 

known to present at that time. Future work will seek 

to open up this computational model of behaviour so 

that it may help inform our own understanding of the 

student condition.
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