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ABSTRACT

Learning analytics (LA) features an inherent interest in algorithms and computational
methods of analysis. This makes LA an interesting field of study for computer scientists
and mathematically inspired researchers. A differentiated view of the different types of
approaches is relevant not only for “technologists” but also for the design and interpre-
tation of analytics applications. The “trinity of methods” includes analytics of 1) network
structures including actor-actor (social) networks but also actor-artefact networks, 2)
processes using methods of sequence analysis, and 3) content using text mining or other
techniques of artefact analysis. A summary picture of these approaches and their roots is
given. Two recent studies are presented to exemplify challenges and potential benefits of
using advanced computational methods that combine different methodological approaches.

Keywords: Trinity of computational methods, knowledge building, actor-artefact networks,

resource access patterns

The newly established field of learning analytics (LA)
features an inherent interest in computational or algo-
rithmic methods of data analysis. In this perspective,
“analytics” is more than just the empirical analysis
of learning interactions in technology-rich settings,
it actually also calls for specific computational and
mathematical approaches as part of the analysis. This
line of research builds on techniques of data mining
and network analysis, which are adapted, specialized,
and potentially developed further in an LA context.

To better understand the potential and challenges
of this endeavor, it is important to introduce some
distinctions regarding the nature of the underlying
methods. Computational approaches used in LA include
analytics of 1) network structures including actor-actor
(social) networks but also actor-artefact networks, 2)
processes using methods of sequence analysis, and 3)
content using text mining or other techniques of com-
putational artefact analysis. This distinction is not only
relevant for “technologists” who actually work with and
on the computational methods, it is also important for
the design of “LA-enriched” educational environments
and scenarios. We should not expect LA to develop
new computational-analytic techniques from scratch
but to adapt and possibly extend existing approaches
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in an LA context. First, the different premises and
affordances of the different types of methods should
be well understood. Furthermore, the combination
and synergetic use of different types of methods is
often desirable from an application perspective but
this constitutes new challenges from a conceptual as
well as a computational point of view.

The computational analysis of interaction and com-
munication in group learning scenarios and learning
communities has been a topic of research even before
the field of LA was constituted, and this work is still
relevant to LA. Early adoptions of social network
analysis (SNA type 1) in this context include the works
of Haythornthwaite (2001), Reffay & Chanier (2003),
Harrer, Malzahn, Zeini, and Hoppe (2007), and De Laat,
Lally, Lipponen, and Simons (2007). Process-oriented
analytics techniques (type 2) have an even longer
history, especially in the analysis of interactions in
a computer-supported collaborative learning (CSCL)
context (Mihlenbrock & Hoppe, 1999; Harrer, Martinez-
Monés, & Dimitracopoulou, 2009). Although somewhat
later and less numerous, content-based analyses (type
3)based on computational linguistics techniques have
been successfully applied to the analysis of collabo-
rative learning processes (e.g., by Rosé et al., 2008).
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Network-Analytic Methods

Network-analytic approaches, especially social net-
work analysis (SNA), are characterized by taking a
relational perspective and by viewing actors as nodes
in a network, represented as a graph structure. In this
sense, a network consists of a set of actors, and a set
of ties between pairs of actors (Wasserman & Faust,
1994). The type of pairwise connection defines the
nature of each social network (Borgatti, Mehra, Brass,
& Labianca, 2009). Examples of different types of ties
are affiliation, friendship, professional, behavioural
interaction, or information sharing. The visualization
of such network structures has emerged as a specific
subfield (Krempel, 2005). Standard methods of net-
work analysis allow for quantifying the importance of
actors by different types of “centrality measures” and
detecting clusters of actors connected more densely
among each other than the average (detection of “co-
hesive subgroups” or “community detection” — for an
overview, see Fortunato, 2010).

A well-known inherent limitation of SNA is that the
target representation, i.e., the social network, aggre-
gates data over a given time window but no longer
represents the underlying temporal dynamics (i.e.,
interaction patterns). It has been shown that the size
of the time window of aggregation has a systematic
influence on certain network characteristics such
as subcommunity structures (Zeini, Gohnert, Heck-
ing, Krempel, & Hoppe, 2014). To explicitly address
time-dependent effects, SNA techniques have been
extended to analyzing time series of networks in
dynamic approaches.

It is important to acknowledge that network analytic
techniques (even under the heading of SNA) do not
exclusively deal with actors and social relations as
basic elements. So-called “affiliation networks” or
“two-mode networks” (Wasserman & Faust, 1994)
are based on relations between two distinct types
of entities, namely actors and affiliations. Here, the
“affiliation” type can be of a very different nature,
including, for example, publications as affiliations in
relation to authors as actors in the context of coauthor-
ing networks. In general, two-mode networks can be
used to model the creation and sharing of knowledge
artefacts in knowledge building scenarios. In pure form,
these networks are assumed to be bipartite, i.e., only
alternating links actor-artefact (relation “created/
modified”) or artefact-actor (relation “created-by/
modified-by”) would be allowed. Using simple matrix
operations, such bipartite two-mode-networks can be
“folded” into homogeneous (one-mode) networks of
either only actors or only artefacts. Here, for example,
two actors would be associated if they have acted
upon the same artefact. We would then say that the
relation between the actors was mediated by the ar-

tefact. Similarly, we can derive relationships between
artefacts by considering agents (one actor engaged in
the creation of two different artefacts) as mediators.

We have seen an increasing number of studies of ed-
ucational communities using SNA techniques related
to networked learning and CSCL. Originally, networks
derived from email and discussion boards were the
most prominent conditions studied, as for example the
early study of cohesion in learning groups (Reffay &
Chanier, 2003). Meanwhile, network analysis belongs
to the core of LA techniques. The classification of
approaches to “social learning analytics” by Ferguson
and Shum (2012), though not primarily computation-
ally oriented, prominently mentions network analysis
techniques including both actor-actor and actor-ar-
tefact networks.

Process-Oriented Interaction

Analysis

The computational analysis of learner (inter-)actions
based on the system’s logfiles has a tradition in CSCL.
There were even attempts to standardize action-logging
formats in CSCL systems to facilitate the sharing and
combination of existing interaction analysis techniques
(Harrer et al., 2009). One of the earliest examples of
applying intelligent computational techniques in a
CSCL context (namely sequential pattern recognition)
was suggested and exemplified by Mithlenbrock and
Hoppe (1999). This approach was later used in an
empirical context to pre-process CSCL action logs in
order to automatically detect the occurrence of certain
collaboration patterns such as “co-construction” or
“conflict” (Zumbach, Mithlenbrock, Jansen, Reimann,
& Hoppe, 2002).

Whereas these approaches were developed in a learn-
ing-related research context, there are also more
general techniques that can be adapted and used, such
as the scalable platforms management forum (SPMF)
and library of sequential patterns mining methods
(Fournier-Viger et al., 2014). In an LA context, SPMF is
used by the LeMo tool suite for the analytics of activities
on online learning platforms (Elkina, Fortenbacher,
Merceron, 2013). In another recent study, Bannert,
Reimann, & Sonnenberg (2014) have used “process
mining,” a computational technique with roots in au-
tomata theory, to characterize patterns and strategies
in self-regulated learning,

Content Analysis Using Text-Mining
Methods

There is a tradition of content-analysis-based hu-
man interpretation and coding often used as input
to quantitative empirical research, as discussed by
Strijbos, Martens, Prins, and Jochems (2006) from a
CSCL perspective. In contrast, from a computational
point of view, we are interested in applying informa-
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tion-mining techniques to extract semantic information
from artefacts. Obviously, this is of particular interest
in the case of learner-generated artefacts. Rosé et al.
(2008) has demonstrated the usefulness of automatic
text classification with a corpus of CSCL transcripts.
Sherin (2013) used computational techniques of con-
tent analysis on student interview data to discover
the students’ understanding of science concepts.
Content analysis techniques have also been used for
the clustering of e-learning resources according to
their similarity (Hung, 2012). He (2013) proposed the
usage of similar techniques for grouping learners’
main topics in student-to-teacher online questions
and peer-to-peer chat messages in the context of
online video-based learning.

Typically, these methods of textual content analysis
are based on the “bag of words” model in which the
given order of words in a text is of no relevance to the
analysis. This is the case for a variety of probabilistic
topic modelling techniques such as the currently quite
popular method of latent Dirichlet allocation (LDA,;
Blei, 2012). A method that does take into account the
positioning of words in a text is network text analysis
(NTA). NTA is a text mining method that connects
content analysis with network representations in that
it extracts a network of concepts from given texts
(Carley, Columbus, & Landwehr, 2013). Links between
concepts are established if the corresponding terms
co-occur with a certain frequency in a sliding window
of pre-specified width that runs over a normalized
version of the text. A “meta thesaurus” allows for
introducing different concept categories (e.g., “per-
son,” “location,” “domain_concept” et cetera). On this

basis, multimode networks can be formed, in which
the concept-concept relations are restricted to cer-
tain inter-category types such as location-person or
person-domain_concept. These representations can
in turn be analyzed using network-analytic concepts
such as centrality measures or the detection of cohesive
subgroups as a network-based clustering technique.

Figure 2.1 shows the result of applying NTA to transcripts
from teacher-student workshops in the context of the
European project JuxtaLearn (Hoppe, Erkens, Clough,
Daems, & Adams, 2013). The resulting networks nicely
reflect the different topics from the areas of biology,
chemistry, and physics, initially presented by students
and then discussed in the whole group. Here topics
(pentagon-shaped nodes) and topic-topic relations are
depicted in grey, whereas persons (square nodes) and
person-topic relations are darker (black).

In the topic-topic network, the three different fields
of science appear as more densely connected islands
(or “cohesive subgroups”) although certain cross-links
exist (e.g., diffusion in biology is linked to molecule in
chemistry). The person-topic links allow for judging
the importance of the individuals’ contributions in the
presentations and discussion. Most contributions stay
within one subfield. Student S5 stands out in terms of
degree centrality (14 connections to different topics)
and with most contributions to physics but one link
bridging over into chemistry. In the JuxtaLearn project,
this approach has been further developed to assess
students’ problems of understanding from question/
answer collections related to science videos (Daems,
Erkens, Malzahn, & Hoppe, 2014). The extracted net-
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Figure 2.1. Topic-topic and person-topic relations extracted from transcripts of teacher-student
workshops.
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Process-oriented Analysis
- based on action logs
- detection of action
patterns (temporal)
- sequence analysis
(e.g., "process mining")

Content-oriented Analysis
- based on learner-
created artefacts (e.g.,
texts, concept maps)
- information/text mining
techniques (e.g., LDA, NTA)

Network Analysis
- representing social or
actor-artefact relations
- network measures
(centrality, cohesion)
- no inherent time
in single networks

Figure 2.2. The “trinity” of methodological
approaches.

works of concepts have been contrasted with teach-
er-created taxonomies. This has led to an enrichment
of the taxonomies and to the identification of specific
problems of understanding on the part of the learners.
From a pedagogical perspective, this provides em-
pirical insights relevant to curriculum construction
and curriculum revision (here specifically related to
teacher-created micro-curricula).

Figure 2.2 summarizes the characteristics of the three
methodological approaches in terms of their basic
representational characteristics and typical tech-
niques. Overlapping areas between the approaches
are of particular importance for new integrative or
synergetic applications.

The remainder of this article presents two case stud-
ies of applying specific computational techniques
to the analysis of learning and knowledge building
in communities. The first example shows that more
sophisticated methods of network analysis may yield
interesting insights in a case where “first order ap-
proaches” would fail to resolve interesting structures.
In that it considers the evolution of patterns of resource
access on a learning platform over time, it combines
the network analytic approach with process aspects.
The second case describes the adoption and revision
of a scientometric method to characterize the evo-
lution of ideas in a knowledge-building community.
This network-analytic approach is then combined
with content-based text mining methods. So, both
examples support the general point that we can expect
additional benefit from combining different methods.

Example 1: Dynamic Resource Access
Patterns in Online Courses

Nowadays higher education practice is commonly
supported by learning platforms such as Moodle to
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distribute educational materials of various types, in-
cluding lecture slides, videos, and task assignments,
but also to collect exercise or quiz results and to
facilitate individual or group work using forums or
wikis. In this way, classical presence lectures are
turned into blended learning courses or, according
to Fox (2013), “small private online courses” (SPOCs).
As for the traces that learners leave on such learning
platforms, the most abundant actions are resource
access activities that constitute actor (learner) — ar-
tefact (learning resource) relations. Only in special
cases, such as the co-editing of wiki articles, such data
may be interpreted in a quite straightforward way as
actor-actor relations by “folding away” the mediating
artifact (i.e., inter-connecting co-authors of the same
wiki article). If applied to instructor-provided lecture
materials, the actor-actor relation based on access to
the same lecture would not be selective and would
result in a dense network. Accordingly, the detection
and tracing of clusters or subcommunities in such
induced actor-actor networks would not be likely to
provide interesting insights.

In a study based on one of the author’s regular master
courses (Hecking, Ziebarth, & Hoppe, 2014), a more
sophisticated technique has been used to overcome
this problem. Applying a subcommunity detection
algorithm for two-mode networks to the original
learner-resource data leads to much more selective
and differentiated results in terms of identifying
groups of learners working with certain groups of
materials in a given time slice. This approach is based
on the network-analytic method of “bi-clique perco-
lation analysis” (Lehmann, Schwarz, & Hansen, 2008),
which is a generalization of the clique percolation
method originally defined for one-mode networks
(Palla, Derenyi, Farkas, & Vicsek, 2005). The clique
percolation method (CPM) builds subcommunities on
the presence of cliques (fully connected subgraphs)
in one-mode networks. CPM is of particular interest
for the analysis of collaborating communities because
the resulting clusters may overlap and thus can also
be used to identify potential brokers or mediators
between different subcommunities. This characteristic
also holds for the bi-clique percolation method (BCPM)
with two-mode networks. In their original article,
Lehmann et al. (2008) identified the higher selectivity
of subcommunity in the two-mode network. We have
been able to corroborate this in our application case.

Figure 2.3 shows how, on principle, BCPM can be used
to trace cohesive clusters in two-mode networks. First,
BCPM is applied to each time slice of the network (left-
hand side). The diagram on the right abstracts from
the individual entities and just depicts and inter-links
between groups of actors (squares) and groups of
resources (circles). In one particular time slice, two
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Figure 2.3. Evolving two-mode clusters (left) and the corresponding swim lane diagram (right).

groups of different types are linked by a vertical edge,
indicating that these two groups form a bipartite
cluster. Horizontal edges appear across time slices
and link two groups of the same type, indicating that
the two groups can be considered as similar. Here,
we see a situation where the connection between
actors and resources is switched from one time slice
to other. In general, it is not clear if the basic groups
“survive” from one time slice to the other (asis the case
here). Palla, Barabasi, and Vicsek (2007) have defined
a complex system of transformations (such as “birth,”
“merger,” “split” et cetera) that can be used to trace
the evolution of subgroups over time.

In our study (Hecking et al., 2014), affiliation networks
were built based on students’ access to learning re-
sources during a blended learning course on interactive
learning and teaching technologies. The course was
resource intensive in the sense that the traditional
lecture was accompanied by a variety of additional
learning resources like lecture videos, slides, serious
games, as well as a glossary of important concepts
created by the students themselves as a wiki. Stu-
dents and resources were simultaneously grouped
into mixed and overlapping clusters as explained
above. Those clusters can be interpreted as a group
of students who have a common interest in a group of
learning resources but not necessarily having social
connections. A typical example cluster is depicted in

Student 25
&

Video: Cognitive modeling (1)
e °Student 19

Video: User Centered System Design
Video: Direct Manipulation
‘Video: Kognitive modeling (2) /CCT
c'\lw‘deo: Interaktivity

Student 44
9

Student 33
.-
Student 22 =
L= == —
'Studant'SS
Student S
> .Student 41

Student 15~
L3

Student Fudent 16

Student 20

Student 39
¢ Student 29

Figure 2.3.

By applying the method to the student-resource net-
works of particular weeks during the lecture period,
this analysis reflects certain groupings induced by
explicit assignments but also yields some surprising
insights regarding the usage materials. This can be seen,
for example, in Figure 2.4 where the orange coloured
cluster comprises lecture videos and students who
seem to have a distinct interest in learning resources
compared to the others.

In addition, the tracking of bipartite student-resource
clusters was used to investigate student resource-ac-
cess behaviour during exam preparation after the last
lecture. This period is particular interesting because
by then the entire pool of learning materials, succes-
sively added week by week to the course, was available,
including the wiki articles created by the students.

The swim lane diagram in Figure 2.5 depicts the resource
access patterns found in the course during this phase.
Time slices where build based on a time window size
of 4 days. The oral exams were distributed over two
weeks for most of the students, while for another study
program the examination phase began six weeks after
the last lecture. One finding is that a large majority
of students accessed large portions of the learning
material over several time slices (highlighted blue
box). Between time slices 2 and 5, there was a stable
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Figure 2.4. Bipartite clusters of students and learning resources (black nodes belong to more than one cluster).
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Figure 2.5. Swim lane diagram of the evolving stu-
dent-resource clusters during the exam phase.

set of students (stud. group 3) using this material for
exam preparation. In contrast, the students of the
study program who had their oral exams later had a
more diverse resource access behaviour (green box).
Also, they began their exam preparation much closer
to the time of the exam compared to the other study
programs. In the last time slice, three of the four student
groups merged to a larger group that was then more
affiliated to the core learning material (res. group 1).

On the one hand, this example shows the possible
expressiveness of sophisticated network analysis
methods in a case where “first order methods” would
not be able to resolve interesting and meaningful
structural relations. On the other hand, it demonstrates
that additional effort is needed to support a dynamic,
evolutionary interpretation of network-based models
(given that each single network is “ignorant” about time).

In an ongoing research project on supporting small
group collaboration in MOOCs, we have used this
approach of tracking cohesive clusters of learners and
resources to distinguish “mainstreaming behaviour”
from more individual or idiosyncratic patterns of re-
source usage on the part of learners (Ziebarth et al.,
2015). Given this model-based distinction, we found
that extrinsic motivation was more prevalent in the

mainstreaming group. This suggests that specific
patterns in actor-artefact relations may serve as in-
dicators for learning styles.

Example 2: Analyzing the Evolution of
Ideas in Knowledge-building
Communities

Scientific production can be seen as a prototypical case
of knowledge building in a community. Accordingly,
methods developed to analyze scientific production
and collaboration (“scientometric methods”) can plau-
sibly also be used to analyze other types of knowledge
building in networked learning communities. Hummon
and Doreian (1989) have proposed the method of “main
path analysis” (MPA) to detect the main flow of ideas
in citation networks with scientific publications as
nodes connected by citations. The original paper uses
a corpus of publications in DNA biology as an example.

The MPA method relies on the acyclic nature of cita-
tion graphs. Different from other network-analytic
techniques, MPA has an implicit notion of time that
stems from the nature of citation networks (always
the citing paper is more recent than the cited one). As
a consequence of this time ordering, and given that
every collection is finite, in a corpus, there are always
documents not cited by others (end-points or “sinks”)
as well as documents that do not cite other documents
in the corpus (“sources”). The idea of MPA is to find
the most used edges in terms of the information flow
from the source nodes to the sink nodes. One common
approach to finding these edges is the “search path
count” or SPC method (Batagelj, 2003). All sources in
the network are connected to a single artificial source
and all sinks to a single artificial sink. SPC assigns a
weight to an edge according to the number of paths
from the source to the sink on which the edge occurs.
The main path can then be found by traversing the
graph from the source to the sink by using the edges
with the highest weight, as depicted in Figure 2.6.

The idea of applying MPA to learning communities
working with hyper-linked connections of wiki docu-
ments was first proposed by Iassen Halatchliyski and
colleagues (2012). However, MPA cannot be applied
directly to hyper-linked web documents because the
premise of directed acyclic graphs (DAGs) is usually
not fulfilled. Since the content of articles in a wiki is
dynamically evolving, hyperlinks between two arti-
cles do not induce a temporal order between them
and cycles or even bidirectional citation links are
quite frequent. In Halatchliyski, Hecking, Gohnert, &
Hoppe (2014), we have proposed a formal modification
that allows for applying MPA also to this case. The
adapted approach considers the particular revisions
(successive versions) of articles instead of the articles
themselves. Revisions of an evolving wiki article are

PG 28 | HANDBOOK OF LEARNING ANALYTICS



artefacts with stable content as scientific publica-
tions. In such a network based on versions as nodes,
we introduce revision edges between successive
revisions of the same article. The original hyperlinks
between different articles connect specific revisions
and also introduce new versions. This trick avoids
cyclic structures and allows for applying MPA. In the
context of the Wikiversity learning community, we
have used the coincidence of articles with identified
main paths has as a basis to judge the importance or
weight of contributions and to characterize author
profiles in terms of specific role models (inspirator,
connector, worker). These characterizations serve
as supportive information for the management of
knowledge building communities.

In a subsequent study (Hoppe, Gohnert, Steinert, &
Charles, 2014), we have combined the network-analytic
method of MPA with content analyses to analyze chat
interactions in an educational community (Tapped
In — see Farooq, Schank, Harris, Fusco, & Schlager,
2007). Here, the characteristic of chat as a synchronous
communication medium, especially regarding turn
taking, possible parallel threading, and interactional
coherence had to be taken into account. Our work
used contingency analysis (Suthers, Dwyer, Medina, &
Vatraou, 2010) as theoretical background and reference
to detect general dependencies based on operational

Artificial source

Artificial sink

Figure 2.6. Example network illustrating the SPC
method (edge weights are SPC counts; thick edges
indicate the main paths).
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rules. We reconstructed and refined this approach by
using the concept of dialogue act tagging (Wu, Khan,
Fisher, Shuler, & Pottenger, 2005) to enrich the basic
set of indicators. We have tested our method using
several examples of chat protocols from a teacher
community as benchmarks. This allowed us to assess
the agreement between the contingency links generated
by our method with previously hand-coded contin-
gencies (Suthers & Desiato, 2012) based on the F-score
(a measure used in information retrieval combining
precision and recall). The automatically generated
contingencies reached an F-score similarity of 83%
to 97%, which is comparable to the pairwise F-score
similarity of manually analyzed graphs. Figure 2.7 shows
afragment of a chat sequence with contingency links
indicated on the right hand side, main path contribu-
tions highlighted in bold, and the message categories
resulting from dialogue act tagging (e.g., “Statement”
or “ynQuestion”) added in brackets.

The main path information should be interpreted as
an indicator for the relevance of contributions in the
evolution and progress of the overall discourse. This
relevance measure for contributions can in turn be
used to estimate the influence of participants in the
discourse. Since we did not have human ratings for
this feature, we have compared the measure “per-
centage of contributions on main path” (%MainPath)
per actor to other influence rankings based on the
well-established PageRank and Indegree measures.
We applied these measures to different versions of
the contingency graphs resulting from human and
automatic coding. As a result, we found a 0.82 (0.82)
correlation of %MainPath with PageRank and a 0.69
(0.88) correlation with Indegree. Per se, %MainPath
is just another competing indicator. However it is
different from the other measures since it takes into
account the flow of arguments in the discourse and
not only local (Indegree) or globally weighted prestige
(PageRank). As can be seen in Figure 2.6, MPA also
allows for filtering the discourse for main threads
of argument. In this sense, MPA makes the network
model more specific and meaningful. However, further
investigation is needed to validate these constructs.

DISCUSSION AND OUTLOOK

In general, we cannot expect LA to invent genuinely
new computational methods of data mining and anal-
ysis. Yet, we have seen the successful adoption of a
number of existing techniques. A prominent case is
certainly social network analysis — to the extent that
SNA concepts such as centrality measures or cohesive
clusters (subcommunities) are now part of the con-
ceptual repertoire used in LA discourse. This is still
less the case for process-oriented techniques (such as
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@] [47, Nancy]: | have heard that before [Statement]

. [48, Ashley]: i'm not saying not to ask questions, questions are ok, but
sometimes it feels like a quiz instead of open communication [Statement]

[49, Andrea]: TRUE [Accept]

& 50, Nancy}: just not drill and kill [Accept]
® [51, Lisal: | am aware alos, that there are 'good" kinds of questions for
getting information, and 'bad’ or 'poor’ questions [ynQuestion Statement]
. [52, Ashley]: i think part of being a good teacher is to self evaluate your
practices and reasons for doing things [Statement]

. [53, Marial: so does a mentor need to be aware of their own
learning/metacognition in order to elicit that in others? [ynQuestion]

[54, Andrea]: yes [Accept]
& [55, Nancy]: yes [Accept]
[ ) [56, Ashley]: absolutely [Statement]

. [57, Lisa]: and that all sorts of questioning needs to be used, and different
questions at different stages to get out the craft knowledge [Statement]
© [58, Helen]: When a district is assigning mentors, how will they know if the
mentor self-reflects? [whQuestion]

. [59, Betty]: That is an excellent point. We get better at our craft when we
take the time to examine what we do and the results [Statement]

[60, Andreal: good question Helen [Accept]

. [61, Lisa): | am also aware that the kind of questions that | ask can 'feel' to
be 'interrogatory’, when they are only information seeking [Statement]

[62, Ashley]: unless the district requires teacher to turn in some sort of self
[ ] evaluation my guess is that there is no definite way of checking to see if
teachers and mentors are doing it [Statement]

[63, Andrea): we were taught to self reflect constantly [Statement]

. [64, Maria): which is the difference between assigned/structured programs and a
natural development of the mentoring relationship [whQuestion]

[65, Andrea]: as a teacher you almost automatically reflect on lessons and think
about how you can improve [Statement]

@ [66, Lisal: can you please elaborate Maria? [ynQuestion]

Figure 2.7. Fragment of a chat protocol with inferred contingency links (mainpath contributions and
links indicated in bold).

sequential pattern mining) or linguistics-based meth-
ods for the analysis of dialogue and textual artefacts.
The examples and arguments presented in this article
corroborate 1) that even SNA has more to offer than
the better known “first order approaches” and 2) the
most benefit can be expected from combining different
types of analytic methods. Regarding network analysis
techniques, moving from pure actor-actor networks to
actor-artefact (or two-mode) networks provides a richer
basis of information that can resolve more significant
and meaningful relations. The example on analyzing
resource access in online courses illustrates how this
can make a difference. It also shows the inclusion of
time by considering temporal sequences of networks.

This article looks at the issues and challenges primarily
from a computational perspective. From a pedagogical
perspective, it is important to identify the affordances
but also the deficits of certain methods in order to
judge their potential benefits. For example, when
targeting “interaction patterns” in knowledge building
communities it should be clear that pure SNA models
would only reveal static actor-actor relations but not
time-dependent patterns. Possible extensions would
use time series of networks and/or actor-artefact
relations. Network-text analysis is an example of an
approach that converts textual artefacts into net-
works of concepts (of possibly different categories)
and thus allows for combining content and network
analytic approaches. On the other hand, given these
computational methods, where are the potential ped-
agogical added values? In this respect, we have seen
the following examples:
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*  Concept networks derived from learner-gener-
ated texts using NTA can reveal students’ mental
models and misconceptions. This can be a basis
for enriching domain taxonomies and for curric-
ulum revision.

e The primary information that we get from learning
platforms is about learners accessing (or possibly
creating /uploading) resources. From sequences of
ensuing two-mode learner-artefact networks, we
can classify learner behaviour as “main-streaming”
or more individually varied, possibly intrinsically
motivated or curiosity-driven.

e Techniques borrowed from scientometrics allow
for identifying the main lines of the evolution of
ideas in knowledge building communities. On this
basis, we can characterize contributions and the
role of contributors to support better-informed
decisions in the management of the community.

Forum participation in massive online courses has
recently been the subject of several LA-inspired stud-
ies. Using a mix of analytic techniques involving SNA
patterns combined with “regularity” of interactions
and content assessment (based on human ratings),
Poquet and Dawson (2016) have characterized suc-
cess factors for productive and supportive forum
interactions. Interestingly, they found an important
influence of certain community members who were
not themselves part of densely connected subgroups
(or “cliques”) on the positive evolution of the networked
community. In a similar context, Wise, Cui, and Vy-
tasek (2016) have identified certain linguistic features




as predictors for distinguishing content-related from
non-content-related (social or organizational) talk in
such forums. In addition to domain-specific vocabulary,
they also found general terms such as “understand,”
“example,” “difference,” or question words among the
predictors of content-related contributions. These, in
turn, correspond to so-called “signal concepts” used
in the network-text analysis of educational video
comments by Daems, Erkens, Malzahn, and Hoppe
(2014). This again shows the importance of having a

REFERENCES

mix of modelling approaches and analysis techniques
“at hand” to gain better insight and understanding of
the determinants of learning and knowledge building
communities.

The overarching claim and hope is to increase the
awareness of the richness and variety of computational
methods in the LA community, and thus to lay the
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