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ABSTRACT

Psychological measurement is a process for making warranted claims about states of mind.
As such, it typically comprises the following: defining a construct; specifying a measurement
model and (developing) a reliable instrument; analyzing and accounting for various sources
of error (including operator error); and framing a valid argument for particular uses of the
outcome. Measurement of latent variables is, after all, a noisy endeavor that can neverthe-
less have high-stakes consequences for individuals and groups. This chapter is intended to
serve as an introduction to educational and psychological measurement for practitioners
in learning analytics and educational data mining. It is organized thematically rather than
historically, from more conceptual material about constructs, instruments, and sources
of measurement error toward increasing technical detail about particular measurement
models and their uses. Some of the philosophical differences between explanatory and
predictive modelling are explored toward the end.
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Knowing what students know and — given the increased
attention to affective measures — how they feel is the
basis for many conversations about learning. Measur-
ing a student’s knowledge, skills, attitudes/aptitudes/
abilities (KSAs), and/or emotions is, however, less
straightforward than measuring his or her height or
weight. Psychological measurement is a noisy endeavor
that can have high-stakes consequences, such as as-
signment to a special program (advanced or remedial),
admission to a university, employment, hospitalization,
or incarceration. Even small errors of measurement
at the individual level can have large consequences
when results are aggregated for groups (Kane, 2010).
Sensitivity to these consequences has emerged over
a century of methodology research enshrined in the
Standards for Educational and Psychological Testing
(AERA, APA, & NCME, 2014). Insofar as measurement
may be used in learning analytics and educational
data mining for the purposes of understanding and
optimizing learning and learning environments (Sie-
mens & Baker, 2012), what are the tolerances for errors
of measurement? After all, it has been argued that
“harnessing the digital ocean” of data could ultimately

replace the need for separate assessments (Behrens
& DiCerbo, 2014). In the meantime, at minimum, one
would like to avoid misunderstanding learning or
diminishing learner experiences.

WHAT IS MEASUREMENT?
PHILOSOPHY AND BASIC IDEAS

Discussions of psychological measurement often
begin by drawing contrasts with physical measure-
ment (for example, Armstrong, 1967, Borsboom, 2008;
DeVellis, 2003; Lord & Novick, 1968; Maul, Irribarra, &
Wilson, 2016; Michell, 1999; Sijtsma, 2011). A number
of important facets of psychological measurement
are raised in the process, namely its instrumentation
or operationalization, the repeatability or precision
of measurements, sources of error, and the inter-
pretation of the measure itself. It can be said that
psychological measurement comprises the following:
defining a construct; specifying a measurement model
and (developing) a reliable instrument; analyzing and
accounting for various sources of error (including
operator error); and framing a valid argument for
particular uses of the outcome.
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Constructs

Do psychological constructs really exist? In what
sense can we really know a student’s state of mind?
We say that variables like physical length of an object
are directly observed, or manifest, whereas a person’s
mental states or psychological traits are only indirectly
observed, or latent. The term construct is used inter-
changeably with latent variable, while trait is used
to imply a construct that is stable over time (Lord &
Novick, 1968). In fact, even physical measurement is
indirectly instrumented. Although we can perceive
length directly through our senses, the measurement
of length involves a process of comparison with a ref-
erence object or instrument, such as a tape measure.
The tape measure provides a scale, such as inches or
centimeters, which formalizes comparisons of length.
For example, we can quantify the difference in two
lengths by subtracting one measurement from the other.

In the first half of the twentieth century, efforts to settle
philosophical issues of measurement led Bridgman (1927)
and others to operationalism, wherein physical concepts
like length, mass, and intensity are understood to be
“synonymous with” the operations used to measure
them. That is, length is understood as the outcome of
a (possibly hypothetical) length measurement proce-
dure. This idea can be carried over to psychological
constructs, such as math ability and extraversion, by
equating the constructs to scores on instruments used
to measure them. Math ability is then equivalent to a
score on a math test, and extraversion is a score on
a Likert-item questionnaire. This positivist attitude
is reflected in Stevens’ definition of measurement
as, “the assignment of numerals to objects or events
according to rules” (1946, p. 677). The operationalist
view of constructs was highly influential in the past,
but it has been rejected for a host of reasons (Maul,
Irribarra, & Wilson, 2016; Michell, 1999), notably that
operationalism forces a redefinition of the construct
for every instrument that exists to measure it.

If an operationalist interpretation is rejected, it ap-
pears to leave open epistemological and ontological
questions about latent variables. Mislevy (2009, 2012)
articulates a constructivist-realist position, namely that
we can talk as if a construct exists without a commit-
ment to strict realism by committing to model-based
reasoning. Model-based reasoning means accepting a
simplified representation of a system — for example,
a construct-mediated relationship between persons
and responses — that captures salient aspects (e.g.,
patterns) and allows us to explain or predict phenom-
ena (Mislevy, 2009; we return to the explanatory/
predictive distinction later in this chapter). As George
Box famously said, “all models are wrong, but some are
useful” (Box, 1979). The challenge remains to come up
with useful models or, in terms of Stevens’ definition,

useful measurement rules.

Physical theories tend to be few in number and more
comprehensive, whereas psychological theories are
numerous and narrowly defined (DeVellis, 2003). Since
constructs are invented things, there is no empirical
limit to their number. It is possible to talk about a con-
struct in the absence of a measurement instrument,
but a measurement instrument is always designed to
measure something. Therefore, we can infer an ex-
tremely partial list of constructs relevant to learning
analytics from the instruments already developed to
measure them. Examples include intelligence (e.g., the
Stanford-Binet Intelligence Scale), scholastic aptitude
(e.g., that SAT test), academic achievement (numerous
examples include both large-scale tests and course
exams), personality (e.g., the “big five” factor model,
Digman, 1990), achievement-goal orientation (e.g.,
Midgley et al., 2000), achievement emotions (Pekrun,
Goetz, Frenzel, Barchfeld, & Perry, 2011), grit (Duck-
worth, Peterson, Matthews, & Kelly, 2007), self-theories
of intelligence and fixed /growth mindset (Dweck,
2000; Yeager & Dweck, 2012), intrinsic motivation
(Deci & Ryan, 1985; Guay, Vallerand, & Blanchard,
2000), self-regulated learning and self-efficacy (e.g.,
Pintrich & De Groot, 1990), learning power (Bucking-
ham Shum & Deakin Crick, 2012; Crick, Broadfoot, &
Claxton, 2004), and crowd-sourced learning ability
(Milligan & Griffin, 2016).

Several of the constructs listed above are multidimen-
sional, that is they include multiple factors. The value
of combining versus separating out related constructs
is a subject of debate (Edwards, 2001; Schwartz, 2007).

Measurement Instruments

Psychological measurement instruments are typi-
cally called tests or questionnaires (also surveys and
inventories) and are made up of items or indicators.
The word test is more often used for constructs like
intelligence, cognitive ability, and psychomotor skills,
wherein the subject, or examinee, is instructed to try
to maximize his or her performance (Sijtsma, 2011).
Questionnaire respondents, by contrast, are asked to
respond honestly about their thoughts, feelings, and
behaviours. (Response bias can blur this distinction,
as we shall describe when we come to validity). Note
that this description of how subjects are expected to
interact with instruments reveals the rudiments of a
measurement model. We assume that the more able
test taker will obtain a higher score on an ability test
and that the more anxious subject will obtain a higher
score on an anxiety questionnaire.

Sometimes the term measurement scale is used inter-
changeably with the instrument (DeVellis, 2003). Scale
implies that the test or questionnaire has been scored.
Binary items that have correct and incorrect answers
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and yes/no questions are usually scored dichotomously
with values in {0, 1}. Likert scale, rating scale, and vi-
sual-analogue scales (Luria, 1975) are other item types
that can take discrete or continuous numerical values.
Adding up the scores of individual items into a sum
score (also, raw score) is one procedure for scoring
an instrument, but it is not the only or necessarily the
best procedure (Lord & Novick, 1968; Millsap, 2012).
Weighted sum scores and item response theory (IRT;
Baker & Kim, 2004) offer a range of alternatives.

The use of tests and questionnaires is a matter of both
efficiency and standardization, compared with the
alternative of observing people in real life and waiting
for them to spontaneously express thoughts or exhibit
the behaviours of interest (Sijtsma, 2011). In learning
analytics, efficient collection of data is usually not the
problem, but the lack of standardization can make it
challenging to account for measurement error.

Source of Error in Measurements

We know from experience that psychological measure-
ments are not as consistently repeatable as physical
measurements. We also know that people’s respons-
es to an instrument may not faithfully reflect their
abilities, attitudes, or other constructs of interest.
Statistical models allow us to think of items, indicators,
or tests as random samples of a latent variable. The
latent variable can be a random variable, or it can be
fixed, as in true score theory (Lord & Novick, 1968).
Either way, the measurement samples will have error
resulting from the inherent non-repeatability, which
is sometimes called random error and is unbiased (in
the sense of having an expectation value of zero over
some distribution of repeated measures). There can
also be systematic error, which is biased.

More precise or formal statements about error arise
when we adopt a measurement framework or model.
For example, in true score theory and factor analysis
we can reason in terms of parallel tests or equivalent
forms to derive estimates of an instrument’s reliability.
Measurement error can also be defined as any vari-
ance in the data not attributed to the construct, as
explained by the model (AERA, APA, & NCME, 2014).
We will revisit the sources of error after we flesh out
our discussion of measurement models.

Reliability

Reliability is attributed to an instrument and is a
measure of the consistency of scores (AERA, APA, &
NCME, 2014), specifically the proportion of the total
variance in scores attributed to the latent variable
(DeVellis, 2003). It can be sample-dependent (in
true score theory) and model-dependent (in more
complicated models). The word is sometimes used
to mean a particular reliability coefficient, most
commonly Cronbach’s (1951) alpha, a, which ranges

from [0,1]. However, the term reliability is also used
in the sense of test-retest reliability, which is actually
a correlation, and inter-rater reliability (e.g., Cohen’s
kappa, k; Cohen, 1968). Practitioners sometimes lean
uncritically on guidelines for acceptable values of o,
such as .70 as a lower bound (Cortina, 1993), to decide
that scales are good enough to use. But it should be
noted that statistical power improves with higher
values of a (DeVellis, 2003). Thus, effort in improving
the reliability of a scale can often outweigh the benefit
of recruiting larger samples.

Validity

Validity is the foremost topic in the Standards, whose
first chapter begins, “Validity refers to the degree to
which evidence and theory support the interpretations
of test scores for proposed uses of tests ... It is incor-
rect to use the unqualified phrase ‘the validity of the
test™ (p. 11). Substituting the broader term “measure”
for the narrower “test,” it should be self-evident that
validity is of paramount importance to learning an-
alytics. There is a palpable focus in the Standards on
shaping the language used in validation arguments,
an approach also evident in Messick’s (1995) influential
reworking of Cronbach and Meehl (1955) (see also Kane,
2001). Types of evidence about validity (rather than
“types of validity”) include evidence about response
processes, evidence about the internal structure of
the instrument, convergent and discriminant evidence,
criterion references (including predictive criteria), and
evidence of generalizability.

We referred earlier in this chapter to the assumption
that responses to questionnaires correspond to honest
thoughts and feelings. However, there is extensive
literature on types of response bias, from acquies-
cence bias (yea-saying; Messick & Jackson, 1961) to
social desirability bias (also, faking good; Nederhof,
1985) to bias from extreme and moderate types of
responders (i.e., people who tend to choose extreme
ends of Likert-scales) (Bachman & O'Malley, 1984).
Although more often documented for questionnaires
and surveys about sensitive topics such as willingness
to cheat, sexual fantasies, or attitudes about race,
self-tuning or censoring of responses can also hap-
pen on educational tests, such as the force concept
inventory (FCI; Hestenes, Wells, & Swackhamer, 1992)
used to assess Newtonian thinking. Mazur (2007)
reported a student specifically asking, “How should
I answer these questions? According to what you
taught us, or by the way I think about these things?”
Finally, intentional rapid guessing behaviour can be
thought of as a form of response bias (Wise & Kong,
2005). It should be clear that all of these sources of
response bias challenge the uncritical interpretation
of scale scores.
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Measurement Models

The rubber meets the road in the technical details
of measurement models. A measurement model is a
formal mathematical relationship between a latent
variable or set of variables and an observable variable
or set of variables. A fully statistical measurement
model may specify a distribution for the latent vari-
able(s), a distribution for the observed variable(s), and
a functional relationship between them. The latent
variables are often understood as causally explaining
the observations, which are subject to errors. Variances
and covariances of random variables are described,
explicitly or implicitly, in the model. Models make as-
sumptions, for example the assumption of monotonicity
(or, stricter, linearity) of the relationship between the
construct and the measure or the assumption of zero
covariance between error terms of unique items. If the
assumptions of a model are violated, inferences made
using the model may be wrong (Lord & Novick, 1968).

Since categorical and continuous variables involve
different statistical methods, types of measurement
models are sometimes classified into families according
to the type of latent and observed variables, as shown
in Table 3.1. This classification is not exhaustive, as
hybrid models exist as well as generalized frameworks
(Skrondal & Rabe-Hesketh, 2004) in which these
model families become special cases. Growth models
are extensions of measurement models to repeated
measures and can apply to both continuous and cat-
egorical latent variables (e.g., Meredith & Tisak, 1990;
Rabiner, 1989; Raudenbush & Bryk, 2002).

Table 3.1. Families of Latent Variable Models

Item response mod-
els (Lord & Novick,
1968; Baker & Kim,
2004)

Factor models (Bol-
len, 1989; Mulaik,
2009)

Latent mixture
models (McLachlan
& Peel, 2004)

Latent class
models (Goodman,
2002)

SPECIFIC USES OF MEASUREMENT
MODELS IN LEARNING ANALYTICS

We mentioned previously that psychological and
educational measurement is applied for a variety of
purposes including classification, diagnosis, ranking,
placement, and certification of individuals as well
as corresponding inferences about groups. Work in
learning analytics and educational data mining also
explores the complex web of relationships between
psychological scales, behaviour, and performance in
digital learning environments (Tempelaar, Rienties,

& Giesbers, 2015). The purpose of this section is to
provide a bit more depth about models and their uses
inlearning analytics and educational data mining. All
topics are not treated equally, reflecting both space
constraints and selection bias.

Factor Analysis

Factor analysis (Mulaik, 2009) models the correlations
among observed variables through a linear relation-
ship to a set of latent variables known as factors. The
original one-factor model is Spearman’s (1904) model
of general intelligence g, used to explain correlations
between scores on unrelated subject tests. True score
theory, also known as classical test theory (Lord &
Novick, 1968), can be derived as a special case of a single
factor model in which all of the item factor loadings
are the same. Thurstone (1947) developed the multiple
(seven) factors model of intelligence.

Factor analysis is commonly divided into two enterprises.
Exploratory factor analysis (EFA) is used to determine
the number of latent factors from data without strong
theoretical assumptions and is commonly part of
scale development. However, EFA requires a number
of important methodological decisions which, if made
poorly, can lead to problematic results (Fabrigar,
Wegener, MacCallum, & Strahan, 1999). In particular,
Fabrigar et al. (1999) caution against confusing EFA with
principal components analysis (PCA), a dimensionality
reduction technique, which can result in erroneous
conclusions about true factor structure. Confirmatory
factor analysis (CFA) is a complementary set of tech-
niques to test a theoretically proposed factor model by
examining residuals between expected and observed
correlations. Thus, CFA can be used to reject a model.
CFA, along with path analysis and latent growth models,
is subsumed by structural equation modelling (SEM,;
Bollen, 1989; Kline, 2010). Confirmatory factor analysis
is not the same thing as running EFA multiple times
with different population samples, although the case
has been made for doing the latter (DeVellis, 2003).

Some learning analytics research is directly concerned
with scale development and its integration with data
gathered from learning management systems (e.g.,
Buckingham Shum & Deakin Crick, 2012; Milligan &
Griffin, 2016). Other work focuses on associations be-
tween existing scales and outcome measures, such as
the relationship between achievement emotions (Pekrun
et al.,, 2011) and decisions regarding face-to-face and
online instruction (Tempelaar, Niculescu, Rienties,
Giesbers, & Gijselaers, 2012) or between motivational
measures and completion of a massive open online
course (Wang & Baker, 2015). When adapting an in-
strument or, especially, part of an instrument for new
purposes, practitioners should be mindful of whether
these new uses merit new validation arguments.

PG 38 | HANDBOOK OF LEARNING ANALYTICS



Latent Class and Latent Mixture

Models

Dedic, Rosenfeld, and Lasry (2010) used latent class
analysis to understand the distribution of physics
misconceptions based on students’ wrong answers
on a physics concept test. Data came from admin-
istrations both before and at the end of a physics
course (pre- and post-test). The authors identified
an apparent progression from Aristotelian to Newto-
nian thinking through discrete classes of dominance
fallacies. A widely used method for topic modelling
of documents, latent Dirichlet allocation (LDA; Blei,
Ng, & Jordan, 2003; see also several chapters in this
volume) is a latent mixture model. Mixed membership
models (Erosheva, Fienberg, & Lafferty, 2004) further
generalize latent mixtures by allowing “fuzzy” or
weighted assignments of an individual to multiple
classes. The Gaussian mixture model forms the basis
for model-based cluster analysis (Fraley & Raftery,
1998) applied to performance trajectories of MOOC
learners (Bergner, Kerr, & Pritchard, 2015). It should
be noted that not all clustering algorithms, however,
are latent mixture models.

Item Response Theory (IRT)

Item response theory distinguished itself in the his-
torical development of testing theory by modelling
individual person-item interactions rather than total
test scores, as in classical test theory. Conceptually,
the purpose of IRT is “to describe the items by item
parameters and the examinees by examinee parameters
in such a way that we can predict probabilistically the
response of any examinee to any item, even if similar
examinees have never taken similar items before”
(Lord, 1980, p. 11). A sample item characteristic curve
(ICC) or, equivalently, item response function (IRF) for
abinaryitem (e.g., correct/incorrect, agree/disagree,
et cetera) is shown in Figure 3.1.

The salient characteristics of Figure 3.1 are as follows:

P(correct)
e

Student Ability, 6

Figure 3.1. A sample item characteristic curve (ICC).
Dotted lines indicate the P = 0.5 intercept.

1. The trait (e.g., ability) is quantified as a continuous
random variable and is represented by 6 on the
horizontal axis. The variable is standardized to have
amean of zero and a variance of 1in the popula-
tion of interest. More of the trait, corresponding
to a higher value of 6, is expected to increase the
probability P of a positive (or correct) response.
This is the monotonicity assumption. An observed
violation of monotonicity means that that the
fundamental person-item relationship is wrong,
and including the item in a test would lead to bad
fit and unreliable inferences.

2. Two ways of interpreting these curves were de-
scribed by Holland (1990). In the stochastic subject
interpretation, one literally imagines this curve as
applying to an individual whose performance is
inherently unpredictable. To paraphrase Holland,
the stochastic subject explanation is intuitive, but
not wholly satisfactory; we do not have a mecha-
nistic explanation for the stochastic nature of the
subject. In the random sampling interpretation,
on the other hand, this curve makes sense as
applied to a sample population of examinees. For
example, among examinees within a certain ability
range, some proportion will answer correctly.
The points and error bars in the figure reflect
this observation.!

3. The value of 6 for which P = 0.5 is a reference
intercept, which for a cognitive ability test item
is called the difficulty. Note that difficulty is ipso
facto on the same scale as ability, and so it makes
sense to talk about the difference between a per-
son’s ability and the difficulty of an item.

4. The form of the probability link is commonly para-
metric with respect to the trait 6, of individual i
and a (set of) item parameters g, for item j,

P, =P(X; =16, B) = f6, B), ™
as in the case of the Rasch model (a single difficulty
parameter) or of the two-parameter logistic (2PL)
model. The 2PL model is shown in Figure 3.2; the
fit to data is visibly good, and a G* goodness-of-
fit test confirms as much. It should be noted that
non-parametric IRT methods exist (Sijtsma, 1998).

When a person responds to several items in a measure-
ment instrument, the idea is to combine the response
information to make posterior estimates of the trait.
For the likelihood of a response vector to factor into
a product of individual item-level probabilities, the
responses must be otherwise independent, conditional
on the trait. This conditional independence assumption

! For the stochastic subject, these sample values would have to rep-
resent a set of identical trials by the same subject with no memory
of the other trials. Although this seems odd in a cognitive test item,
it is plausible in a psychomotor context. See Spray (1997).
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may require the introduction of additional factors that
explain inter-item dependence (e.g., Rijmen, 2010).

Evidence that IRT has some traction in education
outside of high-stakes testing applications can be
found in physics education research applications to
the force concept inventory (FCI; Hestenes et al., 1992)
and the mechanics baseline test (MBT; Hestenes &
Wells, 1992). While these instruments have been in use
for twenty-five years, item response model analyses
started to appear more recently (Morris et al., 2006;
Wang & Bao, 2010). Model-data fit for the FCI were
generally acceptable. Cardamone et al. (2011), however,
discovered two malfunctioning items in the MBT by
inspecting the item response functions. An example
is shown in Figure 3.2.

<

0.8

P(correct)
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1 |
e
e
e
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0.2

0.0
1

Student Ability, 6

Figure 3.2. A poorly fitting item from the mechanics
baseline test (MBT).

Something is fishy if low-ability students are more
likely to answer an item correctly than average-ability
students. Upon closer inspection, it was discovered
that ambiguous wording of this test item allowed
students holding a common misconception to misread
the question and coincidentally choose the correct
response for the wrong reason. In this case, two
wrongs did make a right.

Following exploratory factor analyses of the FCI that
identified multiple dimensions (Ding & Beichner, 2009;
Scott, Schumayer, & Gray, 2012), a variation of mul-
tidimensional IRT was applied to the MBT (Bergner,
Rayyan, Seaton, & Pritchard, 2013). Item response
theory models have also been extended to the inher-
ently sequential process behind multiple attempts to
answer (answer-until-correct), an affordance which
is common in online homework (Attali, 2011; Bergner,
Colvin, & Pritchard, 2015; Culpepper, 2014).

Growth Models

Growth models apply any time a latent trait is chang-
ing systematically between measurements. They can
be applied to changing attitudes (e.g., George, 2000),
but we focus here on application to cognitive ability
domains. There is an extensive literature in educa-
tional data mining on student models for intelligent
problem-solving tutors, which are distinguished from
curriculum sequencing tutors (Desmarais & Baker, 2011).

In cognitive tutors for mathematics (Anderson, Corbett,
Koedinger, & Pelletier, 1995), sequences of practice
items are designed to support mastery learning of
fine-grained knowledge components (also, skills or
productions), according to a cognitive model. Two
approaches for modelling growth towards mastery
in data from these systems are Bayesian knowledge
tracing (BKT; Corbett & Anderson, 1995) and the ad-
ditive factors models (AFM; Cen, Koedinger, & Junker,
2008; Draney, Pirolli, & Wilson, 1995). Learning curves
analysis (Késer, Koedinger, & Gross, 2014; Martin,
Mitrovic, Mathan, & Koedinger, 2010) has also been
used to check for discrepancies between data and the
cognitive model underlying the tutor.

According to the “law of practice” (Newell & Rosen-
bloom, 1981), the aggregate error rate T as a function
of practice opportunity n should decay according
to a power law T=B ", where B and a are empirically
determined. Bad fit between data and model, for
example using r-squared measures, may motivate
improvements to knowledge mapping. This may be
seen as an analogue to the item analysis in Figure 3.2,
where a faulty item is detected. In this case, however,
the assignment of a sequence of items to a knowledge
component is seen as faulty.

In BKT, the latent variable is mastery of a procedural
knowledge component and is binary-valued, M € {0, 1}.
The probability link between mastery and correctness
X € {0, 1} on any given opportunity is a 2x2 conditional
probability table, but by analogy with Eq. (1), it can be
written in terms of guess (g) and slip (s) parameters as,

P(X = 1M) = (1- 5" g @

Importantly, the attempts are not viewed as inde-
pendent. Rather, the key idea in BKT is that students
begin with some prior probability of mastery and
move towards mastery (they learn) on each practice
opportunity according to the rule,

PM,) = PM, ) + 7(1- P(M, ) ®)

Here 1 is a growth parameter. Recently, van de Sande
(2013) demonstrated that BKT implies an exponential
rather than a power law relationship between prac-
tice attempts and error rates. This would make BKT a
mis-specified model for data that satisfy a power law
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of practice. The additive factors model, by contrast,
is designed to fit the power law of practice paradigm.
Kaser et al. (2014) showed that prediction accuracy of
BKT is often indistinguishable from AFM. Regarding fit
of the latter, they noted systematic bias in aggregate
residuals analyses.

AFM has been referred to as an extension of IRT
(Koedinger, McLaughlin, & Stamper, 2012), and indeed
the relation to the linear logistic test model (LLTM,;
Fischer, 1973) was clear in the progenitor of this model
(Draney et al., 1995). However, in passing to its current
form, the model was changed in a critical way. The
LLTM is a Rasch-type IRT model in which the difficul-
ty of an item is decomposed as a sum over potential
properties of the item. Writing the Rasch model as,

logit(P,) = In(P,/(1-P,)) = 6,- B, “)
the difficulty , of item j is further decomposed,
B=c;+ X w0, (5)

where o, are difficulties of “basic” operations (Fischer’s
term) and the indicators w,, are 0 or 1 depending on
whether these operations are required in item j. If
all items use the same operations, the model clearly
reduces to the Rasch model with a simple offset,

B=cta. 6)

Although the model of Draney et al. (1995) contained
an item-level difficulty parameter, in AFM only the
difficulties of the component skills are retained. In
addition, a practice term is introduced,?

B = Zwy o - 2wy T 0
where v, is a growth parameter and T, is a count of
the previous practice attempts of learner i on skill k.
If a sequence of practice problems all involve the same

skills, which is common for tutor applications, then for
each sequence, this parameter reduces to,

BA™M= o - 9T, (8)

Importantly, this is not a property of the item at all,
as is clear from the subscripts on the right hand side,
which depend only on the learner. By dropping the ¢,
parameter in Equations (7)-(8), the AFM has actually
become a fixed effect growth model.

From a modelling perspective, it is not surprising that
the item-level difficulty parameter was removed, as
keeping both difficulty and growth parameters creates
a problem for identifiability. A model is identifiable if
its parameters can be unambiguously learned given
sufficient data. However, for students working on a
fixed sequence of items, the increased success rate due
to learning /growth can be attributed to decreasing

% One sign convention from Cen et al. (2008) has been changed to
make the model consistent with the usual Rasch model, with a diffi-
culty rather than an easiness parameter.

item difficulty. The two effects cannot be distinguished
unless item difficulties have been separately calibrated
under conditions where there is no growth.

Cognitive Diagnostic Models

A seminal study of mixed-number subtraction using
cognitive task analysis led Tatsuoka (1983) to develop
the Q-matrix method and a model for diagnosing
specific sub-skills (e.g., converting a whole number
to a fraction) in an educational test. The Q-matrix
is a discrete mapping of items to requisite sub-skills
and is traditionally specified in the assessment model.
Cognitive diagnostic models have since been consid-
erably generalized (Rupp & Templin, 2008; von Davier,
2005), and efforts to learn the Q-matrix from data
have appeared in educational data mining research
(Barnes, 2005; Desmarais, 2012; Koedinger et al., 2012).

SOURCES OF ERROR, REVISITED

Having explored some of the measurement models
involved in studying motivation, emotion, and cog-
nition, it is worth revisiting the important subject of
error. Practitioners should be mindful that additional
sources of error could be introduced by using models
with the wrong parameters, by using the wrong models,
or by using the models wrongly.

The use of a model may depend on parameters whose
estimation is itself subject to error. These uncertainties
should be acknowledged, but they are not necessarily
serious if the model is consistent as a data-generating
model for the observed data. That is, we think of the
statistical model as a stochastic process that can be used
to generate (also, sample or simulate) data (Breiman,
2001). For example, we can simulate data from coin
flips using a Bernoulli process, even if we are unsure
about whether the real coin is fair. In principle, our
parameter for the probability of heads in our model can
be improved with more data from the real coin. This is
different from the case when the model itself, either
in terms of the latent variables or the link functions,
is inconsistent with the true generating model. The
second case is called model mis-specification (White,
1996). Goodness-of-fit tests evaluate the consistency
between the observed data and the generating model
to retain or reject the model (White, 1996; Haberman,
2009; Ames & Penfield, 2015).

EXPLANATION AND PREDICTION

Predictive modelling is one of the most prominent
methodological approaches in educational data mining
(Baker & Siemens, 2014; Baker & Yacef, 2009). Measure-
ment theory, by contrast, is decidedly explanatory,
as are most of the statistical methods traditionally
used in the social sciences (Breiman, 2001; Shmueli,
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2010). While an explanatory model can be used to
make predictions — and an error-free explanatory
model would make perfect predictions — a predictive
model is not necessarily explanatory. Breiman (2001)
expressed the distinction in terms of two cultures: the
data modelling culture (98% of statistics, informally
according to Breiman) and the algorithmic modelling
culture (the 2%, in which Breiman included himself).?
Shmueli (2010) contrasted the entire design process
for statistical modelling when viewed from either a
prediction or an explanation lens. The interpretabil-
ity or non-interpretability of predictors in a complex
prediction model is only one aspect of the distinction
(see also Liu & Koedinger, this volume). The different
viewpoints fundamentally inform how researchers
handle error and uncertainty.

The predictive view is expressed, for example, in a
recent best paper from the educational data mining
conference. The authors assert that, “the only way
to determine if model assumptions are correct is to
construct an alternative model that makes different
assumptions and to determine whether the alternative
outperforms [out-predicts] BKT” (Khajah, Lindsey,
& Mozer, 2016, p. 95, editorial note added). Strictly
speaking, model prediction performance is not a way
to determine if model assumptions are violated. By
contrast, both informal checks and formal tests for
goodness-of-fit have been discussed above. However,
the quote is a reflection of the algorithmic modelling
culture in which models are validated by predictive
accuracy (Breiman, 2001). More problematically, it
carries a presumption that predictive power points to
the truer model. In fact, it is explanatory power that
plays this role. Put in terms of variance components,
“in explanatory modelling the focus is on minimizing

® Breiman uses the term information in place of explanation and in
contrast to prediction.

bias to obtain the most accurate representation of the
underlying theory. In contrast, predictive modelling
seeks to minimize the combination of bias and vari-
ance, occasionally sacrificing theoretical accuracy
for improved empirical precision” (Shmueli, 2010, p.
293). It should be emphasized that explanatory power
and predictive power do not always point in the same
direction. Indeed, Hagerty and Srinivasan (1991) proved
that, in noisy circumstances, under-specified multiple
regression models can have more predictive power
than the correctly specified (true) model.

Suthers and Verbert (2013) have described learning
analytics as a “middle space” between learning science
and analytics. Perhaps it may also be thought of as
occupying a methodological middle space between
explanatory and predictive approaches. In that case,
the field may benefit from understanding the nuances
of both perspectives.

FURTHER READING

Psychological measurement is almost as old as psy-
chology itself and as old as statistics. Authoritative,
technical, and somewhat encyclopedic sources are
the anthology of psychometrics in the Handbook of
Statistics series (Rao & Sinharay, 2006) and the “bible”
of Educational Measurement, now in its fourth edition
(Brennan, 2006). Educational measurement volumes
and the Standards (AERA, APA, & NCME, 2014) tend to
emphasize testing, where specific issues are reliability,
validity, generalizability, comparability, and fairness.
DeVellis’ (2003) concise volume on scale development
is a non-technical introduction to psychological
measurement and omits topics specific to large-scale
testing, such as linking scores from parallel test forms.
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