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ABSTRACT

Learning analytics (LA) is witnessing an explosion of data generation due to the multiplicity
and diversity of learning environments, the emergence of scalable learning models such as
massive open online courses (MOOCs), and the integration of social media platforms in the
learning process. This diversity poses multiple challenges related to the interoperability
of learning platforms, the integration of heterogeneous data from multiple knowledge
sources, and the content analysis of learning resources and learning traces. This chapter
discusses the use of linked data (LD) as a potential framework for data integration and
analysis. It provides a literature review of LD initiatives in LA and educational data mining
(EDM) and discusses some of the potentials and challenges related to the exploitation of
LD in these fields.
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The emergence of massive open online courses (MOOCs)
and the open data initiative have led to a change in the
way educational opportunities are offered by shifting
from a university-centric model to a multi-platform
and multi-resource model. In fact, today's learning
environments include not only diverse online learn-
ing platforms, but also social media applications (e.g.,
SlideShare, YouTube, Facebook, Twitter, or LinkedIn)
where learners connect, communicate, and exchange
data and resources. Henceforth, learning is now
occurring in various forms and settings, both at the
formal (university courses) and informal (social media,
MOOOC) levels. This has led to a dispersion of learner
data across various platforms and tools, and brought
aneed for efficient means of connecting learner data
across various environments for a comprehensive
insight into the learning process. One salient example
of the need for data exchange across platforms is the
connectivist MOOC (cMOOC). In cMOOCs, learning,
by definition, does not take place in a single platform,
but relies on a range of dedicated online learning
applications as well as social media and networking

applications for sharing information and resources
among learners (Siemens, 2005). These developments
led to new requirements and imposed new challenges
for both data collection and use.

From the perspective of data collection, the emergence
of cloud services and the rapid development of scalable
web architectures allow for pulling and mashing data
from various online applications. This is supported by
the development of large-scale interfaces (APIs) by
major Web stakeholders such as Facebook, LinkedIn,
or Twitter, and by MOOC providers such as Coursera
and Udacity. From the perspective of data use, the
plethora of resources and interactions occurring in
educational platforms requires analytic capabilities,
including the ability to handle different types of data.
Various kinds of data are generated, some of which
capture learners' interactions in learning and social
media platforms (learners'logs/traces), whereas others
take the form of unstructured content, ranging from
course content and learners' blogs to discussion forum
posts. This multitude of kinds and sources of data pro-
vides fertile ground for the field of learning analytics
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and its overall objectives to better understand learners
and the learning process, provide timely, informative,
and adaptive feedback, and foster lifelong learning
(Gaesvi¢, Dawson, & Siemens, 2015).

Challenges associated with the collection, integration,
and use of data originating from heterogeneous sources
are often dealt with, in the educational community,
by developing a standardized data model that allows
for integration and leveraging of heterogeneous data
(Dietze et al., 2013). This chapter focuses on linked data
(LD) as one potential approach to the development and
use of such a data model in both formal and informal
online learning settings. In particular, the use of LD
principles (Bizer, Heath, & Berners-Lee, 2009) allows
for establishing a globally usable network of informa-
tion across learning environments (d'Aquin, Adamou,
& Dietze, 2013), leading to a global educational graph.
Similar graphs could be created at the individual level,
for each particular learner, connecting all the data
and resources associated with their learning activi-
ties. The educational potentials and benefits of such
graphs have already been examined and discussed. For
instance, Heath and Bizer (2011) propose an educational
graph across UK universities, comprising knowledge
extracted from the content of learning resources.
Given the development and use of knowledge graphs
by an increasing number of major companies such as
Google, Microsoft, and Facebook, the potential and
possibilities opened up by such graphs for learning
should be examined (Zablith, 2015).

This chapter describes the current state of the art of
LD usage in education, focusing primarily on existing
and potential applications in the learning analytics
(LA)/educational data mining (EDM) field. After a brief
introduction to LD principles in the next section, the
chapter analyzes the potential of LD along two par-
ticular dimensions: 1) the data integration dimension
and 2) the data analysis and interpretation dimension.
Finally, we discuss some potentials and challenges
associated with the use of LD in LA/EDM.

LINKED DATA IN EDUCATION

Linked data has the potential to become a de facto
standard for sharing resources on the Web (Kessler,
d'Aquin, & Dietze, 2013). It uses URIs to uniquely identify
entities, and the RDF data model' to describe entities
and connect them via links with explicitly defined
semantics. In particular, LD relies on four principles:

1. Use URIs as names for things; for instance, his-
torical novel "Paris" is uniquely identified by its
ISBN (a kind of URI): 0385535309

2. Provide the ability to look up names through HTTP

! Resource Description Framework, http: //www.w3.org/RDF /

URIs; while an ISBN does uniquely identify a book,
it cannot be used to provide direct access to it on
the Web, so HTTP URIs should be used instead;
the book from our example could be looked up via
the following HTTP URI: <http://www.worldcat.
org/oclc/827951628>

3. Upon URIlook up, return useful information using
the standards RDF and SPARQL?; for instance,
we can state, in a machine-processable manner,
that the resource identified by the <http://www.
worldcat.org /oclc/827951628> URI is of the type
book and belongs to the genre of historical fiction:
<http://www.worldcat.org/oclc/827951628> rdf:type
schema:Book ; schema:genre "Historical fiction".

4. Include links to other entities uniquely identified
by their URIs; for instance, we can connect the
book from our example with its author: <http://
www.worldcat.org/oclc/827951628> schema:author
<http://viaf.org/viaf/34666>where the latter URI
uniquely identifies the writer Edward Rutherfurd.

Thanks to the simplicity of these principles, LD
represents an elegant framework for modelling and
querying data at a global scale. It is usable in various
applications and domains, and can constitute a re-
sponse to the interoperability and data management
challenges that have long faced the educational com-
munity (Dietze et al., 2013).

Billions of data items have been published on the web
as linked data, forming a global open data space — the
linked open data cloud (LOD)? — that includes open
data from various domains such as government data,
scientific knowledge, and data about a variety of
online communities. Huge cross-domain knowledge
bases have also emerged on the LOD such as DBpedia®,
Yago®, and Wikidata®. As such, LD has the potential
to enable a global shift in how data is accessed and
utilized, offering access to data from various sources,
through various kinds of data access points, including
Web services and Web APIs, and allowing for seamless
creation of dynamic data mashups (Bizer et al., 2009).
In fact, one salient feature of LD is that it establish-
es semantic-rich connections between items from
different data sources, and thus opens up data silos
(e.g., traditional databases) for more seamless data
integration and reuse.

Despite all these potential benefits, the LD formalism
and technologies have had a slow adoption in the area of
technology-enhanced learning; initiatives that employ
LD technologies have only emerged recently (Dietze et
al., 2013). We can identify several application scenarios

2 https: //www.w3.org/TR/sparqlll-query/
3 http: //lod-cloud.net/

* http: //lod-cloud.net/

® http: //bit.ly/yago-naga

6 http: //bit.ly/wikidata-main
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in the LA/EDM field that would benefit from the LOD,
including 1) resource discovery (e.g., faceted search)
and content enrichment (e.g., augmenting content
with data from LOD datasets) (Maturana, Alvarado,
Lopez-Sola, Ibanez, & Elosegui, 2013); 2) content
analysis based on semantic annotation (Joksimovi et
al., 2015); 3) resource and service integration (Dietze
et al., 2012); 4) personalization (Dietze, Drachsler, &
Giordano, 2014); and 5) interpretation of EDM results
(d'Aquin et al., 2013).

DATA INTEGRATION USING LINKED
DATA

One of the most salient benefits of LD lies in its data
integration potential. This is particularly relevant
for the LA/EDM field since it requires the collection
and management of learner and content data from a
variety of sources (applications and services) used in
informal and life-long learning (Santos et al., 2015).
In particular, to build a comprehensive learner mod-
el, one needs to integrate learner data recorded in
different learning platforms/tools the learner has
interacted with (Desmarais & Baker, 2012). Therefore,
the challenges associated with handling multiple data
formats and the overall lack of data interoperability,
are becoming a key issue (Chatti, Dyckhoff, Schroeder,
& Thiis, 2012; Duval, 2011). More generally, the ease
of data transfer, pre-processing, use, combination
and analysis without loss of meaning across learning
platforms are becoming important factors for the
efficiency of LA/EDM (Cooper, 2013).

Several domains have been successful in exploiting LD
for data integration issues such as the biomedical domain
(Belleau, Nolin, Tourigny, Rigault, & Morissette, 2008),
pharmacology (Groth et al., 2014), and environmental
sciences (Lausch, Schmidt, & Tischendorf, 2015). All of
this suggests that LD technologies could provide the
solid data integration layer that LA /EDM necessitates.

Previous Initiatives in Data Integration in
the Educational Community

The technology enhanced learning research community
has long recognized the importance of data integration,
which eventually resulted in multiple standardization
efforts. Cooper (2013) provides a valuable overview of
various standards related to learning. Mainly, these
standards relate to the representation of data about
learners and their activities, as well as learning con-
tent and services.

At the learner level, standards focus on facts about
individuals and their history, their connections and
interactions with other persons, and interactions
with resources offered by learning environments
(person and learning activities dimensions). Various

specifications exist to model learners (e.g., FOAF’), and
learner activities and interactions (e.g., Contextualized
Attention Metadata [Schmitz, Wolpers, Kirschenmann,
& Niemann, 2011], Activity Streams?, or ADL xAPI®).

At the content level, previous initiatives such as IEEE
Learning Object Metadata (LOM)"® and ADL SCORM"
attempted to create vocabularies and standards that
would unify the description of online educational
resources or the specification of computer-based
assessment (e.g., IMS QTI?). Other efforts targeted
the mapping between various data models, such as
the work of Niemann, Wolpers, Stoitsis, Chinis, and
Manouselis (2013) who aimed at aggregating sets of
social and interaction data. Finally, several interfaces
were proposed to provide guidelines for the imple-
mentation of services compliant with these standards
(Dietze et al., 2013).

Based on different viewpoints, these efforts led to
multiple competing projects and thus created sub-com-
munities with various technologies, languages, and
models, and very little interoperability among them.
The LD philosophy provides a solution to these interop-
erability issues by allowing a multiplicity of models on
the Web, bridging these models using Web-accessible
semantic links. Thus semantically similar models that
are differently represented can still be aligned using
typed links that establish meaningful connections
between concepts originating from different models;
for instance, equality connections (owl:sameAs), or hi-
erarchical connections (rdfs:subclassOf or skos:broader).

Current Data Integration Initiatives Us-
ing Linked Data

Integration based on LD requires the availability of
Web-accessible LD vocabularies that describe the
types of entities in specific subject domains, entities'
attributes, and the kinds of connections among the
entities. It also depends on the availability of services
that allow for exploiting multiple datasets for a given
task, as well as services that expose data as LD. This
section introduces some of the available vocabularies
in the educational domain, and efforts aimed at ex-
posing educational data as LD. A more comprehensive
overview of education-related vocabularies can be
found in Dietze et al. (2014). The section also gives
examples of services exploiting the integration of
multiple LD datasets.

Anincreasing number of educational institutions have
been exposing their data following LD principles, such
as the Open University in the UK or the University

"http: //www.foaf-project.org/

8 http: //activitystrea.ms/

° http: //www.adlnet.gov/tla/experience-api
10 http: //ieeeltsc.org /wgl2LOM /

" http: //www.adlnet.org/

2 http: //www.imsglobal.org /question/
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of Miinster® in Germany. One prominent effort in
exposing educational data as LD was the LinkedUp
project", which resulted in a catalog of datasets relat-
ed to education and encouraged the development of
competitions such as the LAK Data Challenge®, whose
aim was to expose LA/EDM publications as LD and
promote their analysis by researchers. While these
initiatives represent a step in the adoption of LD by the
educational community, their impact remains limited.
For example, the data representation and use in MOOC
platforms — one of the most striking developments
in today's technology-enhanced learning — has not
been based on LD principles or technologies to date.
Still, few recent initiatives (Kagemann & Bansal, 2015;
Piedra, Chicaiza, Lépez, & Tovar, 2014) showed some
interest in describing and comparing MOOCs using
an LD approach. For example, MOOCLink (Kagemann
& Bansal, 2015) aggregates open courseware as LD
and exploits these data to retrieve courses around
particular subjects and compare details of the cours-
es' syllabi. Recently, there has also been an initiative
that relies on schema.org' to create a vocabulary for
course description” with the purpose of facilitating
the discovery of any type of educational course.
Schema.org is a structured data markup schema (or
vocabulary) supported by major Web search engines.
This schema is then used to annotate Web pages and
facilitate the discovery of relevant information. Given
its adoption by major players on the Web, this is a
welcome initiative that might have some long-term
impact in the educational community. Similarly, some
authors worked on providing an RDF representation
(binding) of educational standards. For example, an
RDF binding of the Contextualised Attention Metadata
(CAM) (Munioz-Merino et al., 2010) and an RDF binding
of the Atom Activity Streams'® were developed. This
enabled data integration and interoperability both at
syntax and semantic levels.

Finally, with the current shift towards RESTful (rep-
resentational state transfer) services on the cloud,
education-related services based on LD have started
to emerge. At a conceptual level, we can identify
two main types of services based on LD currently
being investigated in research: 1) services for course
interlinking within a single institution and across
institutions, and 2) services for integrating learners’
log data based on a common model.

For example, Dietze et al. (2012) proposed an LD-based
framework to integrate existing educational repos-
itories at the service and data levels. Zablith (2015)

B http: //lodum.de/

 http: //linkedup-project.eu/

> http: //lak linkededucation.org/

6 https: //schema.org/

" https: //www.w3.0org/community/schema-course-extend /
'8 http: //xmlns.notu.be /aair/

suggested the use of LD as a conceptual layer around
higher education programs to interlink courses in a
granular and reusable manner. Another work links
ESCO®-based skills to MOOC course descriptions to
create enriched CVs (Zotou, Papantoniou, Kremer,
Peristeras, & Tambouris, 2014). Interestingly, the au-
thors are able to identify similar skills taught in the
Coursera and Udacity MOOC platforms, thus providing
implicit links between courses of two different MOOC
platforms. One can envisage exciting opportunities for
life-long learning based on a cross-platform MOOC
course recommendation service.

Another indicator of the growing importance of LD
in the realm of education in general, and LA/EDM
in particular, is the adoption of LD concepts and
technologies into xAPI specifications*. With xAPI,
developers can create a learning experience tracking
service through a predefined interface and a set of
storage and retrieval rules. De Nies, Salliau, Verborgh,
Mannens, and Van de Walle (2015) propose to expose
data models created using the xAPI specification as
LD. This proposal provides an interoperable model of
learning traces data, and allows for seamless expos-
ing of learners' traces as semantically interoperable
LD. Similarly, Softic et al. (2014) report on the use of
Semantic Web technologies (RDF, SPARQL) to model
learner logs in personal learning environments.

Based on the scalability of the Web as the base infra-
structure, and using the interoperability of the W3C
standards RDF and SPARQL, we believe that similar
initiatives can further contribute to the development
of decentralized and adaptable learning services.

DATA ANALYSIS AND INTERPRETA-
TION USING LINKED DATA

Given the rapid growth of unstructured textual content
on various online social media and communication
channels, as well as the ever-increasing amount of
dedicated learning content deployed on MOOCs, there
is a need to automate the discovery of items relevant
to distance education, such as topics, trends, and
opinions, to name a few. In fact, analytics required
for the discovery and /or recommendation of relevant
items can be improved if the regular input data (e.g.,
learners'logs) is enriched with background information
from LOD datasets (e.g., data about topics associated
with the course) (d'Aquin & Jay, 2013). The use of LOD
cross-domain knowledge bases such as DBpedia and
Yago, alone or in combination with traditional content
analysis techniques (e.g., social network analysis,
text mining, latent semantic indexing), represent
a promising avenue for advancing content analysis

9 European Commission, "ESCO: European Skills, Competencies,
Qualifications and Occupations," https: //ec.europa.eu/esco
20 https: //github.com/adlnet /xAPI-Spec
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and information retrieval in educational settings, as
outlined in the following sections.

Content Analysis Using Semantic
Annotation

One important development in the LD field has been
the rapid expansion and adoption of semantic an-
notators (Jovanovi¢ et al., 2014) - services that take
unstructured text as input and annotate/tag it with
LOD concepts (i.e., entities defined in LOD knowledge
bases such as DBpedia, Wikidata,* and Yago). The latter
are general, cross-domain knowledge bases storing
Wikipedia-like knowledge in well-structured formats
with explicitly defined semantics. Several of these LD
annotators offer interfaces (APIs) that target the ex-
traction of various types of concepts, such as named
entities (e.g., people and places), domain concepts
(e.g., protein, gene), and themes or keywords, though
the diversity of possible annotations is continuously
expanding. Examples of these annotators, both from
academia and industry, include DBpedia Spotlight,*
AlchemyAPI,?® and TagMe.**

Given the plethora of unstructured texts from formal
courses, MOOCs, and social media, the capacity of
such annotators to produce explicit semantic rep-
resentations of text makes them valuable for various
analytic services. However, very few research works
have yet leveraged the power of semantic annotation
forlearning analytics. Recent research by Joksimovi¢ et
al. (2015) uses a mixed-method approach for discourse
analytics ina cMOOC based on LD and social network
analysis (SNA). The aim of the study was to explore
the main topics emerging from learners' posts within
various social media (i.e., Facebook, Twitter, and blogs)
and to analyze how those topics evolve throughout
the course (Joksimovi¢ et al., 2015). Instead of rely-
ing on some of the commonly used topic modelling
algorithms (e.g., latent Dirichlet allocation [LDA]),
the researchers utilized tools for automated concept
extraction (i.e., semantic annotators) along with SNA
to identify emerging topics (groups of concepts). Spe-
cifically, for each week of the course, concepts were
extracted from the posts generated in each of the
media analyzed. Further, the authors created graphs
based on the co-occurrence of concepts within a
single post. Finally, the authors applied modularity
algorithm for community detection (Newman, 2006)
in order to identify the most prominent groups of
concepts (i.e., latent topics). The main advantage of
such an approach, over "traditional" topic-modelling
algorithms, is possibility to extract compound words
(e.g., "complex adaptive systems") that are further linked

2 https: //www.wikidata.org/

2 https: //github.com /dbpedia-spotlight /dbpedia-spotlight /wiki
* http: //www.alchemyapi.com/

* https://tagme.d4science.org/tagme/

to knowledge bases (e.g., DBpedia), allowing for easier
interpretation of the extracted topics.

Analysis of Scientific Publications in the
LA/EDM Field

Another application domain powered by LD and related
to the educational context is semantic publishing (e.g.,
releasing library catalogues as LD) and meta-analy-
sis of scientific publications. In fact, one of the main
successes of LD technologies has been their early
adoption by various content publishers such as BNF?
and scientific-based publishing initiatives such as
DBLP.?® This has led to a plethora of LOD vocabularies
and datasets related to scientific publications. These
datasets provide grounds for various scientometric
computations that identify trending topics, influencing
researchers, and describe the research community at
large (Mirriahi, Gasevi¢, Dawson, & Long, 2014; Ochoa,
Suthers, Verbert, & Duval, 2014). They also directly
help professionals (researchers, students, librarians,
course producers) from the educational sector to
locate relevant information.

In the LA/EDM domain, the Learning Analytics and
Knowledge (LAK) Dataset (Taibi & Dietze, 2013) rep-
resents a corpus of publications from the LA/EDM
communities. The LAK Dataset contains both the
publications' content and metadata (e.g., keywords,
authors, conference). It represents a data integration
effort as it relies on various established LOD vocabu-
laries and constitutes a successful application of LD
technologies. The analysis of the LAK Dataset has
been encouraged since 2013 through the annual LAK
Data Challenge, whose goal was to foster research and
analytics on the LA/EDM publications. This dataset
has been further exploited for the development of
data analytics and content analysis applications. One
particularly valuable application is the identification
of topics and relations between topics in the dataset,
per year, per community (LA versus EDM), per publi-
cation, and overall. For example, the work of Zouag,
Joksimovi¢, and Gasevi¢ (2013) employed ontology
learning techniques on the LAK Dataset to identify
salient topics and relationships between them. Oth-
er techniques applied for discovering topics include
latent Dirichlet allocation (LDA; Sharkey & Ansari,
2014) and clustering (Scheffel, Niemann, Leon Rojas,
Drachsler, & Specht, 2014). While these approaches
offered a text-based content analysis, other works went
further in their data integration efforts by relying on
the LOD knowledge bases (e.g., DBpedia) and semantic
annotators to identify topics of interest. For example,
Miliki¢, Krcadinac, Jovanovi¢, Brankov, and Keca (2013)
and Nunes, Fetahu, and Casanova (2013) relied on

TagMe and DBpedia Spotlight services, respectively,

» http: //www.bnf.fr/en /tools/a.welcome_to_the_bnf.html
% http: //datahub.io/dataset/13s-dblp

CHAPTER 30 LINKED DATA FOR LEARNING ANALYTICS: POTENTIALS & CHALLENGES |PG 351



to identify topics and named entities in publications.
The benefit of LD in this case was highlighted by 1)
the ability to enrich the dataset with LOD concepts,
keywords, and themes, and 2) the ability to develop
advanced services such as potential collaborator de-
tection (Hu et al., 2014), dataset recommendations, or
more general semantic searches (Nunes et al., 2013).

Interpretation of Data Mining Results
Several research works have provided insights, pat-
terns, and predictive models by analyzing learners'
interaction and discussion data (e.g., identifying the
link between learners' discourse and position and
their academic performance (Dowell et al., 2015) or
course registration data (d'Aquin & Jay, 2013). However,
most of these analyses remain limited to a closed or
silo dataset, and are often hard to interpret on large
datasets.

In general, pattern discovery in LA/EDM requires a
model and a human analyst for the meaningful interpre-
tation of results according to several dimensions (e.g.,
topics, student characteristics, learning environments,
etc.) (d'Aquin & Jay, 2013). The work by d'Aquin & Jay
(2013) provides new insights into the usefulness of LD
for enriching and contextualizing patterns discovered
during the data-mining process. In particular, they
propose annotating the discovered patterns with LD
URIs so that these patterns can be further enriched
with existing datasets to facilitate interpretation. The
authors illustrate the idea by a case study of student
enrollment in course modules across time. They
extract frequent course sequences and enrich them
by associating them, via course URIs, with course
descriptions, i.e., a set of properties describing the
course. The (chain of) properties provide(s) analyti-
cal dimensions that are exploited in a lattice-based
classification (e.g., the common subjects of frequent
course sequences) and as a navigational structure.
As illustrated in this case study, LD can help discover
new analytical dimensions by linking the discovered
patterns to external knowledge bases and exploiting
LOD semantic links to infer new knowledge. This is
especially relevant in multidisciplinary research where
various factors can contribute to a pattern or phenom-
enon. Given the complexity of learning behaviours,
one can imagine the utility of having this support in
the interpretation of LA/EDM results.

DISCUSSION AND OUTLOOK

The overall analytical approach to learning expe-
rience requires state-of-the-art data management
techniques for the collection, management, querying,
combination, and enrichment of learning data. The
concept and technologies of LD — the latter based on
W3C standards (RDF, SPARQL) — have the potential to

contribute to all these aspects of data management.
First, one of the primary objectives behind LD tech-
nologies is to make the data easily processable and
reusable, for a variety of purposes, while preserving
and leveraging the semantics of the data. Second, LD
allows for a decentralized approach to data management
by enabling the seamless combination and querying
of various datasets. Third, large-scale knowledge
bases available as linked open data on the Web pro-
vide grounds for a variety of services relevant for the
analytic process; e.g., semantic annotators for content
analysis and enrichment. Fourth, data exposed as LD
on the Web can provide on-demand (just-in-time)
data/knowledge input required in different phases
of the analytic process, as this knowledge cannot be
always fully anticipated in advance. Potential benefits
also include representing the resulting analytics in
a semantic-rich format so that the results could be
exchanged among applications and communicated
to interested parties (educators, students) in differ-
ent manners, depending on needs and preferences
(e.g., different visual or narrative forms). Moreover,
through its inference capabilities over multiple data
sources, originating in semantic-rich representation
of data items and their mutual relationships, LD-based
methods could be a relevant addition to the existing
analytical methods for discovering themes and topics
in textual content. More generally, while statistical
and machine-learning methods are widespread in
the LA/EDM community, other kinds of data analysis
methods and techniques — those based on explicitly
defined semantics of the data — and open knowledge
resources (especially open, Web-based knowledge) can
make the traditional analytical approaches even more
powerful. Some of the potential enrichments provided
by LD include semantic vector-based models (e.g., bags
of concepts instead of bags of words), semantic-rich
social network analysis with explicitly defined seman-
tics for edges and nodes, or recommendations based
on semantic similarity measures.

Finally, LD technologies can be useful in dealing with
the heterogeneity of learning environments and social
media platforms. In particular, one can query and as-
semble various datasets that do not share a common
schema. This aspect in itself represents a more flexible
and practical approach than previous approaches that
required compliance to a common model/schema.

However, there are also several challenges related to
the use of LD in terms of the following:

1. Quality: The quality of the LOD datasets is a
concern (Kontokostas et al., 2014), and linking
learning resources and traces to external data-
sets and knowledge bases might introduce noisy
data. Although there are some initiatives for data
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cleaning, this issue is far from being resolved. information between learning and social platforms
would require, for example, that learners grant
access to their data and provide log-in information
for the different services they use for learning.

2. Alignment: Besides the use of common Web URIs
among schemas, there is often a need to seman-
tically align vocabularies and models, which is a
challenging task. Current alignment approaches Despite the challenges indicated above - and given
are often based on syntactic matching, which the use of LOD datasets and knowledge bases in some
does not deal well with ambiguities. One way to ~ major initiatives such as Google knowledge graph or
mitigate the alignment issue is to be aware and Facebook graph search and their increasing adoption
re-use major LD vocabularies” whenever possible  in educational institutions - LD is a promising techno-
(e.g., foaf:name is a property depicting the name logical backbone for today's learning platforms. It also
of a person in the FOAF specification and could provides a useful formalism for facilitating the overall
be used instead of creating a new property); learning analytic process, from raw data collection

and storage, to data exploitation and enrichment, to

3. Privacy: Data within MOOCs and learning plat- ‘ . ‘
interpretation of the analytics results.

forms is often siloed for privacy reasons. Merging
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