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ABSTRACT

In the statistical modelling of educational data, approaches vary depending on whether
the goal is to build a predictive or an explanatory model. Predictive models aim to find a
combination of features that best predict outcomes; they are typically assessed by their
accuracy in predicting held-out data. Explanatory models seek to identify interpretable
causal relationships between constructs that can be either observed or inferred from the
data. The vast majority of educational data mining research has focused on achieving pre-
dictive accuracy, but we argue that the field could benefit from more focus on developing
explanatory models. We review examples of educational data mining efforts that have pro-
duced explanatory models and led to improvements to learning outcomes and /or learning
theory. We also summarize some of the common characteristics of explanatory models,
such as having parameters that map to interpretable constructs, having fewer parameters
overall, and involving human input early in the model development process.
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Across the vast majority of educational data mining
research, models are evaluated based on their predictive
accuracy. Most often, this takes the form of assessing
the model’s ability to correctly predict successes and
failures in a set of student response outcomes. Much
less commonly, models may be validated based on their
ability to predict post-test outcomes (e.g., Corbett &
Anderson, 1995) or pre-test/post-test gains (e.g., Liu
& Koedinger, 2015).

While predictive modelling has much to recommend
it, the field of educational data mining could benefit
from more emphasis on developing explanatory models.
Explanatory models seek to identify interpretable con-
structs that are causally related to outcomes (Shmueli,
2010). In doing so, they provide an explanation of the
data that can be connected to existing theory. The
focus is on why a model fits the data well rather than
only that it fits well. Often, explanatory models provide
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an interpretation of the data that has implications for
theory, practice, or both. Here, we review educational
data mining efforts that have produced explanatory
models and, in turn, can lead to improvements to
learning outcomes and/or learning theory.

Educational data mining research has largely focused
on developing two types of models: the statistical model
and the cognitive model. Statistical models drive the
outer loop of intelligent tutoring systems (VanLehn,
2006) based on observable features of students’ per-
formance as they learn. Cognitive models are repre-
sentations of the knowledge space (facts, concepts,
skills, et cetera) underlying a particular educational
domain. The majority of the research reviewed here
concerns cognitive model refinement and discovery.
We also briefly review other examples of explanatory
models outside the realm of cognitive model discovery
that educational data mining research has produced.
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COGNITIVE MODEL DISCOVERY

Cognitive models map knowledge components (i.e.,
concepts, skills, and facts; Koedinger, Corbett, &
Perfetti, 2012) to problem steps or tasks on which
student performance can be observed. This mapping
provides a way for statistical models to make inferences
about students’ underlying knowledge based on their
observable performance on different problem steps.
Thus, cognitive models are an important basis for
the instructional design of automated tutors and are
important for accurate assessment of learning and
knowledge. Better cognitive models lead to better
predictions of what a student knows, allowing adaptive
learning to work more efficiently. Traditional ways
of constructing cognitive models (Clark, Feldon, van
Merriénboer, Yates, & Early, 2008) include structured
interviews, think-aloud protocols, rational analysis, and
labelling by domain experts. These methods, however,
require human input and are often time consuming.
They are also subjective, and previous research (Nathan,
Koedinger, & Alibali, 2001; Koedinger & McLaughlin,
2010) has shown that expert-engineered cognitive
models often ignore content distinctions that are
important for novice learners. Here, we review three
examples of efforts to discover and refine cognitive
models based on data-driven techniques that alleviate
expert bias while reducing the load on human input.

For statistical modelling purposes, the work described
here uses a simplification of a cognitive model composed
of hypothesized knowledge components. A knowledge
component (KC) is a fact, concept, or skill required to
succeed at a particular task or problem step. We refer
to this specialized form of a cognitive model as a KC
model or, alternatively, a Q-matrix (Barnes, 2005). The
statistical model we used to evaluate the predictive
fit of data-driven cognitive model discoveries is a
logistic regression model called the additive factors
model (AFM; Cen, Koedinger, & Junker, 2006), a gen-
eralization of item-response theory to accommodate
learning effects.

Data-Driven Cognitive Model
Improvement

Difficulty factors assessment (DFA; e.g., Koedinger &
Nathan, 2004) moves beyond expert intuition by using
a data-driven knowledge decomposition process to
identify problematic elements of a defined task. In
other words, when one task is much harder than a
closely related task, the difference implies a knowledge
demand of the harder task that is not present in the
easier one. Stamper and Koedinger (2011) illustrated
a method that uses DFA, along with freely accessible
educational data and built-in visualization tools on

DataShop' (Koedinger et al., 2010), to identify and
validate cognitive model improvements. The method
for cognitive model refinement iterates through the
following steps: 1) inspect learning curve visualizations
and fitted AFM coefficient estimates for a given KC
model, 2) identify problematic KCs and hypothesize
changes to the KC model, 3) re-fit the AFM with the
revised KC model and investigate whether the new
model fits the data better.

Through manual inspection of the visualizations of a
geometry dataset (Koedinger, Dataset 76 in DataShop?),
potential improvements to the best existing KC model
at the time were identified (Stamper & Koedinger, 2011).
Most of the KCs in this model exhibited relatively smooth
learning curves with a consistent decline in error rate.
One KC in the original model, compose-by-addition,
exhibited a particularly noisy curve with large spikes
in error rate at certain opportunity counts. In addition,
the AFM parameter estimates for the compose-by-ad-
dition KC suggested no apparent learning (the slope
parameter estimate was very close to zero, and not
because the performance was at ceiling). A bumpy
learning curve and low slope estimate are indications
of a poorly defined KC. One common cause for a poorly
defined KC is that some of its constituent items require
some knowledge demand that other items do not. In
other words, the original KC should really be split
into two different KCs. To improve the KC model, all
compose-by-addition problem steps were examined,
and domain expertise was applied to hypothesize
about additional knowledge that might be required on
certain steps. As a result, the compose-by-addition KC
was split into three distinct KCs, and each of the 20
steps previously labelled with the compose-by-addition
KC were relabelled accordingly. The revised model
resulted in smoother learning curves and, when fit
with the AFM, yielded significantly better predictions
of student performance than the original KC model
did. Although this KC model improvement was aided by
visualizations resulting from fitting a statistical model,
the actual improvements were generated manually
and thus were readily interpretable.

The discovered KC model improvements had clear im-
plications for revising instruction. Koedinger, Stamper,
McLaughlin, and Nixon (2013) used the data-driven KC
model improvements to generate a revised version of
the Geometry Area tutor unit. Revisions included adding
the newly discovered skills to the KC model driving
adaptive learning, resulting in changes to knowledge
tracing, and the creation of new tasks to target the
new skills. In an A/B experiment, half of the students
completed the revised tutor unit and the other half

! http: //pslcdatashop.org
2 Geometry Area 1996-1997: https: //pslcdatashop.web.cmu.edu/
DatasetInfo?datasetld=76

PG 70 | HANDBOOK OF LEARNING ANALYTICS



competed the original tutor unit. Students using the
revised tutor reached mastery more efficiently and
exhibited better learning on the skills targeted by the
KC model improvement, based on pre- to post-test gains
(Koedinger et al., 2013). These results show that the
data-driven DFA technique lends itself to generating
explanatory KC model refinements that can result in
instructional modifications and improved learning
outcomes.

Learning Factors Analysis

Learning factors analysis (LFA; Cen et al., 2006) was
developed to automate the data-driven method of
KC model refinement to further alleviate demands
on human time. LFA searches across hypothesized
knowledge components drawn from different existing
KC models, evaluates different models based on their
fit to data, and outputs the best-fitting KC model in
the form of a symbolic model. As such, LFA greatly
reduces demands on human effort while simultane-
ously easing the burden of interpretation, even if it
does not automatically accomplish it.

We applied the LFA search process across 11 datasets
spanning different domains and different educational
technologies, all publicly available from DataShop.
Across all 11 datasets, this automated discovery process
improved KC models’ fit to data beyond the best existing
human-tagged KC models (Koedinger, McLaughlin, &
Stamper, 2012). Importantly, we demonstrated in an
example dataset (Koedinger, Dataset 76 in DataShop) an
interpretable explanation for the specific improvements
made by the best LFA-discovered model. A manual KC
model comparison between the best-fitting LFA model
and the best-fitting human-tagged model revealed
that the LFA model tagged separate KCs for forwards
(i.e., find area given radius) and backwards (i.e., find
radius given area) circle area problems, whereas these
had been grouped together as a single “circle-area”
KC in the human-tagged model. No such differences
were found between the models for other shapes like
rectangles, triangles, and parallelograms. Applying
domain expertise to interpret the automated discov-
ery, we hypothesized that LFA's model improvement
may have captured the difficulty of knowing when
and how to apply a square root operation for back-
wards circle-area problems, which is not required for
forwards circle-area problems nor for the backwards
area problems of other shapes.

We then assessed the external validity of this interpre-
tation beyond the dataset from which the discoveries
were made. We evaluated the presence of the square
root difficulty in a novel dataset (Bernacki, Dataset
748 in DataShop?), one with a different structure

* Motivation for learning HS geometry 2012 (geo-pa): https: //pslc-
datashop.web.cmu.edu/DatasetInfo?datasetld=748
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from that used to make the discovery (Liu, Koedinger,
& McLaughlin, 2014). Among other differences, the
novel dataset contained more backwards circle-area
problems and, importantly, forwards (i.e., find area
given side length) and backwards (i.e., find side length
given area) square-area problems. These square-area
problems were not at all present in the original dataset
from which the LFA-generated discovery was made.
Applying our interpretation of the discovery, we
constructed a KC model that tags separate forwards
and backwards KCs only for shapes where backwards
steps require computing a square root (squares, cir-
cles) but not for shapes where backwards steps don’t
(triangles, rectangles, parallelograms). When used
in conjunction with the AFM, this KC model yielded
the best fit to the novel dataset compared to several
expert-tagged control KC models.

Since the novel dataset had a different structure from
the original dataset, including differences relevant to
the KC model discovery (i.e., existence of backwards
square-area problems), it would not have been viable
to apply directly the LFA-discovered KC model on this
new dataset. Interpretation is necessary in order to
test the generalizability of discoveries across contexts
with non-identical structures. Furthermore, interpre-
tations help anchor all subsequent data exploration and
analyses to something meaningful that can then be
translated into concrete improvements to instructional
design. Our current research is “closing the loop” on
this LFA-generated discovery by assessing learning
outcomes resulting from a tutor redesigned around
the improved KC model (Liu & Koedinger, submitted).

Automated Cognitive Model Discovery
Using SimStudent

An alternative automated approach uses a state-of-the-
art machine-learning agent, SimStudent, to discover
cognitive models automatically without requiring
existing ones. SimStudent is an intelligent agent that
inductively learns knowledge, in the form of rules, by
observing a tutor solve sample problems and by solving
problems on its own and receiving feedback (Li, Mat-
suda, Cohen, & Koedinger, 2015). One of the benefits of
SimStudent is that it can simulate features of novices’
learning trajectories of which domain experts may
not even be aware. Real students entering a course
do not usually have substantial domain-specific prior
knowledge, so a realistic model of human learning ought
not to assume this knowledge is given. In addition,
SimStudent can be used to test alternative models
of human learning to see which best predicts human
behaviour (MacLellan, Harpstead, Patel, & Koedinger,
2016). For several datasets spanning various domains,
SimStudent generated cognitive models that fit the
data better than the best human-generated cognitive
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models (Li et al., 2011; MacLellan et al., 2016).

The output of the SimStudent’s learning takes the
form of production rules (Newell & Simon, 1972), and
each production rule essentially corresponds to one
knowledge component (KC) in a KC model. Using data
from an Algebra dataset (Booth & Ritter, Dataset 293
in DataShop?) and in conjunction with the AFM, Li and
colleagues (2011) compared a KC model generated by
SimStudent to a KC model generated by hand-coding
actual students’ actions within the tutor. The SimStu-
dent-generated model better fit the actual student
performance data than the human-generated model did.

More importantly, inspecting the differences between
the SimStudent model and the human-generated model
revealed interpretable features that explained the
advantages of the SimStudent model. One example of
such a difference is that SimStudent created distinct
production rules (KCs) for division-based algebra
problems of the form Ax=B, where both A and B are
signed numbers, and for the form -x=A, where only A is
a signed number. To solve Ax=B, SimStudent learns to
simply divide both sides by the signed number A. But,
since -x does not represent its coefficient (-1) explicitly,
SimStudent must first recognize that -x translates
to -1x, and then it can divide both sides by -1. The
human-generated model predicts that both forms of
division problems should have the same error rates. In
fact, real students have greater difficulty making the
correct move on steps like -x = 6 than on steps like
-3x = 6. Within the same Algebra dataset, problems
of the form Ax=B (average error rate = 0.28) are easier
than problems of the form -x=A (average error rate =
0.72). SimStudent’s split of division problems into two
distinct KCs suggests that students should be tutored
on two subsets of problems, one subset corresponding
to the form Ax=B and one subset specifically for the
form -x=A. Explicit instruction that highlights for
students that -x is the same as -1x may be beneficial
(Li et al., 2011).

We hypothesized that the interpretation of this particular
SimStudent KC model discovery would generalize to
novel problem types, just as the LFA-generated model
discovery did. In a novel equation-solving dataset
(Ritter, Dataset 317 in DataShop®), we tested whether
the explicit vs. implicit coefficient distinction similarly
applied to combine like terms problems. We looked at
differences in performance for items of the form Ax
+Bx = C, where both A, B, and C are signed numbers
(explicit-coefficient items), and items where either A
or Bwere equal to 1 or -1 with the coefficient percep-

+ Improving skill at solving equations via better encoding of alge-
braic concepts (2006-2008): https: //pslcdatashop.web.cmu.edu/
DatasetInfo?datasetld=293

° Algebra 1 2007-2008 (Equation Solving Units): https: //pslc-
datashop.web.cmu.edu/DatasetInfo?datasetld=317

tually absent (implicit-coefficient items). This analysis
confirmed that explicit-coefficient items (average
error rate = 0.35) are easier than implicit-coefficient
items (average error rate = 0.45) among combine like
terms problems. This new dataset not only replicated
the original finding that SimStudent made on divide
problems, but it also revealed that the finding general-
izes to a separate procedural skill, combine like terms.

Fitting a KC model with separate KCs for the explicit- vs.
implicit-coefficient forms of combine like terms items
revealed a large improvement in predictive fit relative
to a KC model with a single combine like terms KC.
Furthermore, although the learning curves for both
the explicit-coefficient divide and combine like terms
KCsreflected smooth and decreasing error rates, the
respective learning curves for implicit-coefficient
divide and combine like terms items were both flat,
with slopes close to zero. This suggests that students
would benefit greatly from more practice on, and more
explicit attention to problem steps involving implicit
coefficients. Here, again, the explanatory power of the
SimStudent KC model discovery made it possible to
generalize the explanation to distinct problem types
on which SimStudent was never trained.

Comparison to Other Work

Both LFA and SimStudent are capable of producing
cognitive model discoveries that not only significantly
improve predictive accuracy but are readily interpre-
table and, thus, explanatory. We have demonstrated
that the interpretations yielded by these cognitive
model discoveries generalize to novel problem types
not present in the data from which the discoveries were
made. Finally, they produce clear recommendations
for revising instruction, even in contexts that are
very different from those in which the original data
were collected. These are all hallmarks of explanatory
modelling efforts that move beyond simply improving
predictive accuracy to have meaningful impact on
learning theory and instruction.

The fact that methods like LFA are “human-in-the-loop”
- that is, requiring input from a domain expert — has
been cited as a limitation. In the case of LFA, one or
more expert-tagged cognitive models are required
initially in order to produce new model discoveries.
We argue, however, that this “human-in-the-loop”
feature leads the results of such modelling efforts to
be explanatory. There have been a number of recent
efforts to fully automate the process of discovering
and/or improving cognitive models (Gonzalez-Brenes
& Mostow, 2012; Lindsey, Khajah, & Mozer, 2014). These
methods have much to recommend, as they dramat-
ically reduce demands on human time and produce
competitive results in predictive accuracy. However,
the resulting cognitive models of these efforts have
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not been interpreted or acted upon with respect to
improving instruction.

Other modelling efforts, including a “human-in-the-
loop” component like Ordinal SPARFA-Tag (Lan, Studer,
Waters, & Baraniuk, 2013), have yielded considerably
more interpretable cognitive models than many alter-
native methods. Although humans must do any final
interpretation of modelling efforts, methods like LFA
and Ordinal SPARFA-Tag greatly improve the likelihood
of generating sensible resulting models by incorpo-
rating the human effort up front. In fact, comparing
the original SPARFA model (Lan, Studer, Waters, &
Baraniuk, 2014), which only incorporates concept tags
post-hoc, to Ordinal SPARFA-Tag, which incorporates
domain-expert concept tags in the model development
process up front, shows that the latter model results
in much more interpretable cognitive models.

More attention and effort towards generating inter-
pretable cognitive models is, in our view, progress in
the right direction. Nevertheless, as we have argued,
expert labelling is still subject to biases and does not
offer much to advance learning theory using the rich
educational data available. Human involvement improves
interpretability, whereas the data-driven component
offers ways to alleviate subjective biases and advance
our understanding of how novices learn. Methods such
as LFA leverage both the unique strengths of human
involvement and of automation towards creating models
that are more predictive and explanatory.

STUDENT GROUPING

A growing body of research suggests that modelling
student-specific variability in statistical models of
educational data can yield better predictive accuracies
and potentially inform instruction. Prior attempts to
group students based on features available in educa-
tional datasets have focused on techniques such as
K-means and spectral clustering. These techniques
have been used to generate student clusters predictive
of post-test performance (Trivedi, Pardos, & Heffernan,
2011) and that yield predictive accuracy improvements
when clusters are fit with different sets of parameters
(Pardos, Trivedi, Heffernan, & Sarkozy, 2012). Many
clustering techniques, however, tend to result in
student groupings that are difficult to interpret. Yet,
interpretation is critical if the results of clustering are
to eventually inform improvements in instructional
policy (e.g., individualizing instruction appropriately
to different groups of students).

In recent research (Liu & Koedinger, 2015), we devel-
oped a method for grouping students that not only
dramatically improves the predictive accuracy of the
AFM but inherently lends itself to producing mean-
ingful student groups. By doing a first-pass fit of the
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AFM to the data and examining systematic patterns
in the residuals (differences between predicted and
actual data) across different practice opportunities,
we consistently found students belonging to one of
three learning rate groups: 1) those who exhibit flatter
learning curves than the AFM predicts, 2) those who
exhibit steeper learning curves, and 3) those whose
learning curves are on par with the model’s predictions.
Introducing a parameter that individualizes learning
rates to each of these learning rate groups substantially
improves model predictive accuracy, beyond that of
the regular AFM, across a variety of datasets span-
ning multiple educational domains. Across datasets,
the slope parameter estimates for each of the three
groups were consistent with our interpretation of the
groups (i.e., the estimated group-level slopes were
always lowest for the flat-curve group, and highest for
the steep-curve group). Furthermore, in a subset of
datasets for which there exist paper pre- and post-test
data, we observed a systematic relationship between
learning-curve group and the degree of pre- to post-
test improvement (Liu & Koedinger, 2015).

Unlike other, more “bottom-up” methods of creating
stereotyped groups of students, this method yielded
student groups that are readily interpretable and
potentially actionable. For example, it is clear that the
flat-curve student group represents either students
who are already performing at ceiling when they start
the unit or curriculum (and thus do not have much
room for improvement) or students who are starting
anywhere below ceiling but struggling to progress
with the material. In either case, there are clear in-
structional implications for students classified into
this group. The explanatory power of the resulting
model again benefitted from doing some up-front
interpretation and developing the model with an eye
towards interpretability.

TOWARDS BUILDING EXPLANATORY
MODELS

We argue for the importance of considering the inter-
pretability and actionability of educational data mining
efforts in producing more explanatory models. For a
model to be explanatory, one should be able to under-
stand why the model achieves better predictive accuracy
than alternatives. In addition, the understanding of
this why should either advance our understanding of
how learners learn the relevant material or have clear
implications for instructional improvements, or both.
We summarize by outlining some of the features that
tend to characterize explanatory models.

Explanatory modelling efforts tend to start with “clean”
independent variables that have either simple functions
or map to clearly defined constructs. For example, LFA
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derives new variables from existing, expert-labelled
variables using simple split, merge, or add operators.
Another example comes from automated analyses
of verbal data in education, a branch of educational
data mining that includes automated essay scoring,
producing tutorial dialogue, and computer-supported
collaborative learning. A major consideration in this
area is how to transform raw text or transcriptions
into features that can be used in a machine-learning
algorithm. Approaches to this issue range from simple
“bag of words” methods, which counts the frequency
of each word present in the text, to much more so-
phisticated linguistic analyses. One consistent theme
across findings is that feature representations motivated
by interpretable, theoretical frameworks have been
among the most promising (Rosé & Tovares, in press;
Rosé & VanLehn, 2005). Thus, incorporating some
human time and thought into defining and labelling
these independent variables up front can greatly im-
prove the explanatory power of the resulting model.

Another feature of explanatory models, one that relates
most to actionability, is that the dependent variable
maps to a well-defined construct. The work on learning
rate groups is an example of this: since the groups to
which students are classified are defined up front, it
is clear what it means for a student to be in the “flat”
learning curve group, as opposed to the “steep” one.
This makes the results from modelling readily action-
able. Another body of research in which the dependent
variable tends to be well mapped to an interpretable
construct is the modelling of affect and motivation
using features of tutor log data. These techniques
use pre-defined psychological or behavioural con-
structs, measured through questionnaires or expert
observations, to develop and refine “detectors” that
can identify those constructs within tutor log data
activity (e.g., Winne & Baker, 2013; San Pedro, Baker,
Bowers, & Heffernan, 2013; D'Mello, Blanchard, Baker,
Ocumpaugh, & Brawner, 2014). The “detectors” are
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