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ABSTRACT

While learning analytics dashboards (LADs) are the most common
form of LA intervention, there is limited evidence regarding their
impact on students’ | i U s. This systematic review
synthesizes the findings of 38 mcnrrh studies to investigate the
impact of LADs on stud i
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rently stand, there is no evidence to support the conclusion that
LADs have lived up to the promise of improving academic achicve-
ment. Most studies reported negligible or small effects, with limited
evidence from well-powered controlled experiments. Many stud-
ies merely compared users and non-users of LADs, confounding
the dashboard effect with student engagement levels. Similarly,
the impact of LADs on monvnhon nnd nlmudu appeared modest,
with only a few pli ifi effects. Small
sample sizes in these studies highlight lhc need for larger-scale
investigations to \'lluhle these findings. Noubly LADs showed a
relatively sub ial impact on student participation. Several stud-
es rcponed medium to large effect sizes, suggesting that LADs can

engag t and interaction in online learning environ-
ments, However, methodological shortcomings, such as reli on
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inter specifically focusing on LA dashboards (LADs) [1].

LADs may be defined as "displays that aggregate different indica-
tors about learner(s), learning process(es) and/or learning context(s)
into one or multiple visualisations™ [2] (p. 37), that have the poten-
tial to empower students and teachers by offering valuable insights
into their learning and teaching processes [3-5]. These interactive
tools aim to visualise data and provide actiomable information, en-
abling learners and educators to monitor progress, identify arcas
of improvement, audrnnkedun informed decisions. Despite over a
decade of ady ts and i tions within the LA ficld, there
is a dearth of compelling evidence demonstrating the effectivencss
and impact of LA interventions (1. 6], with only a few individual
studies yet reporting mixed results mostly based on small samples
[7). This lack of empirical evidence poses a significant challenge
when attempting to ;\nuly investments in cxpensive LA infrastruc-
ture and the necessary b ra
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Understanding Learning Analytlcs Dashboards

A——T -

“single displays that aggregates different indicators
about learner(s), learning process(es) and/or learning
context(s) into one or multiple visualizations”
(Schwendimann et al. 2016, p. 37)

Visualisation tools built with the purpose of empowering
teachers and learners to make informed decisions about the
learning process (Jivet et al., 2018)
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Course Signals at Purdue: Using Learning Analytics to
Increase Student Success
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ABSTRACT

In this paper, an early intervention solution for collegiate faculty
called Course Signals is discussed. Course Signals was
developed to allow instructors the opportunity to employ the
power of leamer analytics to provide real-time feedback to a
student. Course Signals relies not only on grades to predict
students’ performance, but also demographic charactenstics,
past academic history, and students’ effort  as measured by
interaction  with  Blackboard  Vista, Purdue’s  leaming
management system. The outcome is delivered to the students
via a personalized email from the faculty member to each
student, as well as a specific color on a stoplight — traffic signal
~ to indicate how cach student is doing. The system itself is
explained in detml, along with retention and performance
outcomes realized since its implementation. In addition, faculty
and student perceptions will be shared.

Matthew D. Pistilli
Purdue University
517 Young Hall, 155 S. Grant Street
West Lafayette, IN 47907 USA
mdpistilli@purdue.edu

solutions should be focused on all students at an institution, not
just a specific subpopulation. Finally, solutions implemented to
enhance student success, and therefore persistence, needed to
help integrate a student academically into the institution [6].

Helping a student become academically integrated to the
institution is key, as Course Signals helps 1o promote integration
in several ways. First, it allows faculty members to send
personalized emails to students that contain information sbout
their current performance in a given course. Second, faculty
members can encourage students to visit vanious help resources
on campus or office hours — activities that contribute to a
student becoming more fully integrated into the institution.
Third, it employs leamer analytics to allow for the integration of
real-time data on student performance and interaction with the
LMS with demographic and past academic history information.
This combination creates an intentionally created environment
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Abstract

Despite the potential of learning analytics (LA) to support teachers® everyday practice, its
adoption has not been fully embraced due to the limited involvement of teachers as co-
designers of LA systems and interventions. This is the focus of the study described in this
paper. Following a design-based rescarch (DBR) approach and guided by concepts from
the socio-cultural perspective and human-computer interaction (HCI), we design, test,
and cvaluate a teacher-facing LA dashboard, the Canvas Discussion Analytics Dashboard
(CADA), in real educational settings. The goal of this dashboard is to support teachers’
roles in online environments through insights into students’ participation and discourse
patterns. We evaluate CADA through 10 in-depth interviews with university teachers to
examine their experiences using CADA in seven blended undergraduate and graduate
courses over a onc-year period. The findings suggest that engaging teachers throughout
the analytics tool design process and giving them control/agency over LA tools can fa-
vour their adoption in practice. Additionally, the alignment of dashboard metrics with
relevant theoretical constructs allows teachers to monitor the learning designs and make
course design changes on the fly. The teachers in this study emphasise the need for LA
dashboards to provide actionable insights by moving beyond what things are towards how
things should be. This study has several contributions. First, we make an artefact contribu-
tion (e.g. CADA), an LA dashboard to support teachers with insights into students’ on-
line discussions. Second, by leveraging theory, and working with the teachers to develop
and implement a dashboard in authentic teaching environments, we make an empirical,
theoretical and methodological contribution to the field of leaming analytics and technol-
ogy enhanced learning. We synthesise these through practical design and implementation
considerations for rescarchers, dashboard developers, and higher education institutions.



Why Learning Analytics Dashboards

v Teacher-facing LADs
O Reflection & decision making
*The Key o Learning design adaptation
Intervention o Timely feedback
for LA v Student-facing LADs
O Engagement & motivation

O Track progress

O Sense making

O Awareness

Overall objective ‘Support & Improve Learning’ wany s ocros 2023



Existing Studies
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Gaps in existing work

® Most dash-board studies focus on assessing the tool’s
usability (Jivet 2018).

e Little attention to evaluating the effects of LADS on
students’ learning outcomes e.g., cognitive and emotional
[Manly & Ochoa, 2023].

e Few studies have conducted a quantitative review focusing
on the impact of LADs on students’ learning outcomes.

® Lack of quantitative evidence poses a challenge to justify
investments in expensive LAD infrastructure & human
resource training.

e |dentifying absence or presence of evidence provides
guidance for future LADs research.




Research Question

What is the impact of LADs on
students' learning outcomes?
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Methodology: A Systematic Quantitative Review

Eligibility Screening Identification

Included

Records identified through database search (M = 812)

Scopus (n = 485) ACM (n = B&) Web of Science (n = 153) ERIC (n = 88)
> Duplicates removed (n = 284)
Y
Records screened by abstract (n = 528) —— Records excluded (n = 470)

Records excluded (n = 20)

Full-text assessed for eligibility (n = 58)

Relevant statistics not reported (n = 4)
——— Not tesling the impact of a dashboard (n = 12)

Y

Mot relevant target group (n = 3)
Duplicate (n=1)

Records included in review (n = 38)

Y/
L X4

(7
%*

Bottom-up identification of learning outcomes

We found very few studies with congruent
research setups and all the statistical
information necessary to allow a meta-analysis

Thus, we extracted the reported quantitative
metrics (e.g., sample, effect size, mean) and
reported them descriptively

Studies with enough info., we classified the
variables for sub-group analysis and converted
the effect size to a common unit (Cohen’s d) to
facilitate comparison.

We used Cohen’s d, to categorise the effect
size:

a value over 0.8 (large)

a value of 0.5 (medium)

a value of 0.2 (small)

a value below 0.2 (negligible)
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Achievement



Achievement: Effect size descriptives (count of votes)
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Measure

Achievement: Effect size type

Achievement: Average Effect Size by Measure

Collaborative knowledge building

Arithmetic skills

Final grade O
Pre-test/Post-test O
Grade rank €)
Activity grade O
Score after midterm O

Critical reading ability
Final exam
Descriptive

O
O
Perceived learning outcomes ©
O
O
O

Critical reading fluency
Quiz grade

Descriptive

Language use

Final exam
Predictive

Grade of the course
Content

O
O
O
Pass rate O
Final exam
Class O
Quiz grade '0)
e
Class B O
Final exam O
©
O

Quiz grade
Reading speed
Vocabulary O



Achievement: Effect size versus sample size
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Achievement: Effect size by study design
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Study Design

Study Design

Experimental

Exploratory research
Quasi-experimental
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Single-group study



Correlation: Effect Size vs. Sample Size
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Participation



Participation: Effect size descriptives (count of vote)
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Please note that a study may be represented more than once for demonstration purposes according to the number of outcome they evaluated.



Participation: Effect size type

Number of comments
Number of discussion threads
Access to discussion board O
Unique days O
Access to LMS O
Interaction O
Participation O
Book count

Time read (min)

Measure

Cognitive reading engagement O
Activity participation O
Discussion participation O
Voting participation O
Persistence (time on task) O
Number of passing assignments submitted O
Quiz submissions O

Effort and Persistence O

0.0 0.5 1.0
Average Effect Size (Cohen's d)

Please note that a study may be represented more than once for demonstration purposes according to the number of outcome they evaluated.



Participation: Effect size versus sample size
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Please note that a study may be represented more than once for demonstration purposes according to the number of outcome they evaluated.
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Motivation



Motivation: Effect size descriptives (count of vote)
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Extrinsic motivation
Motivation

Intrinsic goal orientation
Learning motivation
Task value

Intrinsic motivation

Intrinsic goal

Measure

Extrinsic goal orientation
Instrumental motivation
Test anxiety

Control beliefs
Self-efficacy

Extrinsic goal

Participation: Effect size type

O
O
O
O
O
O

O
O

-0.3 0.0 0.3 0.6
Average Effect Size (Cohen's d)

Please note that a study may be represented more than once for demonstration purposes according to the number of outcome they evaluated.



Motivation: Effect size versus sample size

Effect Size Category
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Attitude



Attitude: Effect size descriptives (count of vote)
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Attitude: Effect size type

Group regulation
Boredom (reversed)
Positive emotion O
Situational interest O
Negative emotion O
Self-esteem O
Learning attitude O
Neutral emotion O
Computation anxiety (STARS) O
Control beliefs (MSLQ) O
Self-efficacy (MSLQ)
Academic Self-concept (SRLQ)
Teacher anxiety (STARS)
Fear of asking for help (STARS)

O
O
O
O
Test anxiety (MSLQ) O
O
O
O

Measure

Test and class anxiety (STARS)
Worth anxiety (STARS)
Performance-Approach (PALS)
Interpretation anxiety (STARS) O
Self-Efficacy (SRLQ) O
Computation self-concept (STARS) O
Performance-Avoid (PALS) O

0.0 0.5 1.0
Average Effect Size (Cohen's d)

Please note that a study may be represented more than once for demonstration purposes according to the number of outcome they evaluated.



Participation: Effect size versus sample size

Y
@O
Effect Size Category
| ®  Small
. ¢ Medium
< ® Large
S 150 P f. “"\l
tﬁ o - e
= r.““. ‘\ O Sample Size (N)
L ) ) @ €
E rywoyy' v 7l ® 50
100 @
( )
O O | @
o0 O @ »
50
. o/
-0.5 0.0 0.5 1.0 1.5

Effect Size (Cohen's d)

Please note that a study may be represented more than once for demonstration purposes according to the number of outcome they evaluated.



Attitudes: Correlation - Effect Size vs. Sample Size

R?=0.32,p=0.011
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Discussion



Performance

e As we currently stand, evidence is lacking that LADs has helped
improve performance.

e Of course, absence of evidence is not evidence of absence.
Yet, our study included no single article with well-powered

controlled sample that assessed LAD with properly
randomised sides.

e Randomization and control aside, most studies reported small
or negligible effect size, with confounders that make it
impossible to draw credible conclusions



Methodological issues

e LADs have either been combined with another type of intervention
(and thus had an obvious confounding) or were assessed using a
non-controlled design

® Another pattern compared dashboard users to non-users. A
comparison that essentially measures the difference between two
activity levels (not a comparison between a control and an
experimental group).

® In controlled studies, many compared those who has the
opportunity to use it (access) versus those who did not, regardless
of whether everyone in the access group actively used it or not.



On Engagement, Attitude & Participation

e Slightly better results were reported about engagement, yet, with
confounders that are hard to reconcile attributed to LADs.

e Motivation and attitude improvements were generally modest,
and at times mixed. Yet again suffered the same drawbacks of lack

of rigorous evaluation of two groups with confounders and
randomizations, etc.



One step Back



One step Back

We are very excited about the opportunities for awareness, reflection,
sensemaking, and impact that such dashboards provide and, above all,

about the potential to improve learning, that is, to get better at getting
better.

Impact remains especially hard to demonstrate in evaluation studies
(Verbet 2013)

Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral
Scientist, 57(10), 1500-1509.



Previous research

® A considerable amount of exploratory work and small proof-of-concept
studies, which very often do not reach the stage of being used (and
evaluated) in authentic settings (Schwendimann 2016).

e Most dash-board evaluations focus on assessing the tool’s usability and
the impact on the behavioural competence. The effects on the
cognitive and emotional levels received very little attention overall
(Jivet 2018).

Schwendimann, Beat A., et al. "Perceiving learning at a glance: A systematic literature review of learning dashboard research."
IEEE transactions on learning technologies 10.1 (2016): 30-41.

Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness is not enough: Pitfalls of learning analytics dashboards in
the educational practice. In Data Driven Approaches in Digital Education: 12th European Conference on Technology Enhanced
Learning, EC-TEL 2017, Tallinn, Estonia, September 12-15, 2017, Proceedings 12 (pp. 82-96). Springer International
Publishing.



Previous research

e Existing LADs are rarely grounded in learning theory, cannot be
suggested to support metacognition, do not offer any information
about effective learning tactics and strategies, and have significant
limitations in how their evaluation is conducted and reported (W.
Matcha 2019).

e Mostly are prototype and few are in early pilots with paucity of
evidence on their effectiveness to affect learner outcomes (Susnjak
2022).

Susnjak, T., Ramaswami, G. S., & Mathrani, A. (2022). Learning analytics dashboard: a tool for providing actionable insights to learners.
International Journal of Educational Technology in Higher Education, 19(1), 12.

Matcha, W., Gasevi¢, D., & Pardo, A. (2019). A systematic review of empirical studies on learning analytics dashboards: A self-regulated
learning perspective. IEEE transactions on learning technologies, 13(2), 226-245.



Maybe there is no impact at all



Are there meta-analysis

e To the best of our knowledge, and the search we
conducted, not a single meta-analysis in any
field exists, let-alone proved that dashboards in
their own right can, or has or will improve
performance.



International Journal of Medical Informatics
Volume 84, Issue 2, February 2015, Pages 87-100 m

Review

Dashboards for improving patient care:
Review of the literature

Dawn Dowding © b 2 = Rebecca Randell ¢, Peter Gardner 9, Geraldine Fitzpatrick €,

Patricia Dykes f, Jesus Favela 9, Susan Hamer h Zac Whitewood-Moores |, Nicholas Hardiker/,

Elizabeth Borycki X, Leanne Currie '

Eleven studies were included on CINAHL, Medline, Embase, Cochrane Library, Psychinfo,
Sciencedirect and ACM Digital Library. A citation search and a hand search of relevant papers were
also conducted.

Dowding, D., Randell, R., Gardner, P., Fitzpatrick, G., Dykes, P., Favela, J., ... & Currie, L. (2015). Dashboards for
improving patient care: review of the literature. International journal of medical informatics, 84(2), 87-100.



The results: Neither conclusive nor reliable

The authors described marked heterogeneity in the design of dashboards and users
targeted and settings and concluded.

Although overall the majority of studies in this review indicated that the introduction of
dashboards had a positive effect on outcomes and care processes (such as
documentation of care processes, improved communication and access to
iInformation), there are a number of limitations with the study designs utilized to
evaluate dashboards. With the exception of one study in the review which was rated
as high quality, the majority of studies had some element of potential bias, with 5
studies being of low gquality, meaning that any significant results should be treated
with caution.

Dowding, D., Randell, R., Gardner, P., Fitzpatrick, G., Dykes, P., Favela, J., ... & Currie, L. (2015). Dashboards for improving patient care: review of the
literature. International journal of medical informatics, 84(2), 87-100.
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Effectiveness of clinical dashboards as audit and o :-.‘-‘:3%:
feedback or clinical decision support tools on “39}
medication use and test ordering: a systematic ® .
review of randomized controlled trials

Charis Xuan Xie ™, Qiuzhe Chen, Cesar A Hincapié¢, Léonie Hofstetter, Chris G Maher,  Anaun
Gustavo C Machado

Eleven randomized trials were included from 7 databases. Eight trials
evaluated clinical dashboards as standalone interventions and provided
conflicting evidence on changes in antibiotic prescribing and no effects on
statin prescribing compared to usual care.

Xie, C. X. et al. (2022). Effectiveness of clinical dashboards as audit and feedback or clinical decision support tools on
medication use and test ordering: a systematic review of randomized controlled trials. Journal of the American Medical
Informatics Association, 29(10), 1773-1785.



Clinical decision support tools

There is limited evidence that dashboards integrated into electronic medical
record systems and used as feedback or decision support tools may be
associated with improvements in medication use and test ordering.

Xie, C. X. et al. (2022). Effectiveness of clinical dashboards as audit and feedback or clinical decision support tools on
medication use and test ordering: a systematic review of randomized controlled trials. Journal of the American Medical
Informatics Association, 29(10), 1773-1785.



Consumer-Based Wearable Activity Trackers
Increase Physical Activity Participation: Systematic
Review and Meta-Analysis

Katie-Jane Brickwood! 2; Greig Watson'! 2; Jane O'Brien’ &; Andrew D Williams'

Cochrane Controlled Register of Trials, MEDLINE, PubMed, Scopus, Web
of Science, Cumulative Index of Nursing and Allied Health Literature,
SPORTDiscus, and Health Technology Assessments.

Controlled trials of adults comparing the use of a consumer-based
wearable activity tracker with other non-activity tracker—based
interventions were included.

Brickwood, K. J., Watson, G., O'Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation:
systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), €11819.



Results

UJtilizing a consumer-based wearable activity tracker as either the
orimary component of an intervention or as part of a broader
ohysical activity intervention has the potential to increase physical
activity participation.

As the effects of physical activity interventions are often short term,
the inclusion of a consumer-based wearable activity tracker may
provide an effective tool to assist health professionals to provide
ongoing monitoring and support.

Brickwood, K. J., Watson, G., O'Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation:
systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), €11819.



Personal dashboards: Trackers Increase Physical

Darfianinatinn

1. Daily Steps — all studies

intervention Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Ashe (2015) [29] 7606 3917 12 4593 663 7 08% 091 [-0.08, 1.89)
Ashton (2017) [30] (1) 15882 26081 26 5754 25914 24 24% 0.38[0.18,0.94) —
Brakenndge (2016) [32] (2) 4408 22784 66 -1578 20152 87 7.2% 0.28 [-0.04, 0.60] .
Cadmus-Bertram (2015) [21) 6695 2708 25 6,188 242 26 25% 0.19}0.36,074] Si—
Finkelstein (2016) [34) (3) 570 25622 197 -480 25164 201 181% 0.41[0.21,061) ma
Finkelstein (2016) [34] (4) 130 26013 203 -480 25164 201 187% 014006, 033] T
Finkelstein (2016) [34) (5) -300 25752 199 -480 25164 201 185% 0.07 [-0.13,0.27] -1
Lyons (2017) [40) 6,193.7 31835 20 4586 24761 20 1.9% 0551008, 119
Martin (2015) [41) (6) 408 2,701 32 -616 2,385 16 21% 0391022 099
Melton (2016) [42) 10674 2703 21 10870 2426 36 26% -0.08 [0.61, 0.46) e —
Poirer (2016) [44) 5411 2,277 107 4751 1834 110 103% 0.32[0.05, 0.59] ——
Skrepnik (2017) [22) 55379 31012 107 48254 24251 101 99% 0.251-0.02, 053] F—
Thormdike (2014) [50) (7) 7886 3622 50 7600 3492 49 49% 008031,047] S —
Total (95% C)) 1065 1079 100.0% 0.23 [0.15,0.32) #*
Heterogeneity Tau*= 000, Ch*= 1238, d=12(P=042),P= 3% }-2 1 5 1 24

Testfor overall effect Z=521 (P < 0.00001)

Favors Control Favors Intervention

Brickwood, K. J., Watson, G., O'Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity
participation: systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), e11819.



Maybe It IS time to ask for whom
It works rather that did it work?



Aggregating averages don’t reflect impact

Most research is typically conducted by calculating the
average scores across a sample of students to establish the
"state of affairs’. The average reflects the central tendency
where data tend to cluster.
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M) Check for updates

Behavioural science is unlikely to change the
world without a heterogeneity revolution

Christopher J. Bryan©'%, Elizabeth Tipton©2™ and David S. Yeager
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We need tools that capture the heterogeneous effects
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Brain—phenotype modelsfail for individuals

who defy sample stereotypes A5 ,
g

Models fail when applied to people who defy | - HEITE
these stereotypes. 05] ° ' : I ' .

{pilii
Models systematically fail because they aren’t K : It '
predicting unitary cognitive constructs. They’re v B N
predicting measures of these constructs intertwined 19 ;jucaﬁonzo

with i mographic and clinical covari —
th sociodemographic and clinical covariates mr =032, P =0.001
stereotypes. r, =-0.33, P = 0.001

Greene, A. S., Shen, X., Noble, S., Horien, C., Hahn, C. A., Arora, J., ... & Constable, R. T. (2022). Brain—phenotype models fail for individuals who defy sample stereotypes.
Nature, 1-10.
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[diographic artificial intelligence to explain
students' self-regulation: Toward precision
education

Mohammed Sagr ® & &, Rongxin Cheng °, Sonsoles Lépez-Pernas ®, Emorie D Beck P

We developed N=1 machine learning models for
each and every person using EMA data as well other
data to predict 3 outcome

e Their Effort in doing their studies

e Motivation

e Metacognition

Sagr, M., Cheng, R., Lopez-Pernas, S., & Beck, E. D. (2024). Idiographic artificial intelligence to explain students' self-regulation: Toward precision
education. Learning and Individual Differences, 114, 102499.



Predicting effort in studying

M (SD) N Range

Random Foest 1 045(0.26) 17  (0.07,0.95)

Elastic Net -
BISCWIT -

049(025 16  (0.02,0.9)

b

| 049(0.23) 17  (0.13,00)
-1.0 =05 0.0 0.5 1.0 1.5

Saqr, M., Cheng, R., Lopez-Pernas, S., & Beck, E. D. (2024). Idiographic artificial intelligence to explain students' self-regulation: Toward precision
education. Learning and Individual Differences, 114, 102499.



Top 5 predictors for everyone in the sample

Participant 1

Participant 3

Participant 5§

Motivated p—————_g Organizing Planning i Motivated Planning p—®

Planning —@ Maetacognition Environment @ Anxiety Help —@
Environment @ Planning Anxiety @ Help Motivated @
Anxiety @ Help Motivated @ Planning Metacognition @
Maetacognition H@ Enjoyment Maetacognition @ Organizing Enjoyment @

Participant 6

Participant 8

Participant 10

Motivated @ Planning Help p—@ Metacognition Planning p——————————l
Planning —@ Anxiety Enjoyment (——@ Enjoyment Organizing @
Enjoyment @ Metacognition Planning @& Anxiety Environment M@
Help —@® Motivated Anxiety @ Planning Metacognition @
Anxiety M Organizing Environment M@ Environment Anxiety P

Participant 11

Participant 13

Participant 15

Help p—=_qd Anxiety pe—=ag Motivated |l Organizing Anxioly p—l
Enjoyment —@ Planning —® Maetacognition —@ Environment Planning @
Motivated @ Environment @ Anxiety @ Anxiety Help =@

Metacognition @ Organizing @ Environment =@ Maetacognition Organizing @
Planning M@ Help @ Planning @ Enjoyment Enjoyment @
Participant 16 Participant 17 00 0.2 04 06 0 0.0 0.2 04 06
Planning @ Planning i)
Environment —@ Enjoyment @
Help =@ Motivated @
Organizing @ Anxlety
Anxiety B Environment
00 02 04 06 0.

Surprisingly, not a single student shared the same order of the top
predictors for any outcome with another student, Nor any one shared the
order of the average model.

Sagr, M., Cheng, R., Lopez-Pernas, S., & Beck, E. D. (2024). Idiographic artificial intelligence to explain students' self-regulation: Toward precision
education. Learning and Individual Differences, 114, 102499.
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Mapping the self in self-regulation using complex dynamic
systems approach

Mohammed Saqr B2« Sonsoles Lopez-Pernas
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Sagr, M., & Lopez-Pernas, S. (2024). Mapping the self in self-regulation using complex dynamic systems approach. British Journal of Educational
Technology, 55(4), 1376-1397.
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Behavioural science is unlikely to change the
world without a heterogeneity revolution

Christopher J. Bryan©'®, Elizabeth Tipton 2™ and David S. Yeager('™

 We need to acknowledge that most effects are
heterogeneous.

* S0, the variation In effect estimates across studies that
defines the replication crisis Is to be expected as long as
heterogeneous effects are studied without a systematic
approach to sampling and moderation.

Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneityrevolution. Nature human
behaviour, 5(8), 980-989.
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Generic machine learning inference
on heterogenous treatment effects
In randomized experiments

Victor Chernozhukov
Mert Demirer
Esther Duflo

lvan Fernandez-Val

Chernozhukov, V., Demirer, M., Duflo, E., & Fernandez-Val, I. (2018). Generic machine learning inference on
heterogeneous treatment effects in randomized experiments, with an application to immunization in India (No.
w24678). National Bureau of Economic Research.
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Where and with whom does a brief social-belonging in-
tervention promote progress in college?

GREGORY M. WALTON , MARY C. MURPHY , CHRISTINE LOGEL §[s) , DAVID S. YEAGER , J. PARKER GOYER , SHANNON T. BRADY , KATHERINE T. U. EMERSON
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Walton, G. M., Murphy, M. C., Logel, C., Yeager, D. S., Goyer, J. P., Brady, S. T., ... & Krol, N. (2023). Where and with whom
does a brief social-belonging intervention promote progress in college?. Science, 380(6644), 499-505.



Interventions works for certain groups of people

A randomized controlled trial to systematically explain and understand these
heterogeneous effects in a brief online intervention across 22 universities and
colleges (see the Perspective by Bowman). The intervention was designed to
remedy students’ concerns about belonging through a reading-and-writing activity
that emphasized how worries about fitting in, struggling in class, and feeling
homesick during the college transition are common and improve over time. They
found that the intervention improved retention and persistence in school,
particularly among historically underrepresented students, when the school
context offered students opportunities to belong.

Walton, G. M., Murphy, M. C., Logel, C., Yeager, D. S., Goyer, J. P., Brady, S. T., ... & Krol, N. (2023). Where and with who m does a brief social-
belonging intervention promote progress in college?. Science, 380(6644), 499-505.
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