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ABSTRACT

Learning at scale – an interdisciplinary field at the intersection of learning science and computer
science – investigates learning environments with many, many learners and few experts to guide
them. In recent decades, new large-scale learning environments have been announced with much
fanfare about their potential to transform or “disrupt” traditional systems of formal schooling.
This disruption has not occurred. Rather, new technologies are put to use in limited ways in
specific niches of the existing education system, and the growth in their adoption is more steady
and linear than abrupt or exponential. Though the societal impact of learning at scale has been
uneven and incremental, the best hope for making the most of new large-scale technologies
is through a continuous process of research and improvement. (The ideas in this chapter are
expanded on in [24]).
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INTRODUCTION

Many hoped that the massive volumes of fine-grained,
global-scale learning tracking data, when combined with
new forms of computational analysis, would lead to data-
driven breakthroughs in learning science or instructional
design (See for instance, [15]). This dream has not come
to fruition. To date, learning at scale research has led to
some useful insights on what might be called “educational
policy analytics” – studies of how learners from different
life circumstances use learning technologies differently
– and “education behavior analytics”—how people click
and act in online learning platforms. But research insights
about learning—about changes in human cognition or
capacity – from studies of large-scale technologies have
been far more limited. The most promising possible future
for learning analytics in learning at scale will not come
from accumulating larger or more fine-grained troves of
user data, but from research studies that use design-based
or experimental methods to study systematic variation in
competing approaches to effective design of large-scale
learning [26].

In what follows, I address four questions, 1) What is learn-
ing at scale? 2) How has learning at scale changed the
nature of education? 3) What has learning analytics and
related research revealed about learning at scale? And 4)
What are the possible futures for design and research in
learning at scale?

1 WHAT IS LEARNING AT SCALE?

The ACM Learning@Scale 2020 conference home page
offers a useful summary of the field:

L@S investigates large-scale, technology-
mediated learning environments that typically
have many active learners and few experts
on hand to guide their progress or respond to
individual needs. Modern learning at scale
typically draws on data at scale, collected from
current learners and previous cohorts of learners
over time. Large-scale learning environments
are very diverse. Formal institutional education
in K-16 and campus-based courses in popular
fields involve many learners, relative to the
number of teaching staff, and leverage varying
forms of data collection and automated support.
Evolving forms of massive open online courses,
mobile learning applications, intelligent tutoring
systems, open courseware, learning games,
citizen science communities, collaborative
programming communities (e.g. Scratch), com-
munity tutorial systems (e.g. StackOverflow),
shared critique communities (e.g. DeviantArt),
and countless informal communities of learners
(e.g. the Explain It Like I’m Five sub-Reddit)
are all examples of learning at scale. All share a
common purpose to increase human potential,
leveraging data collection, data analysis, human
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interaction, and varying forms of computational
assessment, adaptation and guidance.

The diverse learning environments described above can
be categorized into three genres defined by the question,
“Who sets the sequence of learning activities?” These se-
quences can be created by instructors – as in the case of
MOOCs, by algorithms – as in the case of adaptive tutor-
ing software, or by peers – as in the case of distributed
learning networks. Each of these genres of instructor-
guided, algorithm-guided, and peer-guided large-scale
learning technologies has a history, a research literature,
and a track record of success and failures in formal ed-
ucational institutions. Each genre also uses a common
set of core technologies, and they reenact pedagogical
debates that have deep roots in the history of education.
Figure 1 summarizes the three genres, and then I discuss
the genres, their technologies, and their pedagogical roots
below.

The massive open online courses (MOOCS) created by
elite universities are examples of instructor-driven learn-
ing experiences [10]. Instructors design or select lectures,
readings, and activities that form a knowledge base for
student learning. Learners are assessed by tools and sys-
tems designed by instructors, that can range from simple
multiple-choice questions to complex systems for evalu-
ating computer programming assignments. The learning
experiences in the course are arranged in a particular or-
der, from the Shang Dynasty to the Era of Mao or from
“Hello World” to recursive algorithms, that are selected
by the instructor. A student may be free to traverse this
material in her own way, and she might help a peer along
the path, most students generally proceed along the main
path laid out by instructors.

Adaptive, large-scale learning environments are those
where each item in a learning sequence is selected by
an algorithm or other system on the basis of student per-
formance in previous parts of a learning sequence. These
kinds of learning experiences are often called adaptive tu-
tors or computer-assisted instruction, and Khan Academy
offers a useful example. While Khan Academy is best
known for Khan’s video lectures, when Khan Academy is
used in schools, students spend 85% of their time doing
practice problems [21]. These problems will be familiar
to anyone who has ever completed a worksheet in math-
ematics class. They pose a question, and students have
to provide a correct answer by inputting an equation, se-
lecting a point on a Cartesian plane, ordering a series of
numbers in line, selecting from a list of multiple-choice
options, and so forth. The problems are organized into
topics, such as dividing fractions or solve quadratic equa-
tions.

Unlike a paper worksheet however, the order of problems
that a student encounters depends upon her performance
on each problem. Within a class of problems – such as
multiplying fractions – some problems are easier (multi-
plying by ½) and some are harder (multiplying by 1/13).
Students are given an initial problem, and if the student
gets a problem right, an algorithm assigns a more difficult
problem. If she gets it wrong, the system assigns an easier

problem, perhaps along with some form of remediation,
like a hint or link to an explanation. These systems are
often called adaptive, since they can increase or decrease
in difficulty and provide specific remediation based on
the performance of the student. In nearly all MOOCs from
edX or Coursera, every student receives the same number
of problems and assignments which are presented in the
same order. Students using Khan Academy and other
adaptive tutors are offered a set of assignments that are
dynamically adjusted for the individual student.

Peer-driven learning environments – like those proposed
by Sugata Mitra in the School in the Cloud – are where par-
ticipants can offer instruction, examples, comments and
feedback, and users can follow each other, and form sub-
groups and networks. Mitra argued that if learners were
organized into small groups, with access to the learning
resources of the internet and some minimal on-demand
mentoring and coaching (he proposed using a network
of British pensioners in his trials), then students could
learn any topic of any complexity [2, 20]. The original
Connectivist-inspired MOOCs, provide another example
of a peer-guided large-scale learning community. Par-
ticipants created their own blogs, social media accounts,
and other sites on the open web where they responded
to course prompts and to each other. Instructors used the
course home page and other technologies to aggregate
copies of these diverse contributions into one central loca-
tion, but at their most successful, peer interactions were
the driving force of cMOOCs [19].

The most prominent peer-driven learning environment
in K-12 schools is the community organized around the
Scratch programming language, developed by the Life-
long Kindergarten Lab at MIT [29]. Scratch is a block-
based programming language where the young and
young-at-heart can learn to program by dragging “blocks”
with executable code instructions into place with other
blocks, rather than by writing programming syntax with
specifications for spacing, semi-colons, variable names
and so forth. By default, all Scratch programs exist as
projects, all projects are publicly viewable and openly-
licensed, and all projects can be forked and remixed as
new projects, so that sharing and community are integral
parts of the experience of using the Scratch programming
language. In these communities there are designers and
leaders—Mitch Resnick, Natalie Rusk, and many others
in the Lifelong Kindergarten Lab create the environment
for Scratchers to work and learn, they highlight projects
on the Scratch website and social media, and cultivate
community. This community then creates a wide array
of projects, tutorials, guides, and other sub-communities,
and learners in the Scratch community then choose for
themselves how they navigate this web of opportunities
for practice and learning.

The three genres of learning at scale – instructor, algo-
rithm, and peer-guided – typically draw on different
technologies, different pedagogies, and different research
traditions. Instructor- and algorithm-guided large-scale
learning environments typically depend upon some form
of autograder to evaluate learner performance; by contrast
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Figure 1: Genres of learning at scale.

peer-guided learning environments typically eschew for-
mal assessment and focus on discourse and peer feedback.
Instructor- and algorithm-guided genres typically take
pedagogical inspiration from instructionist approaches
to pedagogy, in the tradition of Thorndike [34] or more
recently [33] where experts disseminate knowledge to be
absorbed by novices. In the peer-guided genre, design is
more often inspired by pedagogical philosophies empha-
sizing learner discovery and apprenticeship, like the Con-
structionism [6] at the heart of the Scratch programming
community or the Connectivist [32] ideas that inspired
the earliest massive open online courses. The three genres
are also often studied by different research communities:
scholars interested in adaptive tutors attend the Inter-
national Conference on Artificial Intelligence and Adap-
tive Education or Educational Data Mining conference;
those interested in instructor-guided learning at scale at-
tend eMOOCs or Learning with MOOCs; and researchers
studying peer-guided learning communities attend the
Connected Learning Summit or the Constructionism con-
ference.

Despite these differences, the three genres share much in
common: they face a similar set of challenges in adoption
in formal learning environments, and a common underly-
ing data structure to track the activities of learners.

1.1 How has learning at scale changed the nature
of education?

For those with access to global online networks, it is the
greatest time in world history to be a learner. Never
before have learners had such incredible access to re-
sources, courses and communities of tutors and appren-

tices. Whether you want to learn to play guitar, brew beer,
identify birds, translate Cicero, throw a javelin, intubate
a trauma victim, integrate a function, detonate a bomb,
program in Javascript, or become a better teacher, there
are online classes, tutorials, forums, and networks full of
people who are excited to teach and excited to learn. If
you’ve ever signed up for an online class, downloaded an
educational app, or watched a video about how to unclog
a toilet, you are part of that network.

Yet, despite the extraordinary growth of informal online
learning, changes to formal educational systems remain
modest and targeted. Over the last twenty years, ed-
ucation technology advocates have promised dramatic
changes in education systems. In 2008, Harvard Business
School professor Clayton Christensen, with colleagues
Curtis Johnson and Michael Horn [4], wrote a book called
Disrupting Class about online learning and the future of
K-12 schools. They predicted that in ten years – by 2019
– half of all middle and high school courses would be re-
placed by adaptive, self-paced online courses, and “the
cost will be one-third of today’s costs, and the courses will
be much better.” Udacity founder Sebastian Thrun argued
that in 50 years, “there will be only 10 institutions in the
world delivering higher education and Udacity has a shot
at being one of them” [17]. Sugata Mitra went further to
argue that in an internet-connected world, schools weren’t
even necessary:

“Thirteen years of experiments in children’s ed-
ucation takes us through a series of startling re-
sults – children can self organise their own learn-
ing, they can achieve educational objectives on
their own, can read by themselves. Finally, the
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Figure 2: Four "As-Yet Intractable Dilemmas in Learning at Scale.

most startling of them all: Groups of children
with access to the Internet can learn anything by
themselves” [20]

None of these predictions have come true, nor will they.
The core misconception behind these predictions is that
new technologies can disrupt, transform, or brush aside
existing educational systems. This rarely, perhaps never,
happens. Far more commonly, our complex, conservative
educational systems domesticate new technologies, em-
bedding them in existing routines in specific niches of the
ecology of education.

One challenge to educational transformation is the “Curse
of the Familiar” [23]. Educational systems can only read-
ily adopt technologies that extend existing school prac-
tices. One of the most widely used educational websites
in the world is Quizlet, which provides digital flashcards
[8]. Tens of millions American students use Quizlet every
year, but digitizing flashcards doesn’t change routines in
schools. Things which digitize existing practices can be
readily adopted, but they provoke minimal changes in
learning routines. By contrast, things which propose dra-
matic changes in learning routines are difficult to adopt.
Early forms of Connectivist MOOCs offered a striking
reinterpretation of learning practices in higher education,
but many learners and instructors found their distributed,
networked approaches to learning to be confusing [16].

Moreover, new technologies are typically only useful in
specific subjects or disciplines. Both instructor-guided and
algorithm-guided learning at scale technologies depend
on autograders to computationally assess learner perfor-
mance. Autograding technology, however is limited by

what I call the “Trap of Routine Assessment.” Computers
are good at assessing the kinds of routine tasks that com-
puters are good at doing, that we no longer need humans
to do in the work force [27]. Autograders are good at
assessing things with one right answer, or when a correct
answer can be strictly defined by a set of decision rules.
These are also the kinds of routine tasks that computers
and robots can be programmed to accomplish. In math
we have good autograders for computation, but not for ex-
plaining the reasoning behind computation strategies. In
computer science, we have good autograders. In language
arts, we have good autograders for the basics of decoding
and pronunciation, but not for evaluating intrepretations
of literature or poetry. The unevenness of our autograding
technologies explains why large-scale learning technolo-
gies are more commonly found in some fields – STEM,
computer science, early language acquisition – and not in
others.

Like other education technologies, large-scale learning
technologies typically disproportionately benefit the afflu-
ent. The “EdTech Matthew Effect” argues that like many
sociological phenomenon, new technologies often accrue
advantages to the already-advantaged [35, 28]. Morgan
Ames [1] studied the roll out of One Laptop Per Child
devices in Paraguay, and found that students who most
deeply immersed themselves in the learning opportunities
afforded by Scratch or Turtle Writer were those who had
parents and families that had already introduced their chil-
dren to learning opportunities with computers. MOOC re-
searchers have consistently found that instructor-guided,
large-scale learning depends on a well-developed set
of self-regulated learning skills [11]. Already-affluent,
already-educated learners are most likely to have had the
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opportunities to develop these skills, so MOOCs have not
democratized education, but rather have accrued the bulk
of their advantages to those who already had educational
opportunities.

These common challenges help explain why the predic-
tions of disruption and transformation from learning
at scale have generally fallen flat. School systems are
complex, technologies are uneven, opportunities are dis-
tributed inequitably in a highly-stratified society. Instead
of dramatic transformations, we see specific technologies
in specific disciplines used to the benefit of particular
groups of users. If you are hoping that new technologies
will be able to radically accelerate human development,
the conclusion that change happens incrementally is prob-
ably a disappointment. But if you think that global human
development is a game of inches – a slow, complex, mad-
dening, plodding process with two steps back for every
three steps forward – then the field of learning at scale
offers one avenue for taking some of those forward steps.

1.2 What has learning analytics and related re-
search revealed about learning at scale?

Across instructor-, algorithm-, and peer-guided learning
environments, one of the unifying features of large-scale
learning environments are the data and data structures
that underlie these systems. At any given moment, a
large-scale learning system needs to have a model of all
possible actions that a learner can take – a model of the
system – and a model of a student’s state within this sys-
tem. In Scratch, this might be all of the blocks assembled
into a Scratcher’s program at this particular moment; in
a MOOC, this might mean tracking every assignment
a student has completed to date and every assignment
that is currently available but not yet completed. All of
this data can be harnessed to create a complete record of
what every learner has ever done within the system: a
longitudinal record collected keystroke by keystroke and
click by click, for millions of learners around the world.
Large-scale learning environments are generating datasets
that are orders of magnitude larger than what educational
researchers have traditionally studied.

Coursera founder Daphne Koller [15] argued that these
new sources would “turn the study of human learn-
ing from the hypothesis-driven mode to the data-driven
mode, a transformation that, for example, has revolution-
ized biology.” Since the founding of MOOCs, hundreds
of millions of dollars have been spent on new courses,
new platforms, and research efforts lead by some of the
world’s most accomplished computer scientists and learn-
ing scientists. Despite these efforts, Koller’s prediction
has not come to pass.

Researchers studying the vast new datasets from MOOCs
have uncovered some useful findings about the demo-
graphics and behaviors of MOOC participants. For in-
stance, despite an early rhetoric claiming that MOOCs
could “democratize education,” a number of studies have
shown that people from more affluent countries and neigh-
borhoods are more likely to register for MOOCs and once
enrolled, more likely to complete them [9, 12]. Along-

side these kinds of “educational policy analytics,” much
of the early research in MOOCs focused on correlations
among behavioral measures. Deboer, Ho, Stump and
Breslow [7] showed that a wide variety of learner inputs
(videos viewed, problems answered, actions taken) corre-
lated with each other and with outcomes like grade and
earning a certification. Many studies published similar
results, and I jokingly have described this line of inquiry
as proving “Reich’s Law,” that students who do stuff do
other stuff, and students who do stuff, do better than
students who don’t do stuff.

Two findings that go a step beyond Reich’s law involve
self-regulated learning, and the “doer” effect. Several
MOOC studies found that successful learners showed
evidence of proficiency with self-regulated learning, as
measured by actions like reviewing prior material in the
course [18, 11]. Given the very low levels of human sup-
ports available in MOOCs, these researchers theorize that
proficiency with self-regulated learning is a prerequisite
to success in MOOCs. Koedinger and colleagues [13, 14]
at CMU showed in several studies that MOOC partici-
pants who engaged in problems and watched videos had
better learning outcomes than students who only watched
videos – a phenomenon they describe as the “doer effect.”
These are useful initial findings – that learners in courses
without teachers need to be good students, and good stu-
dents do problems and don’t just watch videos—but they
perhaps offer robust evidence for common sense, rather
than new directions for the field of learning science. It
turns out that researchers can collect terabytes of data
about what people click without generating much new ad-
ditional understanding of what’s happening inside their
heads.

Analytics researchers have also found it relatively straight-
forward to predict learner outcomes based on only a few
initial weeks of user participation data [30, 38, 37]. Pre-
dicting who will drop out and succeed, however, is only
useful to the extent that instructional designers can use
that information to provide additional supports to strug-
gling learners. To date, little research has shown how
these predictions can be leveraged to improve student
outcomes. Neil Heffernan, the principal investigator for
the ASSISTments platform, an adaptive, math homework
practice platform, once declared, “I now tell my students
that no one is allowed to make a prediction without hav-
ing some intervention planned to address the results of
the prediction” [25]. Learning analytics without a linked
intention to improve learning runs the risk of aimless
fiddling.

1.3 What are the possible futures for research and
design in learning at scale?

In his admonition to students, Heffernan anticipates one
of the two sea changes in learning analytics research neces-
sary for the field of learning at scale to advance. First, the
case that learning science can be advanced by the passive,
observational, cross-sectional study of massive datasets
using advanced computational techniques thus far ap-
pears weak. Researchers need to be involved in designing
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studies that systematically introduce variation in instruc-
tional design to test the theory and practice of learning.
In quantitative research traditions, this might look like
randomized controlled trials that evaluate and compare
differing instructional approaches. In qualitative research
traditions, this might look more like iterative design-based
research [31]. The massive, granular datasets collected by
large-scale learning environments might prove especially
useful in illuminating the mechanisms by which com-
peting instructional designs might lead to better learning
outcomes, but these large datasets need to be put in the ser-
vice of design-based and experimental approaches, rather
than more passive, observational, cross-sectional studies.

Second, the study of learning requires measures of learn-
ing. Most studies of large-scale learning platforms use
measures and indicators derived from platform data,
many of which are not well designed for tracking and
evaluating learning. Studies of MOOCs use grades and
certifications as proxies for learning, but many of these
studies lack rigorous pre-test data (so it’s not clear how
much students are actually learning versus certifying pre-
existing competencies) and many of the assessments that
under-gird these grades and certificates are not well de-
signed. In peer-guided learning environments, the open-
ended nature of learning environments provides another
kind of assessment challenge – what does it mean to mea-
sure learning across Scratch projects if the point of Scratch
is for young people to create whatever they want? Clever
manipulation of the underlying activity data is no sub-
stitute for attention to these challenging issues of mea-
surement. (Colvin and colleagues [5] offer one model of
studying learning with well-validated measures in several
physics courses).

Similarly, many studies of large-scale learning are bound
entirely within a single platform, but one of the core pur-
poses of learning is to transfer skills into new domains.
Studying this transfer, therefore, is vital to understand-
ing the potential and limits of learning at scale. A few
studies have investigated transfer of learning “beyond the
MOOC.” To evaluate the impact of a Functional Program-
ming MOOC, Chen, Davis, Hauff, and Houben [3] exam-
ined GitHub log data requests to find evidence of MOOC
participants (using the same usernames across platforms)
deploying programming skills from the MOOC in projects.
To evaluate the impact of a course on learning analytics,
Wang, Baker, and Pacquette [36] evaluated how MOOC
participants joined scholarly societies and submitted pa-
pers in the field. Napier, Huttner-Loan, and Reich [22]
studied how teachers adopted skills and practices from
a MOOC about leading educational change. If one point
of learning is to build human capacity to flexibly tackle
future challenges, learning analytics will have to study
students beyond learning platforms.

Contrary to predictions from the early days of MOOCs,
the data collected by large-scale learning will not magi-
cally lead to a data-driven revolution in education science,
but it still has potential to be a valuable resource in ad-
vancing learning science. The most promising future of
learning analytics in large-scale learning will be interdis-

ciplinary ventures conducted by joint teams of experts in
substantive domains, in measurement and assessment, in
design-based or experimental research, and in analyzing
the granular data generated by large-scale platforms.

These efforts will not lead to the disruptive transforma-
tion of educational systems, but rather to steady, incre-
mental progress in the field. Peer-guided learning tech-
nologies will be beloved platforms for devoted hobbyists
– many, many children will get a brief introduction to com-
putational creativity through Scratch, and a tiny hand-
ful will fall in love with the possibilities of the platform
and blossom as programmers. Adaptive tutors will con-
tinue to find uses in educational systems in fields where
human performance is amenable to evaluation by auto-
graders, in fields like early language acquisition, mathe-
matics, and computer science. Many students using adap-
tive tutors will learn a little more than they would have
otherwise. MOOCs and other instructor-guided learn-
ing environments will primarily benefit those with the
self-regulated learning skills to persevere through online
learning with minimal supports; unfortunately most of
the people who fall into this category are already-affluent,
already-educated learners pursuing additional advanced
credentials. In the status quo, large-scale learning is more
likely to exacerbate educational inequality rather than to
democratize education.

Learning analytics, learning at scale, and learning science
as fields could all play a role in shifting this trajectory
in a more positive, more equitable, and more promising
direction. Such a shift would require embracing interdisci-
plinary research that recognizes the enormous complexity
of iteratively improving systems that support learning
at scale. It would require research that follows learn-
ers beyond online platforms and into the classrooms and
workplaces where the transfer of skills can be observed
and supported. It would require resisting the siren song
of massive datasets and elegant, sophisticated post-hoc
analysis, and reimagining large-scale learning analytics
research in the service of more ambitious approaches to
design-based and experimental research.
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