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ABSTRACT

This chapter describes the process, practice, and challenges of using predictive modelling in
teaching and learning. In both the fields of Educational Data Mining (EDM) and Learning
Analytics (LAK) predictive modelling has become a core practice of researchers, largely with a
focus on predicting student success as operationalized by academic achievement. In this paper we
aim to provide a general overview of considerations when performing and applying predictive
modelling, the steps which an educational data scientist must consider when engaging in the
process, and a brief overview of the most popular techniques in the field.
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Predictive analytics are a group of techniques used to
make inferences about uncertain future events. In the ed-
ucational domain, one may be interested in predicting a
measurement of learning (e.g. student academic success,
or skill acquisition), teaching (e.g. the impact of a given
instructional style or specific instructor on an individual)
or other proxy metrics of value for organizations (e.g. pre-
dictions of retention or course registration). Predictive an-
alytics in education is a well established area of research,
and several commercial products now incorporate predic-
tive analytics in the learning content management system
(e.g. D2L1, Starfish Retention Solutions2, Ellucian3, and
Blackboard4). Furthermore, specialized companies (e.g.
Blue Canary5, now a part of Blackboard learning, Civitas
Learning6) now operate to provide predictive analytics
consulting and products for higher education.

1 INTRODUCTION TO PREDICTIVE
MODELLING

In this chapter, we aim to introduce the terms and work-
flow related to predictive modelling, with a particular
emphasis on how these techniques are being applied in
teaching and learning. While a full review of the literature
is beyond the scope of this chapter, we encourage read-
ers to consider the conference proceedings and journals
associated with the Society for Learning Analytics and

1http://www.d2l.com/
2http://www.starfishsolutions.com/
3http://www.ellucian.com/
4http://www.blackboard.com/
5http://bluecanarydata.com/
6http://www.civitaslearning.com/

Research (SoLAR)7, the International Educational Data
Mining Society8 (IEDMS), and the International Artificial
Intelligence in Education Society9 (IAIED) for more exam-
ples of applied educational predictive modelling.

It is useful to distinguish predictive modelling from explana-
tory modelling. In explanatory modelling, the goal is to
use all available evidence to provide a explanation for a
given outcome. For instance, observations of age, gender,
and socioeconomic status of a learner population might be
used in a regression model to explain how they contribute
to a given student achievement result. The intent of these
explanations is generally to test causal hypotheses (versus
correlative alone, described well by [26]). In predictive
modelling, the purpose of the activity is to create a model
that will predict the values (or class if the prediction does
not deal with numeric data) of new data based on obser-
vations. Unlike explanatory modelling, predictive mod-
elling is based on the assumption that a set of known data
(referred to as training instances in data mining literature)
can be used to predict the value or class of new data based
on observed variables (referred to as features in predictive
modelling literature). Thus the principle difference be-
tween explanatory modelling and predictive modelling is
with the application of the model to future events, where
explanatory modelling does not aim to make any claims
about the future, while predictive modelling does.

More casually, explanatory modelling and predictive mod-
elling often have a number of pragmatic differences when
applied to educational data. Explanatory modelling is

7https://www.solaresearch.org/
8http://educationaldatamining.org/
9https://iaied.org/about/
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a post-hoc and reflective activity aimed at testing an un-
derstanding of a phenomena. Predictive modelling is an
in situ activity intended to make systems responsive to
changes in the underlying data. It is possible to apply both
forms of modelling to technology in higher education. For
instance, [24] describe a student-success system built on
explanatory models, while [9] describe an approach based
upon predictive modelling. While both methods intend
to inform the design of intervention systems, the former
does so by building software based on theory developed
during the review of explanatory models by experts, while
the latter does so using data collected from historical log
files (in this case, clickstream data).

The largest methodological difference between the two
modelling approaches is in how they address the issue
of evaluation. In explanatory modelling, all of the data
collected from a sample (e.g. students enrolled in a given
course) is used to describe a population more generally
(e.g. all students who could or might enroll in a given
course). The issues related to generalizability are largely
based on sampling techniques. Ensuring the sample rep-
resents the general population by reducing selection bias,
often through random or stratified sampling, and deter-
mining the amount of power needed to ensure an appro-
priate sample, through an analysis of population size and
levels of error the investigator is willing to accept. In a
predictive model a hold out dataset is used to evaluate
the suitability of a model for prediction, and to protect
against the overfitting of models to data being used for
training. There are several different strategies for produc-
ing hold out datasets, including k-fold cross validation,
leave-one-out cross validation, randomized subsampling,
and application-specific strategies.

With these comparisons made, the remainder of this chap-
ter will focus on how predictive modelling is being used
in the domain of teaching and learning, and provide an
overview of how researchers engage in predictive mod-
elling process.

THE PREDICTIVE MODELLING WORK-
FLOW

Problem Identification

In the domain of teaching and learning, predictive mod-
elling tends to sit within a larger action-oriented educa-
tional policy and technology context, where institutions
use these models to react to student needs in real-time.
The intent of the predictive modeling activity is to set up
a scenario which would accurately describe the outcomes
of a given student assuming no new intervention. For
instance, one might use a predictive model to determine
when a given individual is likely to complete their aca-
demic degree. Applying this model to individual students
will provide insight into when they might complete their
degrees assuming no intervention strategy is employed. Thus,
while it is important for a predictive model to generate ac-
curate scenarios, these models are not generally deployed
without an intervention or remediation strategy in mind.

Strong candidate problems for a successful predictive
modelling approach are those in which there are quantifi-
able characteristics of the subject being modeled, a clear
outcome of interest, the ability to intervene in situ, and
a large set of data. Most importantly, there must be a
recurring need, such as a class being offered year after
year, where the historical data collected about learners
(the training set) is expected to capture patterns and rela-
tionships that will hold true of future learners (the testing
set).

Conversely, there are several factors that make predictive
modelling more difficult, or less appropriate. For exam-
ple, both sparse and noisy data present challenges when
trying to create accurate predictive models. Data sparsity,
or missing data, can occur for a variety of reasons, such
as students choosing not to provide optional information.
Noisy data occurs when a measurement fails to accurately
capture the intended data, such as determining a student’s
location from their IP address when some students are us-
ing virtual private networks (proxies used to circumvent
region restrictions, a not uncommon practice in countries
such as China). Finally, in some domains, inferences pro-
duced by predictive models may be at odds with ethical
or equitable practice, such as using models of student at-
risk predictions to limit the admissions of said students
(exemplified in [27]). Lastly, domains where the types of
data available change are not well suited to predictive
modelling. For example, if a course undergoes significant
redesign, shifting coursework from a single term-paper to
weekly quizzes, it would be difficult to make predictions
about end of term course grades based on term work, as
the data about the training and testing populations are no
longer directly comparable.

Data Collection

In predictive modelling, historical data is used to gener-
ate models of relationships between features. One of the
first activities for a researcher is to identify the outcome
variable (e.g. grade or achievement level) as well as the
suspected correlates of this variable (e.g. gender, ethnicity,
access to given resources). Given the situational nature of
the modelling activity, it is important to choose only those
correlates which can be known at or before the time in
which an intervention might be employed. For instance,
a midterm examination grade might be predictive of a
final grade in the course, but if the intent is to intervene
before the midterm, this data value should be left out of
the modelling activity.

In time-based modelling activities, such as the prediction
of a student final grade, it is common for multiple models
to be created (e.g [8]), each corresponding to a different
time period and set of observed variables. For instance,
one might generate predictive models to be applied each
week of the course, incorporating into each model the
results of all weekly quizzes, student demographics, and
the amount of engagement the students have had with
different digital resources to date in the course.

While state-based data, such as data about demographics
(e.g. gender, ethnicity), relationships (e.g. course enroll-
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ments), psychological measures (e.g. grit [14] and apti-
tude tests) and performance (e.g. standardized test scores,
grade point averages), are important for educational pre-
dictive models, it is the recent rise of big event-driven data
collections that has been a particularly powerful enabler of
predictive models (see [2] for a deeper discussion). Event-
data is largely student activity-based, and is derived from
the learning technologies that students interact with, such
as learning content management systems, discussion fo-
rums, active learning technologies, and video-based in-
structional tools. This data is large and complex (often on
the order of millions of database rows for a single course),
and requires significant effort to convert into meaningful
features for machine learning. At the same time, while
we observe this growth of event-based data we caution
that it is not universally more suitable for the generation
of predictive models, and the quality and breadth of the
data available may depend highly on other factors such
as modality of education. For instance, in large online
courses such as MOOCs, event-based data is rich because
the learning activity is highly instrumented with data col-
lection and there is a lack of socioeconomic state-based
data describing learners. However, in many higher edu-
cation residential courses the state-based data is rich (e.g.
learner demographic and previous performance measures,
such as standardized tests) and the learning technologies
are often used shallowly (e.g. as file repositories for lec-
ture material).

A second taxonomic dichotomy exists when considering
whether the data was self-reported (e.g. a psychological sur-
vey) or observed (e.g. grades, click-stream log files, or eye
tracking measurements). While in recent years predictive
models in the field of learning analytics have emphasized
the latter, the field of education and educational psychol-
ogy has explored heavily the former, and instruments to
measure psychological states including motivation, apti-
tude, disposition, and other forms of self-regulation are
commonly used.

Of pragmatic consideration to the educational researcher
is obtaining access to event data and creating the neces-
sary features required for the predictive modelling pro-
cess. The issue of access is highly context-specific, and
depends on institutional policies and processes, as well as
governmental restrictions (such as FERPA in the United
States). One solution is to conduct research using previ-
ously established publicly available datasets, such as the
Open University Learning Analytics Dataset[22], or the
MITx and HarvardX Dataverse[17]. Alternatively, some
institutions, such as the University of Michigan, have cre-
ated standardized and streamlined access procedures for
institutional data assets to enable their faculty members
to conduct learning analytics research grounded in their
unique institutional context.10

Classification and Regression

In statistical modelling there are generally four types of
data considered: categorical, ordinal, interval, and ratio.

10See, for instance, https://enrollment.umich.edu/
data-research/learning-analytics-data-architecture-larc

Each type of data differs with respect to the kinds of rela-
tionships, and thus mathematical operations, which can
be derived from individual elements. In practice, ordinal
variables are often treated as categorical, and interval and
ratio are considered as numeric. Categorical values may
be binary (such predicting whether a student will pass or
fail a course) or multivalued (such as predicting which of
a given set of possible practice questions would be most
appropriate for a student). Two distinct classes of algo-
rithms exist for these applications; classification algorithms
are used to predict categorical labels, while regression algo-
rithms are used to predict numeric labels.

Feature Engineering

The raw event data available to researchers is rarely suit-
able for direct use in the fitting of a predictive model.
Instead, it is often transformed through the process of fea-
ture engineering (a research field unto itself) into candidate
features. As one example, timestamped resource access
logs may be used to compute "time on task" sessions [21].
When using free-form text from essays or discussion posts,
it is common to transform the raw data into more com-
pact representations, including vectorized "bag of words"
(e.g. through word2vec [25]), or other computational lin-
guistic measures (e.g. [13]. Lastly, a range of network
measures can be applied to quantify the social network
characteristics of individual learners, such as their num-
ber of connected peers, their centrality in a larger network,
or even embeddings within a larger network context (e.g.
[15, 19]).

Feature Selection

In order to build and apply a predictive model, features
which correlate with the value to predict need to be se-
lected. When choosing what data to collect, the practi-
tioner should err on the side of collecting more informa-
tion rather than less, as it may be difficult or impossible
to add additional data later, but removing information is
typically much easier. Ideally, there would be some single
feature that perfectly correlates with the chosen outcome
prediction. However, this rarely occurs in practice. Some
learning algorithms make use of all available attributes to
make predictions, whether they are highly informative or
not, whereas others apply some form of variable selection
to eliminate the uninformative attributes from the model.

Depending on the algorithm used to build a predictive
model, it can be beneficial to examine the correlation be-
tween features, and either remove highly correlated at-
tributes (the multicollinearity problem in regression anal-
yses), or apply a transformation to the features to elimi-
nate the correlation. Applying a learning algorithm that
naively assumes independence of the attributes can result
in predictions with an over-emphasis on the repeated or
correlated features. For instance, if one is trying to predict
the grade of a student in a class and uses an attribute of
both attendance in-class on a given day as well as whether
a student asked a question on a given day, it is important
for the researcher to acknowledge that the two features are
not independent (e.g. a student could not ask a question
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if they were not in attendance). In practice, the dependen-
cies between features is often ignored, but it is important
to note that some techniques used to clean and manipu-
late data may rely upon an assumption of independence.11

By determining an informative subset of the features, one
can reduce the computational complexity of the predictive
model, reduce data storage and collection requirements,
and aid in simplifying predictive models for explanation.

Missing values in a data set may be dealt with in several
ways, and the approach used depends on whether the
data is missing because it is unknown or because it is not
applicable. The simplest approach is to either remove the
attributes (columns) or instances (rows) that have missing
values. There are drawbacks to both of these techniques.
For example, in domains where the total amount of data is
quite small, the impact of removing even a small portion
of the data set can be significant, especially if the removal
of some data exacerbates an existing class imbalance in
the data set. Likewise, if all of the attributes have a small
hand full of missing values, then attribute removal will
remove all of the data, which would not be useful. Instead
of deleting rows or columns with missing data, one can
also infer the missing values from the other known data.
One approach is to replace missing values with a ‘default’
value, such as the mean of the known values. A second
approach is to fill in missing values in records by finding
other similar records in the data set, and copying the
missing values from their records.

The impact of missing data is heavily tied to the choice of
learning algorithm. Some algorithms, such as the Naïve
Bayes classifier can make predictions even when some
attributes are unknown; the missing attributes are simply
not used in making a prediction. The nearest neighbour
classifier relies on computing the distance between two
data points, and in some implementations the assumption
is made that the distance between a known value and a
missing value is largest possible distance for that attribute.
Finally, when the C4.5 decision tree algorithm encounters
a test on an instance with a missing value, the instance is
divided into fractional parts which are propagated down
the tree and are used for a weighted voting. In short:
missing data is an important consideration which both
regularly occurs and is handled differently depending
upon the machine learning method and toolkit employed.

Methods for Building Predictive Models

After collecting a data set and performing attribute selec-
tion a predictive model can be built from historical data.
In the most general terms, the purpose of a predictive
model is to make a label prediction, given some related
known information. This section will briefly introduce
several such methods for building predictive models. A
fundamental assumption of predictive modelling is that

11The authors share an anecdote of an analysis that has fallen prey to
the issue of assuming independence of attributes when using resampling
techniques to boost certain classes of data when applying the synthetic
minority over-sampling technique [10]. In that case, missing data with
respect to city and province resulted in a dataset containing geographically
impossible combinations, reducing the effectiveness of the attributes and
lowering the accuracy of the model.

the relationships that exist in the data gathered in the past
will still exist in the future. However, this assumption may
not hold up in practice. For example, it may be the case
that (according to the historical data collected) a student’s
grade in Introductory Calculus is highly correlated with
their likelihood of completing a degree within 4 years.
But, if the instructor of the course, the pedagogical tech-
nique employed, or the degree programs requiring the
course change, this course may no longer be as predic-
tive of degree completion as was originally thought. The
practitioner should always consider whether patterns dis-
covered in historical data should be expected to be present
in future data.

A number of different algorithms exist for building pre-
dictive models. With educational data, it is common to
see models built using methods such as:

1. Linear Regression, which is used to predict a nu-
meric label from a linear combination of features.

2. Logistic Regression, which is used to predict the
odds of two or more labels, allowing for categori-
cal predictions.

3. Nearest Neighbours Classifiers, which use only the
most similar data points in the training data set to
determine the appropriate predicted labels for new
data.

4. Decision Trees (e.g. C4.5 algorithm), which are re-
peated partitions of the data based on a series of
single attribute “tests”. Each test is algorithmically
chosen to maximize the purity of the classifications
in each partition.

5. Naïve Bayes Classifiers, which assume statistical in-
dependence of each of the features given the classi-
fication, and provide probabilistic interpretations of
classifications.

6. Bayesian Networks, where graphical models are of-
ten manually constructed and provide probabilistic
interpretations of classifications.

7. Support Vector Machines, which make use of a high
dimensional data projection in order to find a hy-
perplane of greatest separation between the various
classes.

8. Neural Networks, which are biologically inspired
algorithms that propagate data input through a series
of sparsely interconnected layers of computational
nodes (neurons) to produce a label. While neural
networks have been the subject of research for more
than 70 years, the area has received renewed interest
(and commercial success) due to the advances of Deep
Learning.

9. Ensemble Methods, which use a voting pool of ei-
ther homogeneous or heterogeneous classifiers. Two
prominent techniques are bootstrap aggregating, in
which several predictive models are built from ran-
dom sub-samples of the data set, and boosting, in
which successive predictive models are designed to
account for the misclassifications of the prior models.

Most of these methods, and their underlying software im-
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plementations, have tunable parameters that change the
way the algorithm works depending upon expectations
of the dataset. For instance, when building decision trees,
a researcher might set a minimum leaf size or maximum
depth of tree parameter used in order to ensure some level
of generalizability.

While R and Python are the two most commonly used
programming languages for predictive modelling in the
field12, there are numerous specialized software libraries
available for the building of predictive models in these
and many other programming languages. Choosing
the right package depends highly on the individual re-
searchers experiences, the desired classification or regres-
sion approach, and the amount of data and data cleaning
that needs to be done. While a comprehensive discussion
and comparison of these platforms is out of the scope of
this chapter, the authors will suggest that the freely avail-
able and open-source package Weka [16] is a an excellent
starting point for those who are interested in predictive
modelling but have little or no prior programming expe-
rience. Weka provides implementations of a number of
the previously mentioned modelling methods, does not
require programming knowledge to use, and has associ-
ated educational materials including a textbook [33] and
series of free online courses [32].

While the breadth of techniques covered within a given
software package have led to it being commonplace for
researchers (including educational data scientists) to pub-
lish tables of classification accuracies for a number of dif-
ferent methods, the authors caution against this. Once a
given technique has shown promise, time is better spent
reflecting on the fundamental assumptions of classifiers
(e.g. with respect to missing data or data set imbalance),
exploring ensembles of classifiers, or in tuning parameters
of particular methods being employed. Unless the intent
of the research activity is to specifically compare two (or
more) statistical modelling approaches, educational data
scientists are better off tying their findings to new or ex-
isting theoretical constructs, leading to a deepening of
understanding of a given phenomena. Sharing data and
analysis scripts in an open science fashion provides better
opportunity for small technique iterations than clutter-
ing a publication with tables of (often) impenetrable and
uninteresting measurements.

Evaluating a model

In order to assess the quality of a predictive model, a test
data set with known labels is required. The predictions
made by the model on the test set can be compared to
the known true labels of the test set in order to assess
the model. A wide variety of measures are available to
compare the similarity of the known true labels and the
predicted labels. Some examples include prediction accu-
racy (the raw fraction of test instances correctly classified),
precision, and recall.

Often, when approaching a predictive modelling problem,

12see for example the number of workshops and tutorials introducing
new researchers and practitioners to these tools at recent LAK and LASI
events

only one omnibus set of data is available for building
a predictive model. While it may be tempting to reuse
this same data set as a test set to assess model quality,
the performance of the predictive model will typically be
significantly higher on this data set than would be seen on
a novel data set (due to the model overfitting the training
data set). Instead, it is common practice to “hold out”
some fraction of the data set and use it solely as a test set
to assess model quality.

The most simple approach is to set aside half of the data,
and reserve it for testing. However, there are two draw-
backs to this approach. First, by reserving half of the data
for testing, the predictive model will only be able to make
use of half of the data for model fitting. Generally speak-
ing, model accuracy increases as the amount of available
data increases. Thus, training using only half of the avail-
able data may result in predictive models with poorer
performance than if all the data had been used. Second,
our assessment of model quality will only be based on
predictions made for half of the available data. Gener-
ally, increasing the number of instances in the test set will
increase the reliability of the results. Instead of simply
dividing the data into training and testing partitions, it
is common to use a process of k-fold cross validation in
which the data set is partitioned at random into k seg-
ments. k distinct predictive models are constructed, with
each model training on all but one of the segments, and
testing on the single held out segment. The test results are
then pooled from all k test segments, and a generalized
assessment of prediction quality can be performed. The
important benefits of k-fold cross validation are that every
available data point can be used as part of the test set, no
single data point is ever used in both the training set and
test set of the same classifier at the same time, and the
training sets used are nearly as large as all of the available
data.

An important consideration when putting predictive mod-
eling into practice is the similarity between the data used
for training the model and the data available when predic-
tions need to be made. Often in the educational domain,
predictive models are constructed using data from one
or more time periods (e.g. semesters or years), and then
applied to student data from the next time period. If the
features used to construct the predictive model include fac-
tors such as students’ grades on individual assignments,
then the accuracy of the model will depend on how similar
the assignments are from one year to the next. To get an
accurate assessment of model performance, it is important
to assess the model in the same manner as will be used
in situ: to build the predictive model using data available
from one year, and then construct a testing set consisting
of data from the following year, instead of dividing data
from a single year into training and testing sets.

PREDICTIVE ANALYTICS IN PRACTICE

Predictive analytics are being used within the field of
teaching and learning for many purposes, with one sig-
nificant body of work aimed at identifying students who
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are at risk in their academic programming. For instance,
[1] describe the use of predictive models to determine
whether students will graduate from secondary school
on time, demonstrating how the accuracy of predictions
changes as students advance from primary school through
into secondary school. Predicted outcomes vary widely,
and might include a specific summative grade or grade
distribution for a student or class of achievement [9] in
a course. Baker et al. [7] describe a method which pre-
dicts a formative achievement for a student based on their
previous interactions with an intelligent tutoring system.
In lower-risk and semi-formal settings such as Massive
Open Online Courses (MOOCs), the chance that a learner
might disengage from the learning activity mid-course is
another heavily studied outcome [34, 28].

Beyond performance measures, predictive models have
been used in teaching and learning to detect learners who
are engaging in off-task behavior [35, 5] such as “gaming
the system” in order to answer questions correctly with-
out learning [6]. Psychological constructs such as affective
and and emotional state have also been modeled with
predictive models [11, 30], using a variety of underlying
data as features, such as textual discourse or facial charac-
teristics. More examples of some of the ways predictive
modelling has been used in Educational Data Mining in
particular can be found in [20].

At the same time, there are both warnings and criticism
of the creation of predictive models for education which
focus on the issue of deployment. Writing in [18], Andrew
Ho reminds the reader that “...the purpose of education is
not prediction but learning”. He goes on, writing:

In short, we want educational predictions
to be wrong. If our predictive model can tell
that a student is going to drop out, we want
that to be true in the absence of intervention,
but if the student does in fact drop out, then
that should be seen as a failure of the system. A
predictive model should be part of a prediction-
and-response system that a) makes predictions
that would be accurate in the absence of a re-
sponse and b) enables a response that renders
the prediction incorrect. In a good prediction-
and-response system, all predictions would ulti-
mately be negatively biased.

[18, p. 36]

In the broadest sense, we agree with this perspective –
the intention of an applied predictive model should be
to enable better education outcomes for learners, not sim-
ply to measure existing education outcomes. At the same
time we argue that the issue is nuanced and that there is
value in accurate educational predictive modeling both as
a field of research and in real-world educational technolo-
gies. In the former the argument largely rests on the value
of interdisciplinary teams to address the prediction-and-
response system; whether tightly or loosely coupled, there
is opportunity to the marriage of technical experts (e.g.
computer scientists, statisticians, engineers) who might
build models to the pedagogical experts (e.g. educational

researchers, domain experts, cognitive psychologists) who
might design interventions. Without these accurate mod-
els the job of building an intervention becomes not only
harder to make, but harder to measure the effects of. Of
pragmatic concern is the issue of limited resources within
education systems. Simply put, most educational predic-
tive models not only tell you who is likely to fail, but
also who is likely to succeed, and allow institutions (and
researchers) to focus their interventions directly towards
specific populations of interest. Narrowing the population
of students to whom an intervention is applied allows for
more targeted and better resourced interventions. This
is of specific value when engaging with educational pol-
icy makers who are often asked to resource a breadth of
intervention programs and must balance the anticipated
outcomes of different approaches. With this nuance ex-
plored, we reiterate that the key agreement we share with
Ho is that the predictive model is only one half of the
prediction-and-response system, and it is important for
researchers and practitioners to keep this in mind.

CHALLENGES AND OPPORTUNITIES

Computational and statistical methods for predictive mod-
elling are mature, and over the last decade a number of
robust tools have been made available for educational
researchers to apply predictive modelling to teaching and
learning data. Yet there are a number of challenges and
opportunities in this space, and we address a few areas
of growth which could use investment from the learn-
ing analytics community in order to increase the impact
predictive modelling techniques can have. These are:

1. Supporting non-computer scientists in the educa-
tional predictive modelling workflow Learning an-
alytics is becoming normalized in higher education.
Providing support in the interpretation and under-
standing of predictive modelling techniques, whether
it be through the innovation of user-friendly tools or
development of educational resources on predictive
modelling, could help to assuage fear and uncertainty
about algorithmic predictions.
Related to this, the rise of Master of Data Science pro-
grams in recent years has greatly increased the num-
ber of highly skilled individuals capable of engaging
successfully in predictive modelling. However, Data
Engineering, the practice of provisioning data suitable
for analysis, is a growing challenge. Students engage
with a greater variety of learning tools than ever be-
fore, which provides an opportunity for incredibly
rich analysis. But, these learning tools do not neces-
sarily track comparable log events, retain log data in
comparable formats, or have APIs (application pro-
gramming interfaces) to integrate this data together.
Many institutions are now engaged in the creation
of learning record stores or data lakes to support the
analysis of learning data aggregated across the range
of learning tools that students interact with. As the
number of technologies students use in their studies
continues to grow, the need for data engineers to be-
come a part of the interdisciplinary learning analytics
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team is more apparent.

2. Creating community-led educational data science
challenge initiatives. It is not uncommon for re-
searchers to address the same general theme of work
but use slightly different datasets, implementations,
and outcomes and, as such, have results that are dif-
ficult to compare. This is exemplified in recent pre-
dictive modelling research efforts around dropout
in massive open online courses, where a number of
different authors (e.g. [9, 34, 28, 31]) have done work
all with different datasets, outcome variables, and
approaches.
Moving towards a common and clear set of outcomes,
open data, and shared implementations in order to
compare the efficacy of techniques and the suitability
of modelling methods for given problems could be
beneficial for the community. This approach has been
valuable in similar research fields13 and the broader
data science community14, and we believe that edu-
cational data science challenges could help to dissem-
inate predictive modelling knowledge throughout
the educational research community while also pro-
viding an opportunity for the development of novel
interdisciplinary methods, especially as it relates to
feature engineering. Ryan Baker’s six problems for
the learning analytics community are an example of
this community challenge initiative[4].

3. Engaging in 2nd order predictive modelling. In the
context of learning analytics, we define second order
predictive models as those which include historical
knowledge as to the effects of and intervention in the
model itself. Thus a predictive model which used stu-
dent interactions with content to determine drop out
(for instance) would be a example of first order pre-
dictive modelling, while a model which also includes
historical data as to the effect of an intervention (such
as an email prompt or nudge) would be considered
a second order predictive model. Moving towards
the modelling of intervention effectiveness is impor-
tant when multiple interventions are available and
personalized learning paths are desired.

4. Bias in educational predictive models. A growing
concern in the predictive modeling and machine
learning community is the potential for models to
become biased with respect to their performance for
different classes of people. In addition to being ad-
dressed within existing scholarly communities, this
concern has spawned the creation of new academic
conferences focused specifically on issues of bias and
fairness (e.g. the ACM Conference on Fairness, Ac-
countability, and Transparency (FAccT)15). Within the
area of learning analytics specifically there have been
a number of works looking at how to measure bias
in predictive models [29], the impact of user choice
on bias in models [23], and the bias in underlying
methods applied in educational models [12]. What is
lacking within the field, however, is an understand-

13http://www.kdd.org/kdd-cup
14http://www.kaggle.com/
15https://facctconference.org/

ing of how evidence of bias should influence the use
of predictive models in education. For instance, if a
model has a bias against a given subpopulation, does
that mean the model shouldn’t be used at all? How
big must the bias be before it is a concern? What
subpopulations are important in a given learning
context? These thorny sociotechnical issues need fur-
ther exploration, as the work to date has largely been
technical or measurement focused.

Despite the multi-disciplinary nature of the learning an-
alytics and educational data mining communities, there
is still a significant need for bridging understanding be-
tween the diverse array of scholars involved. An inter-
esting thematic undercurrent at learning analytics con-
ferences are the (sometimes heated) discussions of the
roles of theory and data as drivers of educational research.
Have we reached the point of “the end of theory” [3] in
educational research? Unlikely, but this question is most
salient within the subfield of predictive modelling in teach-
ing and learning: while for some researchers the goal is
understanding cognition and learning processes, others
are interested in predicting future events and success as
accurately as possible. With predictive models becom-
ing increasingly complex and incomprehensible by an
individual (essentially black boxes), it is important to start
discussing more explicitly the goals of research agendas in
the field, to better drive methodological choices between
explanatory and predictive modelling techniques.
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