Chapter 22

Handbook of Learning Analytics
First Edition

Analytics of Learner Video Use

Negin Mirriahi & Lorenzo Vigentini


Videos are becoming a core component of many pedagogical approaches, particularly with the rise in interest in blended learning, flipped classrooms, and massive open and online courses (MOOCs). Although there are a variety of types of videos used for educational purposes, lecture videos are the most widely adopted. Furthermore, with recent advances in video streaming technologies, learners’ digital footprints when accessing videos can be mined and analyzed to better understand how they learn and engage with them. The collection, measurement, and analysis of such data for the purposes of understanding how learners use videos can be referred to as video analytics. Coupled with more traditional data collection methods, such as interviews or surveys, and performance data to obtain a holistic view of how and why learners engage and learn with videos, video analytics can help inform course design and teaching practice. In this chapter, we provide an overview of videos integrated in the curriculum including an introduction to multimedia learning and discuss data mining approaches for investigating learner use, engagement with, and learning with videos, and provide suggestions for future directions.

Export Citation: Plain Text (APA)     BIBTeX     RIS

Supplementary Material
No Supplementary Material Available
References (104)

Antani, S., Kasturi, R., & Jain, R. (2002). A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video. Pattern Recognition, 35(4), 945–965.

Anusha, V., & Shereen, J. (2014). Multiple lecture video annotation and conducting quiz using random tree classification. International Journal of Engineering Trends and Technology, 8(10), 522–525.

Atkins, M. J. (1993). Theories of learning and multimedia applications: An overview. Research Papers in Education, 8(2), 251–271.

Avlonitis, M., & Chorianopoulos, K. (2014). Video pulses: User-based modeling of interesting video segments. Advances in Multimedia, 2014.

Avlonitis, M., Karydis, I., & Sioutas, S. (2015). Early prediction in collective intelligence on video users’ activity. Information Sciences, 298, 315–329.

Beretvas, S. N., Meyers, J. L., & Leite, W. L. (2002). A reliability generalization study of the Marlowe-Crowne social desirability scale. Educational and Psychological Measurement, 62(4), 570–589.

Bloom, B. S. (1968). Learning for Mastery: Instruction and Curriculum. Regional Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1. Evaluation Comment, 1(2), n2.

Brooks, C., Epp, C. D., Logan, G., & Greer, J. (2011). The who, what, when, and why of lecture capture. Proceedings of the 1st International Conference on Learning Analytics and Knowledge (LAK ʼ11), 27 February–1 March 2011, Banff, AB, Canada (pp. 86–92). New York: ACM.

Brunelli, R., Mich, O., & Modena, C. M. (1999). A survey on the automatic indexing of video data. Journal of Visual Communication and Image Representation, 10(2), 78–112.

Chen, B., Seilhamer, R., Bennett, L., & Bauer, S. (2015, June 22). Students’ mobile learning practices in higher education: A multi-year study. Educause Review.

Chen, L., Chen, G.-C., Xu, C.-Z., March, J., & Benford, S. (2008). EmoPlayer: A media player for video clips with affective annotations. Interacting with Computers, 20(1), 17–28.

Chorianopoulos, K. (2012). Crowdsourcing user interactions with the video player. Proceedings of the 18th Brazilian Symposium on Multimedia and the Web (WebMedia ’12), 15–18 October 2012, São Paulo, Brazil (pp. 13–16). New York: ACM.

Chorianopoulos, K. (2013). Collective intelligence within web video. Human-Centric Computing and Information Sciences, 3(1), 1–16.

Chorianopoulos, K., Giannakos, M. N., Chrisochoides, N., & Reed, S. (2014). Open service for video learning analytics. Proceedings of the 14th IEEE International Conference on Advanced Learning Technologies (ICALT 2014), 7–10 July 2014, Athens, Greece (pp. 28–30).

Clark, R. E. (1983). Reconsidering research on learning from media. Review of Educational Research, 53(4), 445–459.

Clark, R. E. (1994). Media and method. Educational Technology Research and Development, 42(3), 7–10.

Cobârzan, C., & Schoeffmann, K. (2014). How do users search with basic HTML5 video players? In C. Gurrin, F. Hopfgartner, W. Hurst, H. Johansen, H. Lee, & N. O’Connor (Eds.), MultiMedia Modeling (pp. 109–120). Springer.

Colasante, M. (2010). Future-focused learning via online anchored discussion, connecting learners with digital artefacts, other learners, and teachers. Proceedings of the 27th Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education: Curriculum, Technology & Transformation for an Unknown Future (ASCILITE 2010), 5–8 December 2010, Sydney, Australia (pp. 211–221). ASCILITE.

Colasante, M. (2011). Using video annotation to reflect on and evaluate physical education pre-service teaching practice. Australasian Journal of Educational Technology, 27(1), 66–88.

Coleman, C. A., Seaton, D. T., & Chuang, I. (2015). Probabilistic use cases: Discovering behavioral patterns for predicting certification. Proceedings of the 2nd ACM conference on Learning@Scale (L@S 2015), 14–18 March 2015, Vancouver, BC, Canada (pp. 141–148). New York: ACM.

Conole, G. (2013). MOOCs as disruptive technologies: Strategies for enhancing the learner experience and quality of MOOCs. Revista de Educación a Distancia (RED), 39.

Crockford, C., & Agius, H. (2006). An empirical investigation into user navigation of digital video using the VCR-like control set. International Journal of Human–Computer Studies, 64(4), 340–355.

Daniel, R. (2001). Self-assessment in performance. British Journal of Music Education, 18(3).

Dawson, S., Macfadyen, L., Evan, F. R., Foulsham, T., & Kingstone, A. (2012). Using technology to encourage self-directed learning: The Collaborative Lecture Annotation System (CLAS). Proceedings of the 29th Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE 2012), 25–28 October, Wellington, New Zealand (pp. XXX–XXX). ASCILITE.,_shane_-_using_technology.pdf

de Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2011). Attention cueing in an instructional animation: The role of presentation speed. Computers in Human Behavior, 27(1), 41–45.

Delen, E., Liew, J., & Willson, V. (2014). Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education, 78, 312–320.

Diwanji, P., Simon, B. P., Marki, M., Korkut, S., & Dornberger, R. (2014). Success factors of online learning videos. Proceedings of the International Conference on Interactive Mobile Communication Technologies and Learning (IMCL 2014), 13–14 November 2014, Thessaloniki, Greece (pp. 125–132). IEEE.

Dufour, C., Toms, E. G., Lewis, J., & Baecker, R. (2005). User strategies for handling information tasks in webcasts. CHI ’05 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’05), 2–7 April 2005, Portland, OR, USA (pp. 1343–1346). New York: ACM.

El Samad, A., & Hamid, O. H. (2015). The role of socio-economic disparities in varying the viewing behavior of e-learners. Proceedings of the 5th International Conference on Digital Information and Communication Technology and its Applications (DICTAP) (pp. 74–79).

Fegade, M. A., & Dalal, V. (2014). A survey on content based video retrieval. International Journal of Engineering and Computer Science, 3(7), 7271–7279.

Gagne, R. M. (1965). The conditions of learning. Holt, Rinehart & Winston.

Gašević, D., Mirriahi, N., & Dawson, S. (2014). Analytics of the effects of video use and instruction to support reflective learning. Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 123–132). New York: ACM.

Giannakos, M. N. (2013). Exploring the video-based learning research: A review of the literature: Colloquium. British Journal of Educational Technology, 44(6), E191–E195.

Giannakos, M. N., Chorianopoulos, K., & Chrisochoides, N. (2014). Collecting and making sense of video learning analytics. Proceedings of the 2014 IEEE Frontiers in Education Conference (FIE 2014), 22–25 October 2014, Madrid, Spain. IEEE.

Giannakos, M. N., Chorianopoulos, K., & Chrisochoides, N. (2015). Making sense of video analytics: Lessons learned from clickstream interactions, attitudes, and learning outcome in a video-assisted course. The International Review of Research in Open and Distributed Learning, 16(1).

Giannakos, M. N., Jaccheri, L., & Krogstie, J. (2015). Exploring the relationship between video lecture usage patterns and students’ attitudes: Usage patterns on video lectures. British Journal of Educational Technology, 47(6), 1259–1275.

Gkonela, C., & Chorianopoulos, K. (2012). VideoSkip: Event detection in social web videos with an implicit user heuristic. Multimedia Tools and Applications, 69(2), 383–396.

Gonyea, R. M. (2005). Self-reported data in institutional research: Review and recommendations. New Directions for Institutional Research, 2005(127), 73–89.

Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Journal of Educational Technology & Society, 15(3), 42–57.

Grigoras, R., Charvillat, V., & Douze, M. (2002). Optimizing hypervideo navigation using a Markov decision process approach. Proceedings of the 10th ACM International Conference on Multimedia (MULTIMEDIA ’02), 1–6 December 2002, Juan-les-Pins, France (pp. 39–48). New York: ACM.

Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of MOOC videos. Proceedings of the 1st ACM conference on Learning@Scale (L@S 2014), 4–5 March 2014, Atlanta, Georgia, USA (pp. 41–50). New York: ACM.

Guskey, T. R., & Good, T. L. (2009). Mastery learning. In T. L. Good (Ed.), 21st Century Education: A Reference Handbook, vol. 1 (pp. 194–202). Thousand Oaks, CA: Sage.

He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90–102.

He, L., Grudin, J., & Gupta, A. (2000). Designing presentations for on-demand viewing. Proceedings of the 2000 Conference on Computer Supported Cooperative Work (CSCW ’00), 2–6 December 2000, Philadelphia, PA, USA (pp. 127–134). New York: ACM.

He, L., Sanocki, E., Gupta, A., & Grudin, J. (2000). Comparing presentation summaries: Slides vs. reading vs. listening. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2000), 1–6 April 2000, The Hague, Netherlands (pp. 177–184). New York: ACM.

Hulsman, R. L., Harmsen, A. B., & Fabriek, M. (2009). Reflective teaching of medical communication skills with DiViDU: Assessing the level of student reflection on recorded consultations with simulated patients. Patient Education and Counseling, 74(2), 142–149.

Ilioudi, C., Giannakos, M. N., & Chorianopoulos, K. (2013). Investigating differences among the commonly used video lecture styles. Proceedings of the Workshop on Analytics on Video-Based Learning (WAVe 2013), 8 April 2013, Leuven, Belgium (pp. 21–26).

Johnson, T. (2011, July 22). A few notes from usability testing: Video tutorials get watched, text gets skipped. I’d Rather Be Writing [Blog].

Joy, E. H., & Garcia, F. E. (2000). Measuring learning effectiveness: A new look at no-significant-difference findings. Journal of Asynchronous Learning Networks, 4(1), 33–39.

Juhlin, O., Zoric, G., Engström, A., & Reponen, E. (2014). Video interaction: A research agenda. Personal and Ubiquitous Computing, 18(3), 685–692.

Kamahara, J., Nagamatsu, T., Fukuhara, Y., Kaieda, Y., & Ishii, Y. (2009). Method for identifying task hardships by analyzing operational logs of instruction videos. In T.-S. Chua, Y. Kompatsiaris, B. Mérialdo, W. Haas, G. Thallinger, & W. Bailer (Eds.), Semantic Multimedia (pp. 161–164). Springer.

Keller, F. S. (1967). Engineering personalized instruction in the classroom. Revista Interamericana de Psicologia, 1(3), 144–156.

Kim, J., Guo, P. J., Cai, C. J., Li, S.-W. (Daniel), Gajos, K. Z., & Miller, R. C. (2014). Data-driven Interaction Techniques for Improving Navigation of Educational Videos. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (pp. 563–572). New York, NY, USA: ACM.

Kim, J., Guo, P. J., Seaton, D. T., Mitros, P., Gajos, K. Z., & Miller, R. C. (2014). Understanding in-video dropouts and interaction peaks in online lecture videos. Proceedings of the 1st ACM Conference on Learning @ Scale (L@S 2014), 4–5 March 2014, Atlanta, GA, USA (pp. 31–40). New York: ACM.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

Kolowich, S. (2013, March 18). The professors who make the MOOCs. The Chronicle of Higher Education, 25.

Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 179–211.

Kozma, R. B. (1994). Will media influence learning? Reframing the debate. Educational Technology Research and Development, 42(2), 7–19.

Kulik, C.-L. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery learning programs: A meta-analysis. Review of Educational Research, 60(2), 265–299.

Lee, H. S., & Anderson, J. R. (2013). Student learning: What has instruction got to do with it? Annual Review of Psychology, 64(1), 445–469.

Li, F. C., Gupta, A., Sanocki, E., He, L., & Rui, Y. (2000). Browsing digital video. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2000), 1–6 April 2000, The Hague, Netherlands (pp. 169–176). New York: ACM.

Li, N., Kidzinski, L., Jermann, P., & Dillenbourg, P. (2015). How do in-video interactions reflect perceived video difficulty? Proceedings of the 3rd European MOOCs Stakeholder Summit, 18–20 May 2015, Mons, Belgium (pp. 112–121). PAU Education.

Li, K., T. Zhang, X. Hu, D. Zhu, H. Chen, X. Jiang, F. Deng, J. Lv, C. C. Faraco, and D. Zhang. 2010. “Human-Friendly Attention Models for Video Summarization.” In International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction (pp. 27:1–27:8). New York: ACM.

Lyons, A., Reysen, S., & Pierce, L. (2012). Video lecture format, student technological efficacy, and social presence in online courses. Computers in Human Behavior, 28(1), 181–186.

Margaryan, A., Bianco, M., & Littlejohn, A. (2015). Instructional quality of Massive Open Online Courses (MOOCs). Computers & Education, 80, 77–83.

Mayer, R. E. (2009). Multimedia learning. Cambridge, UK: Cambridge University Press.

Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of Educational Psychology, 93(1), 187–198.

McKeachie, W. J. (1974). Instructional psychology. Annual Review of Psychology, 25(1), 161–193.

Merkt, M., Weigand, S., Heier, A., & Schwan, S. (2011). Learning with videos vs. learning with print: The role of interactive features. Learning and Instruction, 21(6), 687–704.

Mirriahi, N., & Dawson, S. (2013). The pairing of lecture recording data with assessment scores: A method of discovering pedagogical impact. Proceedings of the 3rd International Conference on Learning Analytics and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 180–184). New York: ACM.

Mirriahi, N., Liaqat, D., Dawson, S., & Gašević, D. (2016). Uncovering student learning profiles with a video annotation tool: Reflective learning with and without instructional norms. Educational Technology Research and Development, 64(6), 1083–1106.

Monserrat, T.-J. K. P., Zhao, S., McGee, K., & Pandey, A. V. (2013). NoteVideo: Facilitating navigation of Blackboard-style lecture videos. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ʼ13), 27 April–2 May 2013, Paris, France (pp. 1139–1148). New York: ACM.

Mu, X. (2010). Towards effective video annotation: An approach to automatically link notes with video content. Computers & Education, 55(4), 1752–1763.

Oblinger, D. G., & Hawkins, B. L. (2006). The myth about no significant difference. EDUCAUSE Review, 41(6), 14–15.

Owston, R., Lupshenyuk, D., & Wideman, H. (2011). Lecture capture in large undergraduate classes: Student perceptions and academic performance. The Internet and Higher Education, 14(4), 262–268.

Palincsar, A. S. (1998). Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 49(1), 345–375.

Pardo, A., Mirriahi, N., Dawson, S., Zhao, Y., Zhao, A., & Gašević, D. (2015). Identifying learning strategies associated with active use of video annotation software. Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 255–259). New York: ACM Press.

Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41(4, Part 1), 1432–1462.

Phillips, R., Maor, D., Cumming-Potvin, W., Roberts, P., Herrington, J., Preston, G., … Perry, L. (2011). Learning analytics and study behaviour: A pilot study. In G. Williams, P. Statham, N. Brown, & B. Cleland (Eds.), Proceedings of the 28th Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education: Changing Demands, Changing Directions (ASCILITE 2011), 4–7 December 2011, Hobart, Tasmania, Australia (pp. 997–1007). ASCILITE.

Reeves, T. C. (1986). Research and evaluation models for the study of interactive video. Journal of Computer-Based Instruction, 13(4), 102–106.

Reeves, T. C. (1991). Ten commandments for the evaluation of interactive multimedia in higher education. Journal of Computing in Higher Education, 2(2), 84–113.

Risko, E. F., Foulsham, T., Dawson, S., & Kingstone, A. (2013). The collaborative lecture annotation system (CLAS): A new TOOL for distributed learning. IEEE Transactions on Learning Technologies, 6(1), 4–13.

Ritzhaupt, A. D., Pastore, R., & Davis, R. (2015). Effects of captions and time-compressed video on learner performance and satisfaction. Computers in Human Behavior, 45, 222–227.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135–146.

Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), 601–618.

Russell, T. L. (1999). The no significant difference phenomenon: A comparative research annotated bibliography on technology for distance education: As reported in 355 research reports, summaries and papers. North Carolina State University.

Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14(3), 293–305.

Shi, C., Fu, S., Chen, Q., & Qu, H. (2014). VisMOOC: Visualizing video clickstream data from massive open online courses. Proceedings of the 2014 IEEE Conference on Visual Analytics Science and Technology (VAST 2014), 9–14 November 2014, Paris, France (pp. 277–278). IEEE.

Sinha, T., & Cassell, J. (2015). Connecting the dots: Predicting student grade sequences from Bursty MOOC interactions over time. Proceedings of the 2nd ACM Conference on Learning@Scale (L@S 2015), 14–18 March 2015, Vancouver, BC, Canada (pp. 249–252). New York: ACM.

Skinner, F. B. (1950). Are theories of learning necessary? Psychological Review, 57(4), 193–216.

Song, S., Hong, J., Oakley, I., Cho, J. D., & Bianchi, A. (2015). Automatically adjusting the speed of e-learning videos. CHI 33rd Conference on Human Factors in Computing Systems: Extended Abstracts (CHI EA ’15), 18–23 April 2015, Seoul, Republic of Korea (pp. 1451–1456). New York: ACM.

Syeda-Mahmood, T., & Ponceleon, D. (2001). Learning video browsing behavior and its application in the generation of video previews. Proceedings of the 9th ACM International Conference on Multimedia (MULTIMEDIA ’01), 30 September–5 October 2001, Ottawa, ON, Canada (pp. 119–128). New York: ACM.

Tennyson, R. D. (1994). The big wrench vs. integrated approaches: The great media debate. Educational Technology Research and Development, 42(3), 15–28.

Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 24 (NIPS 2011), 12–17 December 2011, Granada, Spain (pp. 28–36).

Weir, S., Kim, J., Gajos, K. Z., & Miller, R. C. (2015). Learnersourcing subgoal labels for how-to videos. Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW ’15), 14–18 March 2015, Vancouver, BC, Canada (pp. 405–416). New York: ACM.

Wen, M., & Rosé, C. P. (2014). Identifying latent study habits by mining learner behavior patterns in massive open online courses. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM ’14), 3–7 November 2014, Shanghai, China (pp. 1983–1986). New York: ACM.

Wieling, M. B., & Hofman, W. H. A. (2010). The impact of online video lecture recordings and automated feedback on student performance. Computers & Education, 54(4), 992–998.

Winne, P. H., & Jamieson-Noel, D. (2002). Exploring students’ calibration of self reports about study tactics and achievement. Contemporary Educational Psychology, 27(4), 551–572.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. Burlington, MA: Morgan Kaufmann Publishers.

Yousef, A. M. F., Chatti, M. A., & Schroeder, U. (2014). Video-based learning: A critical analysis of the research published in 2003–2013 and future visions. Proceedings of the 6th International Conference on Mobile, Hybrid, and On-line Learning (ThinkMind/eLmL 2014), 23–27 March 2014, Barcelona, Spain (pp. 112–119).

Yu, B., Ma, W.-Y., Nahrstedt, K., & Zhang, H.-J. (2003). Video summarization based on user log enhanced link analysis. Proceedings of the 11th ACM International Conference on Multimedia (MULTIMEDIA ’03), 2–8 November 2003, Berkeley, CA, USA (pp. 382–391). New York: ACM.

Zahn, C., Barquero, B., & Schwan, S. (2004). Learning with hyperlinked videos: Design criteria and efficient strategies for using audiovisual hypermedia. Learning and Instruction, 14(3), 275–291.

Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker Jr., J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15–27.

Zupancic, B., & Horz, H. (2002). Lecture recording and its use in a traditional university course. In Proceedings of the 7th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE ’02), 24–28 June 2002, Aarhus, Denmark (pp. 24–28). New York: ACM.

About this Chapter

Analytics of Learner Video Use

Book Title
Handbook of Learning Analytics

pp. 251-267




Society for Learning Analytics Research

Negin Mirriahi1
Lorenzo Vigentini2

Author Affiliations
1. School of Education & Teaching Innovation Unit, University of South Australia, Australia
2. School of Education & PVC (Education Portfolio), University of New South Wales, Australia

Charles Lang3
George Siemens4
Alyssa Wise5
Dragan Gašević6

Editor Affiliations
3. Teachers College, Columbia University, USA
4. LINK Research Lab, University of Texas at Arlington, USA
5. Learning Analytics Research Network, New York University, USA
6. Schools of Education and Informatics, University of Edinburgh, UK